Valorization of Kitchen Waste into Functional Biochar: Progress in Synthesis, Characterization, and Water Remediation Potential
Abstract
1. Introduction
2. Characteristics of Kitchen Waste and Its Potential for Biochar Production
General Synthesis Methods of Biochar
3. Physicochemical Properties of Kitchen Waste-Derived Biochar
4. Applications of Biochar Beads in Soil and Water Remediation
4.1. Water Remediation
4.2. Soil Remediation
5. Mechanism of Pollutant Removal in Water and Soil Remediation
- KBC/BiOX + hv → KBC/BiOX* (e− + h+)
- h+ + H2O → •OH+ H+
- Methyl orange or tetracycline + H+ → CO2 + H2O + intermediates
- Methyl orange or tetracycline + •OH → CO2 + H2O + degradation products
6. Experimental Parameters
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Voukkali, I.; Papamichael, I.; Loizia, P.; Zorpas, A.A. Urbanization and solid waste production: Prospects and challenges. Environ. Sci. Pollut. Res. 2024, 31, 17678–17689. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kuthiala, T.; Thakur, K.; Thatai, K.S.; Singh, G.; Kumar, P.; Arya, S.K. Kitchen waste: Sustainable bioconversion to value-added product and economic challenges. Biomass Convers. Biorefinery 2025, 15, 1749–1770. [Google Scholar] [CrossRef]
- Medina, M. Solid Wastes, Poverty and the Environment in Developing Country Cities: Challenges and Opportunities; WIDER Working Paper; WIDER: Helsinki, Finland, 2010; ISBN 9292302582. [Google Scholar]
- Sindhu, R.; Gnansounou, E.; Rebello, S.; Binod, P.; Varjani, S.; Thakur, I.S.; Nair, R.B.; Pandey, A. Conversion of food and kitchen waste to value-added products. J. Environ. Manag. 2019, 241, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef] [PubMed]
- Barik, S.; Paul, K.K. Potential reuse of kitchen food waste. J. Environ. Chem. Eng. 2017, 5, 196–204. [Google Scholar] [CrossRef]
- Yu, D.; Yu, Y.; Tang, J.; Li, X.; Ke, C.; Yao, Z. Application fields of kitchen waste biochar and its prospects as catalytic material: A review. Sci. Total Environ. 2022, 810, 152171. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, R.; Li, Y.-C.; Liu, H.; Zhan, T.L. A degradation model for high kitchen waste content municipal solid waste. Waste Manag. 2016, 58, 376–385. [Google Scholar] [CrossRef]
- Song, X.; Ma, J.; Gao, J.; Liu, Y.; Hao, Y.; Li, W.; Hu, R.; Li, A.; Zhang, L. Optimization of bio-drying of kitchen waste: Inoculation, initial moisture content and bulking agents. J. Mater. Cycles Waste Manag. 2017, 19, 496–504. [Google Scholar] [CrossRef]
- Gao, W.; Chen, Y.; Zhan, L.; Bian, X. Engineering properties for high kitchen waste content municipal solid waste. J. Rock Mech. Geotech. Eng. 2015, 7, 646–658. [Google Scholar] [CrossRef]
- Niu, L.; Hu, Y.; Hu, H.; Zhang, X.; Wu, Y.; Giwa, A.S.; Huang, S. Kitchen-waste-derived biochar modified nanocomposites with improved photocatalytic performances for degrading organic contaminants. Environ. Res. 2022, 214, 114068. [Google Scholar] [CrossRef]
- Abrahams, P.W. Soils: Their implications to human health. Sci. Total Environ. 2002, 291, 1–32. [Google Scholar] [CrossRef]
- Ahmad, W.; Alharthy, R.D.; Zubair, M.; Ahmed, M.; Hameed, A.; Rafique, S. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci. Rep. 2021, 11, 17006. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.F.; Mofijur, M.; Nuzhat, S.; Chowdhury, A.T.; Rafa, N.; Uddin, M.A.; Inayat, A.; Mahlia, T.M.I.; Ong, H.C.; Chia, W.Y. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J. Hazard. Mater. 2021, 416, 125912. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.S.; Ali, S.; Zaman, W. Innovative adsorbents for pollutant removal: Exploring the latest research and applications. Molecules 2024, 29, 4317. [Google Scholar] [CrossRef]
