Study on the Change of Global Suitable Area of Sophora alopecuroides and Its Sustainable Ecological Restoration Based on the MaxEnt Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Acquisition and Screening of Sophora alopecuroides L. Distribution Data
2.2. Acquisition and Processing of Environment Variables
2.3. Predicting Suitable Growing Areas of Sophora alopecuroides L. Globally Using the MaxEnt Model
2.3.1. Prediction Methodology and Parameter Tuning
2.3.2. Model Accuracy Assessment
2.3.3. Division of Suitable Habitats for Sophora alopecuroides L.
2.3.4. Dynamic Changes of Suitable Areas for Sophora alopecuroides L. Under Future Climate Scenarios
3. Results
3.1. Model Accuracy Evaluation and Importance of Environmental Variables
3.2. Distribution of Suitable Areas for Sophora alopecuroides L. Under Current Climate
3.3. Distribution and Area Change of S. alopecuroides L. Suitable Areas Under Future Climate Conditions
3.4. Dynamic Changes in the Suitable Areas of S. alopecuroides L. Under Future Climate Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, J. Ecoclimatological analysis of the forest zones in China. Acta Ecol. Sin. 1991, 11, 377–387. [Google Scholar]
- Wu, F.; Jin, Y.; Liu, J.; Shang, L.; Zhao, D. Response of vegetation distribution to global climate change in Northeast China. Geogr. Sci. 2003, 23, 564–570. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Wang, R.; Deng, X.; Gao, Q.; Wu, X.; Han, L.; Gao, X.; Zhao, S.; Chen, W.; Zhou, R.; Li, Z.; et al. Sophora alopecuroides L.: An ethnopharmacological, phytochemical, and pharmacological review. J. Ethnopharmacol. 2020, 248, 112172. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, W.; Zhou, K.; Wang, G.; Cao, F. Diversity analysis and comprehensive evaluation on phenotypic traits of Sophora alopecuroides. Guihaia 2019, 39, 1147–1158. [Google Scholar] [CrossRef]
- Li, R.; Gao, Q.; Mao, L.; Liu, W.; Sun, L.; Zhang, P.; Liu, F.; Jiang, X.; Xu, J. Molecular mechanism of saline-alkali stress tolerance in the green manure crop Sophora alopecuroides. Environ. Exp. Bot. 2023, 210, 105321. [Google Scholar] [CrossRef]
- Zhao, L.; Deng, Z.; Yang, W.; Cao, Y.; Wang, E.; Wei, G. Diverse rhizobia associated with Sophora alopecuroides grown in different regions of the Loess Plateau in China. Syst. Appl. Microbiol. 2010, 33, 468–477. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, N.; Li, Z. The study of Sophora alopecuroides seeds and seedling drought and salt tolerance. Mol. Plant Breed. 2017, 15, 1090–1095. [Google Scholar] [CrossRef]
- Li, J.; Dai, W.; Zhou, X.; Rao, K.; Zhang, Z.; Liu, D.; Chen, X.; Li, R.; Li, H. Matrine-type alkaloids from the seeds of Sophora alopecuroides and their potential anti-inflammatory activities. Chem. Biodivers. 2021, 18, e2001066. [Google Scholar] [CrossRef]
- Ma, T.; Li, W.; Hong, Y.; Zhou, Y.; Tian, L.; Zhang, X.; Liu, F.; Liu, P. TMT-based proteomic profiling of Sophora alopecuroides leaves reveals flavonoid biosynthesis processes in response to salt stress. J. Proteomics 2022, 253, 104457. [Google Scholar] [CrossRef]
- Luo, D.; Lin, Q.; Tan, J.L.; Zhao, H.Y.; Feng, X.; Chen, N.H.; Wu, Z.N.; Fan, C.L.; Li, Y.L.; Ding, W.L.; et al. Water-soluble matrine-type alkaloids with potential anti-neuroinflammatory activities from the seeds of Sophora alopecuroides. Bioorg. Chem. 2021, 116, 105337. [Google Scholar] [CrossRef] [PubMed]
- Shoukat, R.F.; Shakeel, M.; Rizvi, S.A.H.; Zafar, J.; Zhang, Y.; Freed, S.; Xu, X.; Jin, F. Larvicidal, ovicidal, synergistic, and repellent activities of Sophora alopecuroides and its dominant constituents against Aedes albopictus. Insects 2020, 11, 246. [Google Scholar] [CrossRef]
