The Nexus of Digitalization, Talent, and High-Quality Development: How Clusters Foster Sustainable Economic Growth
Abstract
1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. The Direct Effect of Digital Industry Clusters in Promoting High-Quality Economic Development
2.2. Spatial Spillover Effects of Digital Industry Clusters in Promoting High-Quality Economic Development
2.3. Regional Heterogeneity of Digital Clusters Affecting High-Quality Economic Development
2.4. The Mediating Effect of Digital Industry Clusters in Promoting High-Quality Economic Development
3. Research Design
3.1. Modeling
3.2. Variable Measurement and Description
3.2.1. Explained Variable
3.2.2. Core Explanatory Variables
3.2.3. Mediating Variable
3.2.4. Control Variables
3.3. Data Sources and Descriptive Statistics
4. Empirical Analysis
4.1. Spatial Autocorrelation Analysis
4.2. Benchmark Regression Results
4.3. Effect Decomposition
4.4. Robustness Test
4.5. Endogeneity Test
4.6. Heterogeneity Test
4.7. Mediating Effect Test
5. Conclusions and Discussion
5.1. Conclusions
5.2. Recommendations
5.3. Limitations and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.P. Dual Circulation and China’s New Quality Growth Model; Policy Brief 21-5; Peterson Institute for International Economics: Washington, DC, USA, 2021. [Google Scholar]
- Zhou, H.C.; Liu, S.; Meng, S.Y. Building an internationally competitive digital industry cluster. Macroecon. Manag. 2023, 7, 27–32+48. [Google Scholar] [CrossRef]
- Alfred, M. Principles of Economics; The Commercial Press: Beijing, China, 2011. [Google Scholar]
- Michael, E.P. The Competitive Advantage of Nations; Huaxia Publishing House: Beijing, China, 2002. [Google Scholar]
- Wang, J.C. Beyond Clusters: Theoretical Exploration on China’s Industrial Clusters; Science Press: Beijing, China, 2010. [Google Scholar]
- Tapscott, D. The Digital Economy: Promise and Peril in the Age of Networked Intelligence; McGraw-Hill: New York, NY, USA, 1966. [Google Scholar]
- Porat, M. The Information Economy: Definition and Measurement; U.S. Department of Commerce: Washington, DC, USA, 1977. [Google Scholar]
- Mao, F.F.; Gao, Y.C.; Zhou, C. Evolution characteristics of spatial patterns of digital industry and its driving factors in the Yangtze River Economic Belt. Geogr. Res. 2022, 41, 1593–1609. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Liu, S.; Qi, P. A Research on the Impact of Collaborative Innovation Development of Digital Industry on Carbon Emission Intensity. J. Southwest Univ. (Soc. Sci. Ed.) 2023, 49, 114–128. [Google Scholar] [CrossRef]
- Ye, T.L.; Liu, Z.W.; Zhang, J.L. The Influencing Factors of Spatial Agglomeration of Digital Industry. Sci. Technol. Prog. Policy 2023, 40, 75–82. [Google Scholar] [CrossRef]
- Wang, J.H.; Zhou, S.J. The Current Situation, Characteristics and Spillover Effect of the Development of digital industry in China. J. Quant. Technol. Econ. 2021, 38, 103–119. [Google Scholar] [CrossRef]
- Wu, Q.B.; Wan, W.S.; Hong, M. Spatial Evolution and Influencing Mechanism of Digital Economy Industries in Hangzhou. Econ. Geogr. 2022, 42, 60–71. [Google Scholar] [CrossRef]
- Qiao, H. The Spatial and Temporal Evolution Trend and Influencing Factors of Technological Progress Level of China’s Digital Industry. China Bus. Mark. 2023, 37, 14–27. [Google Scholar] [CrossRef]