- Satyam, S.; Patra, S. Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review. Heliyon 2024, 10, e29573. [Google Scholar] [CrossRef]
- Goria, K.; Bharti, A.; Raina, S.; Kothari, R.; Tyagi, V.V.; Singh, H.M.; Kour, G. Low-cost adsorbent biomaterials for the remediation of inorganic and organic pollutants from industrial wastewater: Eco-friendly approach. In Sustainable Materials for Sensing and Remediation of Noxious Pollutants; Elsevier: Amsterdam, The Netherlands, 2022; pp. 87–112. [Google Scholar]
- Premchand, P.; Demichelis, F.; Chiaramonti, D.; Bensaid, S.; Fino, D. Biochar production from slow pyrolysis of biomass under CO2 atmosphere: A review on the effect of CO2 medium on biochar production, characterisation, and environmental applications. J. Environ. Chem. Eng. 2023, 11, 110009. [Google Scholar] [CrossRef]
- Sri Shalini, S.; Palanivelu, K.; Ramachandran, A.; Raghavan, V. Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions—A review. Biomass Convers. Biorefinery 2021, 11, 2247–2267. [Google Scholar] [CrossRef]
- Brownsort, P.A. Biomass Pyrolysis Processes: Performance Parameters and Their Influence on Biochar System Benefits; University of Edinburgh: Edinburgh, UK, 2009. [Google Scholar]
- Qiu, B.; Shao, Q.; Shi, J.; Yang, C.; Chu, H. Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Sep. Purif. Technol. 2022, 300, 121925. [Google Scholar] [CrossRef]
- Mandal, T.; Senapati, R.N.; Ghosh, A.K.; Masto, R.E.; Singh, V. Kitchen Waste-Derived Oxygen-Doped Fluorescent Carbon Quantum Dots for Ultra-Trace Detection of Chromium (VI) in Environmental Water Matrices. ACS Sustain. Resour. Manag. 2025. [Google Scholar] [CrossRef]
- Hashem, M.A.; Mim, M.W.; Noshin, N.; Maoya, M. Chromium adsorption capacity from tannery wastewater on thermally activated adsorbent derived from kitchen waste biomass. Clean. Water 2024, 1, 100001. [Google Scholar] [CrossRef]
- Mishra, M.; Jha, A.K.; Prasad, K. Nanofabrication Using Common Kitchen/Domestic Wastes: An Approach Towards Sustainability and Circular Economy. In Nanofabrication; CRC Press: Boca Raton, FL, USA, 2024; pp. 56–71. [Google Scholar]
- Koparde, S.V.; Nille, O.S.; Kolekar, A.G.; Bote, P.P.; Gaikwad, K.V.; Anbhule, P.V.; Pawar, S.P.; Kolekar, G.B. Okra peel-derived nitrogen-doped carbon dots: Eco-friendly synthesis and multi-functional applications in heavy metal ion sensing, nitro compound detection and environmental remediation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 321, 124659. [Google Scholar] [CrossRef]
- Singh, J.; Bhattu, M.; Verma, M.; Bechelany, M.; Brar, S.K.; Jadeja, R. Sustainable Valorization of Rice Straw into Biochar and Carbon Dots Using a Novel One-Pot Approach for Dual Applications in Detection and Removal of Lead Ions. Nanomaterials 2025, 15, 66. [Google Scholar] [CrossRef]
- Singh, J.; Bhattu, M.; Verma, M. Rice Straw Derived Mesoporous Biochar for the Removal of Coomassie Brilliant Blue Dye. Top. Catal. 2025, 68, 573–582. [Google Scholar] [CrossRef]
- Singh, J.; Bhattu, M.; Liew, R.K.; Verma, M.; Brar, S.K.; Bechelany, M.; Jadeja, R. Transforming rice straw waste into biochar for advanced water treatment and soil amendment applications. Environ. Technol. Innov. 2025, 37, 103932. [Google Scholar] [CrossRef]
- Pradhan, S.; Parthasarathy, P.; Mackey, H.R.; Al-Ansari, T.; McKay, G. Food waste biochar: A sustainable solution for agriculture application and soil–water remediation. Carbon Res. 2024, 3, 41. [Google Scholar] [CrossRef]
- Rex, P.; Meenakshisundaram, N.; Barmavatu, P. Sustainable valorisation of kitchen waste through greenhouse solar drying and microwave pyrolysis–technology readiness level for the production of biochar. J. Environ. Heal. Sci. Eng. 2024, 22, 381–395. [Google Scholar] [CrossRef]