- Wang, L.; Sun, B.; Wang, C.; Xia, Z.; Ma, G. Isolation and nitrogen-fixing activity detection of bacteria from four desert plants. Xinjiang Agric. Sci. 2024, 61, 2742–2749. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, Z. Biodiversity and Ecoadaptability of Leguminosae. Chin. J. Nat. 2018, 40, 64–70. [Google Scholar]
- Rogiers, N.; Conen, F.; Furger, M.; Stöckli, R.; Eugster, W. Impact of past and present land-management on the C-Balance of a grassland in the swiss alps. Glob. Chang. Biol. 2008, 14, 2613–2625. [Google Scholar] [CrossRef]
- Bellard, C.; Jeschke, J.M.; Leroy, B.; Mace, G.M. Insights from modeling studies on how climate change affects invasive alien species geography. Ecol. Evol. 2018, 8, 5688–5700. [Google Scholar] [CrossRef]
- Bao, R.; Li, X.; Zheng, J. Feature tuning improves MAXENT predictions of the potential distribution of Pedicularis longiflora Rudolph and its variant. PeerJ 2022, 10, e13337. [Google Scholar] [CrossRef]
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F. Bioclim: The first species distribution modeling package, its early applications and relevance to most current MaxEnt studies. Divers. Distrib. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; He, S.; Wang, Y.; Miao, L. Research progress analysis on the comprehensive application of the MaxEnt model. J. Green Sci. Technol. 2020, 14, 14–17. [Google Scholar] [CrossRef]
- Zhang, L. Application of the MaxEnt maximum entropy model in predicting potential distribution range of species. Bull. Biol. 2015, 50, 9–12. [Google Scholar]
- Zhang, K.; Zhang, Y.; Zhou, C.; Meng, J.; Sun, J.; Zhou, T.; Tao, J. Impact of climate factors on future distributions of Paeonia ostii across China estimated by MaxEnt. Ecol. Inf. 2019, 50, 62–67. [Google Scholar] [CrossRef]
- Ji, W.; Gao, G.; Wei, J. Potential global distribution of Daktulosphaira vitifoliae under climate change based on MaxEnt. Insects 2021, 12, 347. [Google Scholar] [CrossRef] [PubMed]
- Sayit, H.; Nurbay, A.; Xu, Z.; Arman, J.; Shao, H.; Vinira, Y. Simulation of potential distribution patterns of the invasive plant species Xanthium spinosum L. (Bathurst burr) in Xinjiang under climate change. Acta Ecol. Sin. 2018, 39, 1551–1559. [Google Scholar] [CrossRef]
- Coro, G. A global-scale ecological niche model to predict SARS-CoV-2 coronavirus infection rate. Ecol. Modell. 2020, 431, 109187. [Google Scholar] [CrossRef] [PubMed]
- Ancillotto, L.; Mori, E.; Bosso, L.; Agnelli, P.; Russo, D. The Balkan long-eared bat (Plecotus kolombatovici) occurs in Italy—First confirmed record and potential distribution. Mamm. Biol. 2019, 96, 61–67. [Google Scholar] [CrossRef]
- Garcia, N.; Alírio, J.; Silva, D.; Campos, J.C.; Duarte, L.; Arenas-Castro, S.; Pôças, I.; Sillero, N.; Teodoro, A.C. MontObEO, Montesinho biodiversity observatory: An Earth observation tool for biodiversity conservation. Proc. SPIE 2023, 12734, 335–345. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, C.; Wan, G.; Du, Z.; He, Y.; Cai, G. Predicting the potential of Ammopiptanthus species in China under different climates using ecological niche models. Acta Ecol. Sin. 2020, 40, 7668–7680. [Google Scholar] [CrossRef]
- Lei, J.; Xu, H. MaxEnt-based prediction of potential distribution of Solidago canadensis in China. J. Ecol. Rural Environ. 2010, 26, 137–141. [Google Scholar]
- Zhang, H.; Zhao, H.; Wang, H. Potential geographical distribution of Populus euphratica in China under future climate change scenarios based on Maxent model. Acta Ecol. Sin. 2020, 40, 6552–6563. [Google Scholar]
- GBIF Occurrence Download. Available online: https://doi.org/10.15468/dl.6t6ynr (accessed on 8 September 2025).
- Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Peterson, A.T. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 2007, 34, 102–117. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, N.; Wu, F. Research on China’s CO2 emissions projections from 2020 to 2100 under the shared socioeconomic pathways. Acta Ecol. Sin. 2021, 41, 9691–9704. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, F.; Guo, C.; Yang, G.; Zhang, W. Prediction and analysis of global potential suitable areas for Phyllostachys edulis based on MaxEnt ecological niche model. Acta Ecol. Sin. 2024, 22, 47–58. [Google Scholar]
- Yang, Z.; Chen, D.; Lu, S.; Zhou, P.; Wang, B. Evaluation of habitat suitability for Macaca thibetana in Hunan Mangsha national nature reserve based on MaxEnt model. Life Sci. Res. 2025, 29, 247–254, 264. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, B.; Wan, F.; Xiao, Q.; Dai, L. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodivers. Sci. 2007, 15, 365–372. [Google Scholar] [CrossRef]
- Jessica, B.S.; Christine, R.W.; Karen, V.R. Developing macrohabitat models for bats in parks using maxent and testing them with data collected by citizen scientists. Int. J. Biodivers. Conserv. 2014, 6, 171–183. [Google Scholar] [CrossRef]
- Araújo, M.B.; Pearson, R.G.; Thuiller, W.; Erhard, M. Validation of species–climate impact models under climate change. Glob. Change Biol. 2005, 11, 1504–1513. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Fang, Y. Responses of the distribution pattern of Quercus chenii to climate change following the Last Glacial Maximum. Chin. J. Plant Ecol. 2016, 40, 1164–1178. [Google Scholar] [CrossRef]
- Yao, Z.; Han, Q.; Lin, B. Prediction of distribution area of main noxious and miscellaneous weeds in Xinjiang based on MaxEnt model. Acta Ecol. Sin. 2023, 43, 5096–5109. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, W.; Chen, B.; Zhang, J. Potential Suitable Areas of Crataegus pinnatifida in China based on MaxEnt Modeling. Sci. Silvae Sin. 2022, 58, 43–50. [Google Scholar] [CrossRef]
- Khanum, R.; Mumtaz, A.S.; Kumar, S. Predicting impacts of climate change on medicinal asclepiads of Pakistan using maxent modeling. Acta Oecol. 2013, 49, 23–31. [Google Scholar] [CrossRef]
- Ye, P.; Zhang, G.; Zhao, X.; Chen, H.; Si, Q.; Wu, J. Potential geographical distribution and environmental explanations of rare and endangered plant species through combined modeling: A case study of northwest Yunnan, China. Ecol. Evol. 2021, 11, 13052–13067. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Li, C.; Liu, J.; Li, Y.; Hu, Z.; He, M.; Zhang, H.; Yan, H. Ecological assessment of current and future Pogostemon cablin benth. potential planting regions in China based on MaxEnt and ArcGIS models. J. Appl. Res. Med. Aromat. Plants 2021, 24, 100308. [Google Scholar] [CrossRef]
- Khodorova, N.V.; Boitel-Conti, M. The role of temperature in the growth and flowering of geophytes. Plants 2013, 2, 699–711. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Su, D.; Wang, Y.; Zhen, C.; Su, X.; Liu, Y. The review of xerophyte plant Sophora alopecuroides. Chin. Wild Plant Resour. 2021, 40, 55–58. [Google Scholar]