- Zhang, Q.H. Efficiency Measurement and Spatial Spillover Effects of Technological Progress in China’s Digital Industry. J. Southwest Minzu Univ. (Humanit. Soc. Sci. Ed.) 2023, 44, 98–105. [Google Scholar] [CrossRef]
- Yuan, G.H.; Pan, M.; Qin, F.Q. Digital Industry Agglomeration and Technological Innovation of Manufacturing Industrial Enterprises. J. Zhongnan Univ. Econ. Law 2023, 146–160. [Google Scholar] [CrossRef]
- Xin, L.L. Digital Industry Agglomeration, Disruptive Technological Innovation, and Urban Green Economy Efficiency. Study Pract. 2023, 71–80. [Google Scholar] [CrossRef]
- Vollrath, D. How Important are Dual Economy Effects for Aggregate Productivity. J. Dev. Econ. 2009, 88, 325–334. [Google Scholar] [CrossRef]
- Goldfarb, A.; Catherine, T. Digital Economics. J. Econ. Lit. 2019, 57, 3–43. [Google Scholar] [CrossRef]
- Short, J.; Todd, S. What’s your data worth? MIT Sloan Manag. Rev. 2017, 58, 17–19. [Google Scholar] [CrossRef]
- Huang, Q.; Xu, C.; Xue, X.; Zhu, H. Can digital innovation improve firm performance: Evidence from digital patents of Chinese listed firms. Int. Rev. Financ. Anal. 2023, 89, 102810. [Google Scholar] [CrossRef]
- Bai, X.J.; Li, L.; Song, P. Balancing Efficiency and Fairness: The Research on the Impact of China’s Digital Economy Development on Economic Growth and Income Inequality. J. Xi’an Jiaotong Univ. (Soc. Sci.) 2023, 43, 38–50. [Google Scholar] [CrossRef]
- Ma, D.; Zhu, Q. Innovation in emerging economies: Research on the digital economy driving high-quality green development. J. Bus. Res. 2022, 145, 801–813. [Google Scholar] [CrossRef]
- Aghion, P.; Jaravel, X. Knowledge Spillovers, Innovation and Growth. Econ. J. 2015, 125, 533–573. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, Y.; Liu, Y. High-level talent flow and its influence on regional unbalanced development in China. Appl. Geogr. 2018, 91, 89–98. [Google Scholar] [CrossRef]
- Sun, P.J.; Xiu, C.L.; Dong, C. Quantitative analysis of economic spatial polarization and driving factors in the northeast of China. Hum. Geogr. 2013, 28, 87–93. [Google Scholar] [CrossRef]
- Chen, H.; Lin, H.; Zou, W. Research on the Regional Differences and Influencing Factors of the Innovation Efficiency of China’s High-Tech Industries: Based on a Shared Inputs Two-Stage Network DEA. Sustainability 2020, 12, 3284. [Google Scholar] [CrossRef]
- Luo, R.; Zhou, N. Dynamic Evolution, Spatial Differences, and Driving Factors of China’s Provincial Digital Economy. Sustainability 2022, 14, 9376. [Google Scholar] [CrossRef]
- Xu, R.; Yao, H.; Li, J. Digital Economy’s Impact on High-Quality Economic Growth: A Comprehensive Analysis in the Context of China. J. Knowl. Econ. 2025, 16, 2861–2879. [Google Scholar] [CrossRef]
- Violante, G.L. Skill-Biased Technical Change. In The New Palgrave Dictionary of Economics; Palgrave Macmillan: London, UK, 2008; pp. 1–6. [Google Scholar] [CrossRef]
- Mi, R.H.; Ni, S.L.; Liu, S.M. Digital technology, economic efficiency, and urban industrial structure upgrading. J. Technol. Econ. 2024, 43, 107–116. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Chen, Y.; He, J. Digital economy, technological innovation, and green economic efficiency—Empirical evidence from 277 cities in China. Manag. Decis. Econ. 2022, 43, 616–629. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Automation and New Tasks: How Technology Displaces and Reinstates Labor. J. Econ. Perspect. 2019, 33, 3–30. [Google Scholar] [CrossRef]