- Suriapparao, D.V.; Vinu, R. Recovery of renewable carbon resources from the household kitchen waste via char induced microwave pyrolysis. Renew. Energy 2021, 179, 370–378. [Google Scholar] [CrossRef]
- Lightner, J. Scraps, Peels, and Stems: Recipes and Tips for Rethinking Food Waste at Home; Skipstone: Geyserville, CA, USA, 2018; ISBN 1680511491. [Google Scholar]
- Nguyen, M.K.; Lin, C.; Hoang, H.G.; Bui, X.T.; Ngo, H.H.; Le, V.G.; Tran, H.T. Investigation of biochar amendments on odor reduction and their characteristics during food waste co-composting. Sci. Total Environ. 2023, 865, 161128. [Google Scholar] [CrossRef] [PubMed]
- Vianna, N.J.; Polan, A.K. Incidence of low birth weight among Love Canal residents. Science 1984, 226, 1217–1219. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Niu, R.; Huang, X.; An, Y.; Li, J.; Li, M.; Huang, H.; Garg, A. Influence of sustainable biochars produced from kitchen waste, pig manure, and wood on soil erosion. Water 2021, 13, 2296. [Google Scholar] [CrossRef]
- Xie, T.; Reddy, K.R.; Wang, C.; Yargicoglu, E.; Spokas, K. Characteristics and applications of biochar for environmental remediation: A review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 939–969. [Google Scholar] [CrossRef]
- Hossain, N.; Nizamuddin, S.; Griffin, G.; Selvakannan, P.; Mubarak, N.M.; Mahlia, T.M.I. Synthesis and characterization of rice husk biochar via hydrothermal carbonization for wastewater treatment and biofuel production. Sci. Rep. 2020, 10, 18851. [Google Scholar] [CrossRef]
- Cay, H.; Duman, G.; Yanik, J. Two-step gasification of biochar for hydrogen-rich gas production: Effect of the biochar type and catalyst. Energy Fuels 2019, 33, 7398–7405. [Google Scholar]
- Adeniyi, A.G.; Iwuozor, K.O.; Emenike, E.C.; Ogunniyi, S.; Amoloye, M.A.; Sagboye, P.A. One-step chemical activation for the production of engineered orange peel biochar. Emergent Mater. 2023, 6, 211–221. [Google Scholar] [CrossRef]
- Mukherjee, A.; Patra, B.R.; Podder, J.; Dalai, A.K. Synthesis of biochar from lignocellulosic biomass for diverse industrial applications and energy harvesting: Effects of pyrolysis conditions on the physicochemical properties of biochar. Front. Mater. 2022, 9, 870184. [Google Scholar] [CrossRef]
- Li, S.; Harris, S.; Anandhi, A.; Chen, G. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. J. Clean. Prod. 2019, 215, 890–902. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, B.; Yao, Y.; Fang, J.; Zhang, M.; Zhou, Y.; Chen, H.; Yang, L. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem. Eng. J. 2014, 240, 574–578. [Google Scholar] [CrossRef]
- Manyà, J.J. Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environ. Sci. Technol. 2012, 46, 7939–7954. [Google Scholar] [CrossRef]
- Liu, Z.; Quek, A.; Hoekman, S.K.; Balasubramanian, R. Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 2013, 103, 943–949. [Google Scholar] [CrossRef]
- Sajjadi, B.; Zubatiuk, T.; Leszczynska, D.; Leszczynski, J.; Chen, W.Y. Chemical activation of biochar for energy and environmental applications: A comprehensive review. Rev. Chem. Eng. 2019, 35, 777–815. [Google Scholar] [CrossRef]
- Chia, C.H.; Downie, A.; Munroe, P. Characteristics of biochar: Physical and structural properties. In Biochar for Environmental Management; Routledge: London, UK, 2015; pp. 89–109. [Google Scholar]
- Amonette, J.E.; Joseph, S. Characteristics of biochar: Microchemical properties. In Biochar for Environmental Management; Routledge: London, UK, 2012; pp. 65–84. [Google Scholar]