Climatic Factor | Description of Climatic Factors | Unit |
---|---|---|
Bio1 | Annual average temperature | °C |
Bio2 | Average daily range | °C |
Bio3 | Isothermal property | - |
Bio4 | Standard deviation of seasonal variation of temperature | °C |
Bio5 | Maximum temperature in the warmest month | °C |
Bio6 | Minimum temperature in the coldest month | °C |
Bio7 | Annual temperature variation range | °C |
Bio8 | Average temperature in the wettest season | °C |
Bio9 | Average temperature in the driest season | °C |
Bio10 | Average temperature in the warmest season | °C |
Bio11 | Average temperature in the coldest season | °C |
Bio12 | Annual average precipitation | mm |
Bio13 | Wettest monthly precipitation | mm |
Bio14 | Driest monthly precipitation | mm |
Bio15 | Precipitation variation coefficient | - |
Bio16 | Precipitation in the wettest season | mm |
Bio17 | Precipitation in the driest season | mm |
Bio18 | Precipitation in the warmest season | mm |
Bio19 | Precipitation in the coldest season | mm |
Weather Variables | Contribution Rate % | Permutation Important Value % |
---|---|---|
Bio1 | 25 | 54.7 |
Bio5 | 22.3 | 4.7 |
Bio18 | 18.6 | 7.6 |
Bio4 | 17.9 | 30.9 |
Bio11 | 16.2 | 2.1 |
Potential Suitable Distribution Area/104 km2 | Before One | 2030s | 2050s | ||||
---|---|---|---|---|---|---|---|
SSP126 | SSP245 | SSP585 | SSP126 | SSP245 | SSP585 | ||
Low-suitability area | 591.38 | 555.52 | 533.72 | 555.17 | 570.45 | 535.87 | 554.32 |
Medium-suitability area | 475.70 | 403.57 | 371.13 | 383.42 | 390.90 | 397.22 | 407.61 |
High-suitability area | 220.83 | 161.19 | 153.65 | 191.51 | 155.07 | 121.97 | 171.02 |
Total-suitability area | 1287.91 | 1120.29 | 1058.51 | 1130.10 | 1116.43 | 1055.06 | 1132.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Ma, F.; Luo, C.; Pang, K.; Yang, Z.; Wang, M.; Huang, X. Study on the Change of Global Suitable Area of Sophora alopecuroides and Its Sustainable Ecological Restoration Based on the MaxEnt Model. Sustainability 2025, 17, 8486. https://doi.org/10.3390/su17188486
Yang Z, Ma F, Luo C, Pang K, Yang Z, Wang M, Huang X. Study on the Change of Global Suitable Area of Sophora alopecuroides and Its Sustainable Ecological Restoration Based on the MaxEnt Model. Sustainability. 2025; 17(18):8486. https://doi.org/10.3390/su17188486
Chicago/Turabian StyleYang, Zhigang, Fanyan Ma, Cunkai Luo, Keyao Pang, Zhen’an Yang, Mei Wang, and Xiang Huang. 2025. "Study on the Change of Global Suitable Area of Sophora alopecuroides and Its Sustainable Ecological Restoration Based on the MaxEnt Model" Sustainability 17, no. 18: 8486. https://doi.org/10.3390/su17188486
APA StyleYang, Z., Ma, F., Luo, C., Pang, K., Yang, Z., Wang, M., & Huang, X. (2025). Study on the Change of Global Suitable Area of Sophora alopecuroides and Its Sustainable Ecological Restoration Based on the MaxEnt Model. Sustainability, 17(18), 8486. https://doi.org/10.3390/su17188486