- Elhorst, J.P. Specification and Estimation of Spatial Panel Data Models. Int. Reg. Sci. Rev. 2003, 26, 244–268. [Google Scholar] [CrossRef]
- MacKinnon, D.P.; Valente, M.J.; Gonzalez, O. The Correspondence Between Causal and Traditional Mediation Analysis: The Link Is the Mediator by Treatment Interaction. Prev. Sci. 2019, 21, 147–157. [Google Scholar] [CrossRef]
- Li, J.C.; Shi, L.M.; Xu, A.T. Probe into the Assessment Indicator System on High-quality Development. Stat. Res. 2019, 36, 4–14. [Google Scholar] [CrossRef]
- Love, J.H.; Roper, S. Location and network effects on innovation success: Evidence for UK, German and Irish manufacturing plants. Res. Policy 2001, 30, 643–661. [Google Scholar] [CrossRef]
- Li, X.W.; Li, N.; Xie, Y.F. Digital Economy, Manufacturing Agglomeration and Carbon Productivity. J. Zhongnan Univ. Econ. Law 2022, 6, 131–145. [Google Scholar] [CrossRef]
- Jiang, R.; Meng, L.H.; Liu, B.C. Spatial Characteristics of Science and Technology Innovation Talent Concentration and Regional Economic High—Quality Development an Empirical Analysis Based on Spatial Measurement and Panel Threshold Model. Inq. Into Econ. Issues 2023, 10, 59–72. [Google Scholar]
- Cui, X.M.; Chai, C.X. Research on the Effect of Innovative Talent Agglomeration the Development of High Quality Economy—Empirical Analysis Based on 41 Urban Panel Data in Yangtze River Delta. Soft Sci. 2022, 36, 106–114. [Google Scholar] [CrossRef]
- Liu, X.Z.; Zhang, P.F.; Shi, X.Y. Industrial Agglomeration, Technological Innovation and High-Quality Economic Development: Empirical Research Based on China’s Five Major Urban Agglomerations. Reform 2022, 4, 68–87. [Google Scholar]
- Zhang, Z.D.; Wei, H.S. Agglomeration of Innovative Talents, Optimization of Industrial Structure and High-Quality Economic Development: An Empirical Study Based on 4l Cities in Yangtze River Delta Region. J. Nanjing Univ. Financ. Econ. 2023, 3, 1–11. [Google Scholar] [CrossRef]
- Klychova, G.; Zakirova, A.; Safiullin, I.; Zakirov, Z.; Khusainov, S.; Zakharova, G. Rational placement of grain production—The basis for ensuring food security. E3S Web Conf. 2020, 175, 08013. [Google Scholar] [CrossRef]
- Gu, H.Y.; Jie, Y.Y. Research Progress in Western Spatial Econometrics. Geogr. Geo-Inf. Sci. 2023, 39, 106–114. [Google Scholar] [CrossRef]
- Fang, H.; Zhao, S.L.; Lv, J.Y. Has the Agglomeration of Producer Services Improved the Efficiency of FDl in Cities? J. Quant. Technol. Econ. 2021, 38, 124–142. [Google Scholar] [CrossRef]
- Xu, X.F.; Ji, J.J. The Mechanism and Empirical Evidence of How Digital Trade and Consumption Upgrading Facilitate High-Quality Economic Development. J. Commer. Econ. 2023, 24, 183–188. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, S.G. Low-Carbon Emission Reduction Effect of Digital Economy Empowering Regional Green Development. Res. Econ. Manag. 2022, 43, 85–100. [Google Scholar] [CrossRef]
- Ivus, O.; Boland, M. The employment and wage impact of broadband deployment in Canada. Can. J. Econ. 2015, 48, 1803–1830. [Google Scholar] [CrossRef]
- Nunn, N.; Qian, N. US Food aid and civil conflict. Am. Econ. Rev. 2014, 104, 1630–1666. [Google Scholar] [CrossRef]