- Suresh Babu, K.K.B.; Nataraj, M.; Tayappa, M.; Vyas, Y.; Mishra, R.K.; Acharya, B. Production of biochar from waste biomass using slow pyrolysis: Studies of the effect of pyrolysis temperature and holding time on biochar yield and properties. Mater. Sci. Energy Technol. 2024, 7, 318–334. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.; Ju, M.; Liu, L. Preparation and modification of biochar materials and their application in soil remediation. Appl. Sci. 2019, 9, 1365. [Google Scholar] [CrossRef]
- Xu, C.; Tan, X.; Zhao, J.; Cao, J.; Ren, M.; Xiao, Y.; Lin, A. Optimization of biochar production based on environmental risk and remediation performance: Take kitchen waste for example. J. Hazard. Mater. 2021, 416, 125785. [Google Scholar] [CrossRef]
- Cuixia, Y.; Yingming, X.; Lin, W.; Xuefeng, L.; Yuebing, S.; Hongtao, J. Effect of different pyrolysis temperatures on physico-chemical characteristics and lead (II) removal of biochar derived from chicken manure. RSC Adv. 2020, 10, 3667–3674. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, H.; Wang, X.; Zhang, S.; Chen, H. Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: Influence of temperature. Bioresour. Technol. 2012, 107, 411–418. [Google Scholar] [CrossRef]
- Brown, T.R.; Wright, M.M.; Brown, R.C. Estimating profitability of two biochar production scenarios: Slow pyrolysis vs fast pyrolysis. Biofuels Bioprod. Biorefining 2011, 5, 54–68. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, J.-Y.; Cho, T.-S.; Choi, J.W. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresour. Technol. 2012, 118, 158–162. [Google Scholar] [CrossRef]
- Nyambura, S.M.; Li, C.; Li, H.; Xu, J.; Wang, J.; Zhu, X.; Feng, X.; Li, X.; Bertrand, G.V.; Ndumia, J.N. Microwave co-pyrolysis of kitchen food waste and rice straw: Effects of susceptor on thermal, surface, and fuel properties of biochar. Fuel 2023, 352, 129093. [Google Scholar] [CrossRef]
- Kuo, L.-A.; Tsai, W.-T.; Yang, R.-Y.; Tsai, J.-H. Production of high-porosity biochar from rice husk by the microwave pyrolysis process. Processes 2023, 11, 3119. [Google Scholar] [CrossRef]
- Mari Selvam, S.; Balasubramanian, P.; Chintala, M.; Gujjala, L.K.S. Techno-economic analysis of microwave pyrolysis of sugarcane bagasse biochar production. Biomass Convers. Biorefinery 2025, 15, 14229–14239. [Google Scholar] [CrossRef]
- Yin, Q.; Liu, M.; Ren, H. Biochar produced from the co-pyrolysis of sewage sludge and walnut shell for ammonium and phosphate adsorption from water. J. Environ. Manag. 2019, 249, 109410. [Google Scholar] [CrossRef]
- Huang, H.; Yang, T.; Lai, F.; Wu, G. Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar. J. Anal. Appl. Pyrolysis 2017, 125, 61–68. [Google Scholar] [CrossRef]
- Zhang, W.; Tan, H.; Chen, Y.; Yang, H.; Chen, H. Pyrolysis of hydrochar from hydrothermal treatment of kitchen waste: Effects of temperature, catalysts, and KOH addition. J. Anal. Appl. Pyrolysis 2022, 167, 105664. [Google Scholar] [CrossRef]
- Zhou, Y.; Engler, N.; Li, Y.; Nelles, M. The influence of hydrothermal operation on the surface properties of kitchen waste-derived hydrochar: Biogas upgrading. J. Clean. Prod. 2020, 259, 121020. [Google Scholar] [CrossRef]
- Qin, F.; Zhang, C.; Zeng, G.; Huang, D.; Tan, X.; Duan, A. Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity. Renew. Sustain. Energy Rev. 2022, 157, 112056. [Google Scholar] [CrossRef]
- Sowmya Dhanalakshmi, C.; Kaliappan, S.; Mohammed Ali, H.; Sekar, S.; Depoures, M.V.; Patil, P.P.; Subbaiah, B.S.; Socrates, S.; Birhanu, H.A. Flash Pyrolysis Experiment on Albizia odoratissima Biomass under Different Operating Conditions: A Comparative Study on Bio-Oil, Biochar, and Noncondensable Gas Products. J. Chem. 2022, 2022, 9084029. [Google Scholar] [CrossRef]
- Trakal, L.; Šigut, R.; Šillerová, H.; Faturíková, D.; Komárek, M. Copper removal from aqueous solution using biochar: Effect of chemical activation. Arab. J. Chem. 2014, 7, 43–52. [Google Scholar] [CrossRef]
- Sakhiya, A.K.; Baghel, P.; Anand, A.; Vijay, V.K.; Kaushal, P. A comparative study of physical and chemical activation of rice straw derived biochar to enhance Zn+2 adsorption. Bioresour. Technol. Reports 2021, 15, 100774. [Google Scholar] [CrossRef]
- Wang, S.; Shi, Y.; Chen, S.; Zhu, C.; Wang, X.; Zhou, T.; Su, L.; Tan, C.; Zhang, L.; Xiang, H. Porous biochars with nitrogen defects prepared from hydrogel template-modified food waste for high-performance supercapacitors. J. Energy Storage 2023, 72, 108720. [Google Scholar] [CrossRef]
- Li, Y.; Yu, X.; Zhang, J.; Wang, Z.; Zhang, T.; Yang, J.; Dong, J.; Li, S.; Xing, C.; Gai, X. Mesoporous Bamboo Biochar from Microwave-assisted Template/Hydrothermal Treatment for Adsorption of Organics. BioResources 2025, 20, 6979–6999. [Google Scholar] [CrossRef]
- Pavlenko, V.; Żółtowska, S.; Haruna, A.B.; Zahid, M.; Mansurov, Z.; Supiyeva, Z.; Galal, A.; Ozoemena, K.I.; Abbas, Q.; Jesionowski, T. A comprehensive review of template-assisted porous carbons: Modern preparation methods and advanced applications. Mater. Sci. Eng. R Reports 2022, 149, 100682. [Google Scholar]
- Xiao, Y.; Lyu, H.; Yang, C.; Zhao, B.; Wang, L.; Tang, J. Graphitic carbon nitride/biochar composite synthesized by a facile ball-milling method for the adsorption and photocatalytic degradation of enrofloxacin. J. Environ. Sci. 2021, 103, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Wang, X.; Gao, B.; Zou, W.; Dong, L. Facile ball-milling synthesis of CuO/biochar nanocomposites for efficient removal of reactive red 120. ACS Omega 2020, 5, 5748–5755. [Google Scholar] [CrossRef]
- Chen, D.; Cen, K.; Gan, Z.; Zhuang, X.; Ba, Y. Comparative study of electric-heating torrefaction and solar-driven torrefaction of biomass: Characterization of property variation and energy usage with torrefaction severity. Appl. Energy Combust. Sci. 2022, 9, 100051. [Google Scholar] [CrossRef]
- Isemin, R.; Mikhalev, A.; Kuzmin, S.; Brulé, M.; Ainane, T.; Milovanov, O.; Klimov, D.; Milovanov, K. Comparison of Dry and Wet Torrefaction for Biochar Production from Olive Leaves and Olive Pomace. Processes 2025, 13, 2155. [Google Scholar] [CrossRef]
- Gronnow, M.J.; Budarin, V.L.; Mašek, O.; Crombie, K.N.; Brownsort, P.A.; Shuttleworth, P.S.; Hurst, P.R.; Clark, J.H. Torrefaction/biochar production by microwave and conventional slow pyrolysis–comparison of energy properties. Gcb Bioenergy 2013, 5, 144–152. [Google Scholar] [CrossRef]
- Hansen, V.; Hauggaard-Nielsen, H.; Petersen, C.T.; Mikkelsen, T.N.; Müller-Stöver, D. Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types. Soil Tillage Res. 2016, 161, 1–9. [Google Scholar] [CrossRef]
- Shen, Y.; Linville, J.L.; Ignacio-de Leon, P.A.A.; Schoene, R.P.; Urgun-Demirtas, M. Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar. J. Clean. Prod. 2016, 135, 1054–1064. [Google Scholar] [CrossRef]
- Amin, F.R.; Huang, Y.; He, Y.; Zhang, R.; Liu, G.; Chen, C. Biochar applications and modern techniques for characterization. Clean Technol. Environ. Policy 2016, 18, 1457–1473. [Google Scholar] [CrossRef]
- Gęca, M.; Khalil, A.M.; Tang, M.; Bhakta, A.K.; Snoussi, Y.; Nowicki, P.; Wiśniewska, M.; Chehimi, M.M. Surface treatment of biochar—Methods, surface analysis and potential applications: A comprehensive review. Surfaces 2023, 6, 179–213. [Google Scholar] [CrossRef]