- Zhou, M.S.; Zhang, Y.B. Does Digital Technology Promote the Integration of Manufacturing and Services? Sci. Technol. Prog. Policy 2022, 39, 74–82. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
Primary Indicators | Secondary Indicators | Indicator Definitions | Directions | Indicator Weights |
---|---|---|---|---|
Innovative development | GDP growth rate | Regional GDP growth rate | + | 0.005 |
R&D investment intensity | R&D expenditure of industrial enterprises above Scale/GDP | + | 0.070 | |
Investment efficiency | Investment rate/regional GDP growth rate | − | 0.048 | |
Technological transaction activity | Technology transaction turnover/GDP | + | 0.287 | |
Coordinated development | Demand structure | Total retail sales of consumer goods/GDP | + | 0.015 |
Urban–rural structure | Urbanization rate | + | 0.043 | |
Government debt burden | Government debt balance/GDP | − | 0.013 | |
Industrial structure | Tertiary industry output/GDP | + | 0.055 | |
Green development | Energy consumption elasticity coefficient | Energy consumption growth rate/GDP growth rate | − | 0.007 |
Wastewater per unit of output | Wastewater emissions/GDP | − | 0.015 | |
Wasted gases per unit of output | Sulfur dioxide emissions/GDP | − | 0.009 | |
Open development | Dependence on foreign trade | Total imports and exports/GDP | + | 0.155 |
Share of foreign investment | Total foreign investments/GDP | + | 0.158 | |
Marketization degree | Marketization index | + | 0.042 | |
Shared development | Proportion of labor remuneration | Compensation of laborers/GDP | + | 0.029 |
Elasticity of growth of residents’ income | Disposable income per capita growth rate/GDP growth rate | + | 0.016 | |
Urban–rural consumption gap | Consumption expenditure per urban resident/consumption expenditure per rural resident | − | 0.016 | |
Share of fiscal expenditure on people’s livelihood | (Expenditure on housing security + expenditure on health care + expenditure on financial education + expenditure on social security and employment)/local budget expenditure | + | 0.019 |
Primary Indicators | Indicator Description | Unit | Direction | Weighting |
---|---|---|---|---|
Digital Manufacturing | Full-time Equivalent of R&D Personnel in Digital Manufacturing | person–years | + | 0.136 |
R&D Expenditures/GDP in Digital Manufacturing | % | + | 0.057 | |
Number of New Product Development Projects in Digital Manufacturing | item | + | 0.116 | |
Software and Information Technology Services | Revenue from Software Business | billion yuan | + | 0.132 |
Revenue from Software Products | billion yuan | + | 0.130 | |
Revenue from IT Services | billion yuan | + | 0.131 | |
Telecommunications Industry | Mobile Phone Penetration | part/hundred person | + | 0.043 |
Total Telecommunications Business | billion yuan | + | 0.047 | |
Internet Industry | Number of Web Pages | million | + | 0.165 |
Internet Broadband Access Users | million households | + | 0.043 |
Variable Type | Variable Name | Symbol | Unit | Mean Value | Standard Deviation | Minimum Value | Maximum Value |
---|---|---|---|---|---|---|---|
Explained Variables | High-quality economic development | / | 0.244 | 0.098 | 0.137 | 0.582 | |
Core Explanatory Variables | Digital industry clusters | / | 0.898 | 0.653 | 0.255 | 4.171 | |