- Díaz, B.; Sommer-Márquez, A.; Ordoñez, P.E.; Bastardo-González, E.; Ricaurte, M.; Navas-Cárdenas, C. Synthesis methods, properties, and modifications of biochar-based materials for wastewater treatment: A review. Resources 2024, 13, 8. [Google Scholar] [CrossRef]
- Bakari, Z.; Fichera, M.; El Ghadraoui, A.; Renai, L.; Giurlani, W.; Santianni, D.; Fibbi, D.; Bruzzoniti, M.C.; Del Bubba, M. Biochar from co-pyrolysis of biological sludge and woody waste followed by chemical and thermal activation: End-of-waste procedure for sludge management and biochar sorption efficiency for anionic and cationic dyes. Environ. Sci. Pollut. Res. 2024, 31, 35249–35265. [Google Scholar] [CrossRef]
- Ning, K.; Gong, K.; Chen, H.; Cui, Q.; Xin, C.; Tong, X.; Qiu, J.; Zheng, S. Lead stabilization in soil using P-modified biochars derived from kitchen waste. Environ. Technol. Innov. 2022, 28, 102953. [Google Scholar] [CrossRef]
- Meilani, V.; Lee, J.I.; Kang, J.K.; Lee, C.G.; Jeong, S.; Park, S.J. Application of aluminum-modified food waste biochar as adsorbent of fluoride in aqueous solutions and optimization of production using response surface methodology. Microporous Mesoporous Mater. 2021, 312, 110764. [Google Scholar] [CrossRef]
- Kumar, A.; Bhattacharya, T.; Shaikh, W.A.; Roy, A.; Mukherjee, S.; Kumar, M. Performance evaluation of crop residue and kitchen waste-derived biochar for eco-efficient removal of arsenic from soils of the Indo-Gangetic plain: A step towards sustainable pollution management. Environ. Res. 2021, 200, 111758. [Google Scholar] [CrossRef]
- Chu, J.H.; Kang, J.K.; Park, S.J.; Lee, C.G. Application of magnetic biochar derived from food waste in heterogeneous sono-Fenton-like process for removal of organic dyes from aqueous solution. J. Water Process Eng. 2020, 37, 101455. [Google Scholar] [CrossRef]
- Moureen, A.; Waqas, M.; Khan, N.; Jabeen, F.; Magazzino, C.; Jamila, N.; Beyazli, D. Untapped potential of food waste derived biochar for the removal of heavy metals from wastewater. Chemosphere 2024, 356, 141932. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, L.; Zhang, X.; Li, J.; Li, Y.; Peng, Y.; Luo, Y.; Li, R.; Gao, B.; Hamouda, M.A.; et al. Bio-assembled MgO-coated tea waste biochar efficiently decontaminates phosphate from water and kitchen waste fermentation liquid. Biochar 2023, 5, 22. [Google Scholar] [CrossRef]
- Xing, Y.; Luo, X.; Liu, S.; Wan, W.; Huang, Q.; Chen, W. A novel eco-friendly recycling of food waste for preparing biofilm-attached biochar to remove Cd and Pb in wastewater. J. Clean. Prod. 2021, 311, 127514. [Google Scholar] [CrossRef]
- Xu, C.; Zhao, J.; Yang, W.; He, L.; Wei, W.; Tan, X.; Wang, J.; Lin, A. Evaluation of biochar pyrolyzed from kitchen waste, corn straw, and peanut hulls on immobilization of Pb and Cd in contaminated soil. Environ. Pollut. 2020, 261, 114133. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Li, Z.; Gu, T.; Wang, R.; Yu, J.; Zhu, W.; Jiang, L.; Huang, Y.; Li, B.; Dong, Z. Functional materials based on kitchen waste fermentation residue for the remediation of cadmium-contaminated soil. J. Environ. Chem. Eng. 2025, 13, 116616. [Google Scholar] [CrossRef]
- Wu, Q.; Dong, S.; Wang, L.; Li, X. Single and competitive adsorption behaviors of cu2+, pb2+ and zn2+ on the biochar and magnetic biochar of pomelo peel in aqueous solution. Water 2021, 13, 868. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, Q.; Yan, T.; Jia, X.; Lu, D.; Ren, Y.; He, J. Enhanced removal efficiency of Cd2+ and Pb2+ from aqueous solution by H3PO4–modified tea branch biochar: Characterization, adsorption performance and mechanism. J. Environ. Chem. Eng. 2024, 12, 112183. [Google Scholar] [CrossRef]