Mediating Variables | Clustering of innovative talents | / | 0.033 | 0.026 | 0.016 | 0.169 | |
Control Variables | Fiscal expenditure ratio | % | 0.258 | 0.110 | 0.105 | 0.758 | |
Level of economic development | million yuan | 6.487 | 3.212 | 1.971 | 20.028 | ||
Level of industrial development | million | 1.325 | 1.460 | 0.034 | 7.197 | ||
Human capital reserves | % | 0.022 | 0.006 | 0.009 | 0.044 | ||
Population density | people/km2 | 477.105 | 713.340 | 7.905 | 3950.794 |
Year | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Z-Value | Z-Value | Z-Value | Z-Value | Z-Value | Z-Value | |||||||
2012 | 0.256 *** | 5.796 | 0.670 *** | −4.869 | 0.109 *** | 3.081 | 0.815 ** | −2.496 | 0.045 *** | 3.627 | 0.850 | −1.502 |
2013 | 0.254 *** | 5.75 | 0.674 *** | −4.824 | 0.126 *** | 3.321 | 0.802 *** | −2.782 | 0.088 *** | 4.283 | 0.806 ** | −2.032 |
2014 | 0.258 *** | 5.809 | 0.673 *** | −4.876 | 0.149 *** | 3.846 | 0.778 *** | −3.073 | 0.093 *** | 4.236 | 0.800 ** | −2.124 |
2015 | 0.262 *** | 5.865 | 0.672 *** | −4.903 | 0.151 *** | 3.944 | 0.775 *** | −3.064 | 0.095 *** | 4.355 | 0.799 ** | −2.123 |
2016 | 0.259 *** | 5.804 | 0.678 *** | −4.814 | 0.155 *** | 4.057 | 0.772 *** | −3.086 | 0.097 *** | 4.432 | 0.798 ** | −2.131 |
2017 | 0.247 *** | 5.575 | 0.681 *** | −4.753 | 0.138 *** | 3.804 | 0.785 *** | −2.828 | 0.101 *** | 4.523 | 0.796 ** | −2.17 |
2018 | 0.240 *** | 5.43 | 0.687 *** | −4.682 | 0.104 *** | 3.804 | 0.815 ** | −2.402 | 0.103 *** | 4.475 | 0.793 ** | −2.211 |
2019 | 0.240 *** | 5.45 | 0.689 *** | −4.624 | 0.114 *** | 3.365 | 0.801 ** | −2.541 | 0.128 *** | 4.496 | 0.768 *** | −2.631 |
2020 | 0.242 *** | 5.43 | 0.688 *** | −4.709 | 0.121 *** | 3.755 | 0.794 ** | −2.516 | 0.117 *** | 4.337 | 0.780 ** | −2.46 |
2021 | 0.240 *** | 5.341 | 0.692 *** | −4.735 | 0.108 *** | 3.514 | 0.805 ** | −2.34 | 0.125 *** | 4.354 | 0.770 *** | −2.627 |
2022 | 0.235 *** | 5.194 | 0.699 *** | −4.703 | 0.103 *** | 3.373 | 0.811 ** | −2.279 | 0.127 *** | 4.338 | 0.765 *** | −2.698 |
2023 | 0.235 *** | 5.194 | 0.699 *** | −4.703 | 0.106 *** | 3.502 | 0.807 ** | −2.315 | 0.123 *** | 4.359 | 0.768 *** | −2.633 |
Variant | ||||||
---|---|---|---|---|---|---|
0.123 *** (0.004) | 0.107 *** (0.003) | 0.106 *** (0.003) | 0.091 *** (0.004) | 0.062 *** (0.004) | 0.080 *** (0.004) | |
0.112 *** (0.026) | 0.124 *** (0.145) | 0.245 (0.025) | 0.110 *** (0.032) | 0.001 (0.014) | 0.028 (0.029) | |
Control variables | No | No | No | Yes | Yes | Yes |
W × Control variables | No | No | No | Yes | Yes | Yes |
Individual effects | No | No | No | No | No | No |
Time effects | Fixed | Fixed | Fixed | Fixed | Fixed | Fixed |
ρ | 0.330 * (0.140) | −0.060 (0.078) | −0.195 (0.133) | −0.167 (0.211) | −0.159 * (0.090) | −0.136 (0.158) |
σ2 | 0.002 *** (0.000) | 0.001 *** (0.000) | 0.001 *** (0.000) | 0.001 *** (0.000) | 0.000 *** (0.000) | 0.001 *** (0.000) |
0.790 | 0.837 | 0.862 | 0.942 | 0.917 | 0.915 | |
N | 360 | 360 | 360 | 360 | 360 | 360 |
Variant | Direct Effects (Local Effects) | Indirect Effects (Spatial Spillovers) | ||||
---|---|---|---|---|---|---|
0.090 *** (0.004) | 0.063 *** (0.004) | 0.080 *** (0.004) | 0.087 ** (0.036) | −0.009 (0.011) | 0.017 (0.025) |
Variant | Substitution Variables | Exclusion of Epidemic Impact | Eliminate Municipalities | Shrinking by 20% | Instrumental Variables (IV1) | Instrumental Variables (IV2) |