- Kataya, G.; Issa, M.; Badran, A.; Cornu, D.; Bechelany, M.; Jellali, S.; Jeguirim, M.; Hijazi, A. Dynamic removal of methylene blue and methyl orange from water using biochar derived from kitchen waste. Sci. Rep. 2025, 15, 29907. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.J.; Theydan, S.K. Physical and chemical characteristics of activated carbon prepared by pyrolysis of chemically treated date stones and its ability to adsorb organics. Powder Technol. 2012, 229, 237–245. [Google Scholar] [CrossRef]
- Mahdi, Z.; El Hanandeh, A.; Yu, Q. Influence of pyrolysis conditions on surface characteristics and methylene blue adsorption of biochar derived from date seed biomass. Waste Biomass Valorization 2017, 8, 2061–2073. [Google Scholar] [CrossRef]
Sr. No. | Synthesis Technique | Heating Source | Biomass | Process Temperature | Residence Time | Pyrolysis Atmosphere | Activator Type | Key Features | Application/Relevance to KWBC | Targeted Pollutant | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
1. | Slow pyrolysis | Thermal, microwave | Kitchen waste, citrus peel fruit waste, peanut shell, cotton stalk | ~400 °C | ~2–4 h | Limited O2/N2 | - | Optimization of temperature, energy efficiency, scalability | Solid biofuel; citrus peel as KWBC precursor | Organic pollutants, heavy metals | [50,51,52] |
2. | Fast pyrolysis | Thermal | Crop residue, litchi seeds | ~500 °C | ~2 s | Inert gas N2 | - | High bio-oil yield | Water remediation | Organic compounds | [53,54] |
3. | Microwave-assisted pyrolysis | Microwave | Kitchen food waste, sugarcane bagasse, rice husk | ~550–700 °C | ~5–20 min | N2 | - | Highly porous structure obtained, rapid heating | Dye removal, catalysis; common kitchen waste feedstock | Antibiotics, dyes, heavy metals | [55,56,57] |
4. | Co-pyrolysis | Thermal | Sewage sludge, walnut shell | 350–600 °C | 30 min–2 h | N2 | - | Synergistic effect, porosity | Soil and water remediation | Heavy metals, hydrocarbons | [58,59] |
5. | Hydrothermal carbonization | Autogenous | Kitchen waste | ~180–250 °C | 1–12 h | Autogenous | - | Enhancement in functional groups, hydrochar | Adsorption, soil improvement; kitchen waste utilization | Heavy metals, others | [60,61] |
6. | Flash carbonization | Direct combustion | Lignocellulosic biomass, Albizia odoratissima | ~300–600 °C | ~30 min | Air/O2 | - | Instant ignition, gas rich | Environmental use, energy | Organics, pathogens | [62,63] |
7. | Chemical activation | Thermal + chemical agents | Rice straw, orange peel | ~500–900 °C | 30 min–2 h | N2/CO2 | Chemical (KOH, H3PO4, ZnCl2) | Surface area enhancement | Catalysis, adsorption | Heavy metals, dyes | [39,64,65] |
8. | Template-assisted synthesis | Thermal + template removal | Food waste | 400–800 °C | 30 min–2 h | N2 | Chemical | Tunable properties | Wastewater treatment; KWBC application | Pharmaceuticals, dyes | [66,67,68] |
9. | Ball milling | Mechanical | Wood chips | ~30–60 °C | 1–48 h | - | - | Increased functionalities | Soil remediation | Metal, organics | [69,70] |
10. | Torrefaction | Thermal | Sweet sorghum bagasse, peanut shell, soyabean straw, barley straw | ~300 °C | ~10–60 min | N2/Limited O2 | - | Carbonization at low temperature | Solid fuel, energy | Organics, CO2 | [71,72,73] |
11. | Gasification | thermal | Whiteoak, pinewood, woodchips | ~900 °C | ~20 s | Steam/air | - | Syngas production | Soil amendment, carbon sequestration | CO, VOCs | [74,75] |
Sr. No. | Feedstock Type | Pyrolysis Temperature(°C) | Surface Area (m2/g) | Zeta Potential | Functional Groups Identified | Performance | Reference |
---|---|---|---|---|---|---|---|
1. | Kitchen waste | 500 | 2.57 | - | –OH, –COOH | High stability | [82] |