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
0.216 *** (0.014) | 0.090 *** (0.004) | 0.068 *** (0.005) | 0.068 *** (0.005) | 0.108 *** (0.005) | 0.106 *** (0.005) | |
−0.082 * (0.049) | 0.107 *** (0.034) | 0.120 *** (0.038) | 0.181 *** (0.046) | 0.173 *** (0.043) | 0.126 *** (0.043) | |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes |
W × Control variables | Yes | Yes | Yes | Yes | Yes | Yes |
Individual effects | No | No | No | No | No | No |
Time effects | Fixed | Fixed | Fixed | Fixed | Fixed | Fixed |
ρ | −0.190 ** (0.085) | −0.168 (0.221) | −0.261 (0.226) | −0.301 (0.228) | −0.503 ** (0.249) | −0.522 ** (0.238) |
σ2 | 0.000 *** (0.000) | 0.001 *** (0.000) | 0.000 *** (0.000) | 0.000 *** (0.000) | 0.000 *** (0.000) | 0.001 *** (0.000) |
0.921 | 0.939 | 0.693 | 0.866 | 0.863 | 0.870 | |
N | 360 | 360 | 360 | 360 | 360 | 360 |
Technology Intensive | Non-Technology Intensive | East | Central | West | Northeast | |
---|---|---|---|---|---|---|
Variant | (1) | (2) | (3) | (4) | (5) | (6) |
0.120 *** (0.006) | 0.054 *** (0.006) | 0.094 *** (0.008) | 0.030 (0.033) | −0.005 (0.008) | 0.096 *** (0.038) | |
0.041 ** (0.021) | 0.003 (0.041) | 0.039 (0.024) | −0.132 (0.124) | 0.018 (0.043) | 0.130 ** (0.065) | |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes |
W × Control variables | Yes | Yes | Yes | Yes | Yes | Yes |
Individual effects | No | No | No | No | No | No |
Time effects | Fixed | Fixed | Fixed | Fixed | Fixed | Fixed |
ρ | −0.061 (0.174) | −0.763 *** (0.244) | −0.293 (0.185) | −0.622 ** (0.253) | −0.803 *** (0.279) | −0.184 (0.190) |
σ2 | 0.000 *** (0.000) | 0.000 *** (0.000) | 0.000 *** (0.000) | 0.000 *** (0.000) | 0.000 *** (0.000) | 0.000 *** (0.000) |
0.727 | 0.701 | 0.913 | 0.661 | 0.600 | 0.006 | |
N | 96 | 264 | 120 | 72 | 132 | 36 |
Variant | |||
---|---|---|---|
(1) | (2) | (3) | |
0.091 *** (0.004) | 0.015 *** (0.001) | 0.070 *** (0.004) | |
1.400 *** (0.161) | |||
0.110 *** (0.032) | −0.036 *** (0.011) | 0.161 *** (0.037) | |
1.970 ** (0.957) | |||
Control variables | Yes | Yes | Yes |
W × Control variables | Yes | Yes | Yes |
Individual effects | No | No | No |
Time effects | Fixed | Fixed | Fixed |
−0.167 (0.211) | −1.298 *** (0.209) | −0.251 (0.222) | |
σ2 | 0.001 *** (0.000) | 0.000 *** (0.000) | 0.001 *** (0.000) |
0.942 | 0.732 | 0.828 | |
N | 360 | 360 | 360 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mi, R.; Liu, S.; Liu, C.; Li, Z.; Li, S. The Nexus of Digitalization, Talent, and High-Quality Development: How Clusters Foster Sustainable Economic Growth. Sustainability 2025, 17, 8503. https://doi.org/10.3390/su17188503
Mi R, Liu S, Liu C, Li Z, Li S. The Nexus of Digitalization, Talent, and High-Quality Development: How Clusters Foster Sustainable Economic Growth. Sustainability. 2025; 17(18):8503. https://doi.org/10.3390/su17188503
Chicago/Turabian StyleMi, Ruihua, Shumin Liu, Cunjing Liu, Ze Li, and Shuai Li. 2025. "The Nexus of Digitalization, Talent, and High-Quality Development: How Clusters Foster Sustainable Economic Growth" Sustainability 17, no. 18: 8503. https://doi.org/10.3390/su17188503
APA StyleMi, R., Liu, S., Liu, C., Li, Z., & Li, S. (2025). The Nexus of Digitalization, Talent, and High-Quality Development: How Clusters Foster Sustainable Economic Growth. Sustainability, 17(18), 8503. https://doi.org/10.3390/su17188503