2. | Food waste | 300 | 68.555 | - | –OH, –COOH | Synergistic effects of the ultrasound and magnetic biochar | [83] |
3. | Kitchen waste + P | 500 | 15.33 | Negative (pH 3–8) | Phosphorus-related groups | Stable due to lower O/C and H/C ratios | [80] |
4. | Kitchen waste | 300–500 | - | - | –OH, C=O | With temp. aromaticity increases | [36] |
5. | Al-modified KWBC | 315 | 20.95 | Negatively charged | Al–F bonds | XPS confirmed inner-sphere bonding | [81] |
Sr. No. | Material | Synthesis Method | Pollutants | Catalyst Dosage (g/L) | pH | Mechanism | Adsorption Capacity (mg/g) | Degradation Time | Reference |
---|---|---|---|---|---|---|---|---|---|
1. | Kitchen waste-derived biochar | Pyrolysis | Pb(II) | - | - | Complexation and precipitation | 257.95 mg/g | 240 min | [80] |
2. | MBC600 | Pyrolysis | Cu2+, Pb2+ and Zn2+ | 5 g/L | - | Ion exchange and complexation | 8925.5 mg/g, 32,177.6 mg/g, 5652.4 mg/g | 60 min for Zn2+ | [89] |
3. | Aluminum-modified food waste biochar | Pyrolysis | Fluoride | 3.33 g/L | 7.1 | - | 123.4 mg/g | 39 min | [81] |
4. | KWB500 | Pyrolysis | Cd (II) | 1.7 g/L | 6 | Precipitation, complexation, ion exchange | 46.5 mg/g | - | [50] |
5. | H3PO4-modified tea branch biochar | Pyrolysis | Cd2+ and Pb2+ | 2 g/L | 6 | Complexation and precipitation | 98.25 mg/g, 127.5 mg/g | 90, 60 min | [90] |
6. | Biofilm-attached biochar | Pyrolysis | Cd, Pb | - | 6 | Electrostatic adsorption, complexation | - | 120 min | [86] |
7. | Magnetic biochar containing maghemite (γ-Fe2O3/biochar) | Heterogeneous sono-Fenton-like process | Methylene blue, methyl orange | 2 g/L | 7 | Fenton-like reaction, ultrasonic cavitation | - | 60 min | [83] |
8. | KBC/BiOX(X = Br, Cl) | Solvothermal+ ultrasonication | Methyl orange, tetracycline | - | - | Charge separation and transfer, reactive oxygen species, light absorption | - | 20 min (MO), 60 min (TC) for 0.15KBC/BiOBr; 35 min (MO), 60 min (TC) for 0.15KBC/BiOCl | [11] |
10. | Tea waste biochar | Carbonization | Phosphate | - | 9 | Ligand exchange, precipitation | 192.8 mg/g | 720 min | [85] |
11. | KWB-500 | Pyrolysis | Arsenic | 0.008 g/L | 6.5–7.0 | Chemisorption, physisorption, diffusion, and ion-exchange soil | 11.3 mg/g | 60 min | [82] |
12. | Food waste-derived biochar | Pyrolysis | Pb2+, Cr2+, Cd2+ | 2.5 g/L | 8 | - | - | 120 min | [84] |
13. | Kitchen waste-derived biochar | Pyrolysis | Cd2+, Pb2+ | 0.060 g/L | 9.91 | Complexation | - | - | [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soni, H.; Verma, A.; Ganesan, S.; Anand, T.; Jena, S.P.; Bechelany, M.; Singh, J. Valorization of Kitchen Waste into Functional Biochar: Progress in Synthesis, Characterization, and Water Remediation Potential. Sustainability 2025, 17, 8533. https://doi.org/10.3390/su17198533
Soni H, Verma A, Ganesan S, Anand T, Jena SP, Bechelany M, Singh J. Valorization of Kitchen Waste into Functional Biochar: Progress in Synthesis, Characterization, and Water Remediation Potential. Sustainability. 2025; 17(19):8533. https://doi.org/10.3390/su17198533
Chicago/Turabian StyleSoni, Himanshi, Anjali Verma, Subbulakshmi Ganesan, Thangaraj Anand, Shakti Prakash Jena, Mikhael Bechelany, and Jagpreet Singh. 2025. "Valorization of Kitchen Waste into Functional Biochar: Progress in Synthesis, Characterization, and Water Remediation Potential" Sustainability 17, no. 19: 8533. https://doi.org/10.3390/su17198533
APA StyleSoni, H., Verma, A., Ganesan, S., Anand, T., Jena, S. P., Bechelany, M., & Singh, J. (2025). Valorization of Kitchen Waste into Functional Biochar: Progress in Synthesis, Characterization, and Water Remediation Potential. Sustainability, 17(19), 8533. https://doi.org/10.3390/su17198533