State-Level Inventories and Life Cycle GHG Emissions of Corn, Soybean, and Sugarcane Produced in Brazil
Abstract
1. Introduction
2. Materials and Methods
2.1. State-Level Agricultural Inventories
2.1.1. Sugarcane Inventory
2.1.2. Soybean and Corn Inventories
2.2. National Agricultural Inventories
2.3. Calculation of Life Cycle GHG Emissions
2.4. Comparison with Inventories and GHG Emissions Reported in the Literature
2.5. Caveats and Limitations
3. Results and Discussion
3.1. Agricultural Inventories
3.1.1. Obtained in This Study
3.1.2. Comparison with Inventories from Other Sources
3.2. Life Cycle GHG Emissions
3.2.1. Using the Inventories Obtained in Our Study
3.2.2. Comparison with Life Cycle GHG Emissions Calculated with Inventories from Other Sources
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
% | percentage |
CH4 | methane |
CO2 | carbon dioxide |
CO2e | carbon dioxide equivalent |
CORSIA | Carbon Offsetting and Reduction Scheme for International Aviation |
dLUC | direct land use change |
GHG | greenhouse gas |
ha | hectare |
ICAO | International Civil Aviation Organization |
IMO | International Maritime Organization |
kg | kilogram |
kha | kilohectare |
LCA | life cycle assessment |
Mt | million metric tons |
N | nitrogen |
N2O | nitrous oxide |
SAFs | sustainable aviation fuels |
t | metric ton |
t cane | metric ton of sugarcane |
t soy | metric ton of soybean |
t corn | metric ton of corn |
References
- FAO FAOSTAT Database. Crop and Livestock Products—2023. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 28 April 2025).
- IBGE. Municipal Agricultural Production. Available online: https://sidra.ibge.gov.br/pesquisa/pam/tabelas (accessed on 7 March 2024).
- Conab Crop Harvests in Brazil. Available online: https://www.conab.gov.br/info-agro/safras (accessed on 25 September 2024).
- Brazilian National Agency for Petroleum, Natural Gas, and Biofuels. Dynamic Panel—Biodiesel Production. Available online: https://app.powerbi.com/view?r=eyJrIjoiOTlkODYyODctMGJjNS00MGIyLWJmMWItNGJlNDg0ZTg5NjBlIiwidCI6IjQ0OTlmNGZmLTI0YTYtNGI0Mi1iN2VmLTEyNGFmY2FkYzkxMyJ9&pageName=ReportSection8aa0cee5b2b8a941e5e0%22 (accessed on 19 February 2025).
- Brazilian National Agency for Petroleum, Natural Gas, and Biofuels. Dynamic Panel—Ethanol Production. Available online: https://app.powerbi.com/view?r=eyJrIjoiMmRhZWU2NDUtZWE2Yi00NzI5LWJjMGQtNjIwNjE0MjM0MjEzIiwidCI6IjQ0OTlmNGZmLTI0YTYtNGI0Mi1iN2VmLTEyNGFmY2FkYzkxMyJ9 (accessed on 19 February 2025).
- International Energy Agency. Transport Biofuels. Available online: https://www.iea.org/reports/renewables-2023/transport-biofuels (accessed on 25 September 2024).
- Unica UnicaData. Ethanol Production. Available online: https://unicadata.com.br/ (accessed on 25 September 2024).
- Conab Produção de Cana-de-Açúcar Na Safra 2023/24 Chega a 713,2 Milhões de Toneladas, a Maior Da Série Histórica. Available online: https://www.conab.gov.br/ultimas-noticias/5489-producao-de-cana-de-acucar-na-safra-2023-24-chega-a-713-2-milhoes-de-toneladas-a-maior-da-serie-historica#:~:text=J%C3%A1%20o%20etanol%20de%20milho,em%20rela%C3%A7%C3%A3o%20%C3%A0%20safra%20anterior (accessed on 3 December 2024).
- ISO 14040; Environmental Management—Life-Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/37456.html (accessed on 25 September 2024).
- ISO 14044; Environmental Management—Life-Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/38498.html (accessed on 25 September 2024).
- Yang, Y. Toward a More Accurate Regionalized Life Cycle Inventory. J. Clean. Prod. 2016, 112, 308–315. [Google Scholar] [CrossRef]
- Islam, S.; Ponnambalam, S.G.; Lam, H.L. Review on Life Cycle Inventory: Methods, Examples and Applications. J. Clean. Prod. 2016, 136, 266–278. [Google Scholar] [CrossRef]
- Shi, S.; Yan, X. A Critical Review on Spatially Explicit Life Cycle Assessment Methodologies and Applications. Sustain. Prod. Consum. 2024, 52, 566–579. [Google Scholar] [CrossRef]
- Beloin-Saint-Pierre, D.; Albers, A.; Hélias, A.; Tiruta-Barna, L.; Fantke, P.; Levasseur, A.; Benetto, E.; Benoist, A.; Collet, P. Addressing Temporal Considerations in Life Cycle Assessment. Sci. Total Environ. 2020, 743, 140700. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhu, G.; Tian, Y. The Historical Evolution and Research Trends of Life Cycle Assessment. Green Carbon 2024, 2, 425–437. [Google Scholar] [CrossRef]
- Dai, T.; Fleischer, A.S.; Lee, R.; Wemhoff, A.P. Life Cycle Inventory Regionalization and Uncertainty Characterization: A Multilevel Modeling Approach. J. Clean. Prod. 2020, 242, 118459. [Google Scholar] [CrossRef]
- Heijungs, R. Spatial differentiation, GIS-based regionalization, hyperregionalization, and the boundaries of LCA. In Environment and Energy; Ioppolo, G., Ed.; FrancoAngeli: Milano, Italy, 2012; pp. 165–176. [Google Scholar]
- Matsuura, M.I.S.F.; May, A.; de Castro, C.; Bungenstab, D.J.; Sugawara, E.T.; Dias, F.R.T.; Lansche, J.; Hirakuri, M.; de Figueirêdo, M.C.B.; Chagas, M.F.; et al. Life Cycle Inventories of Brazilian Agricultural Products: A Contribution to the Ecoinvent Database—ICVAgroBR. Available online: https://www.embrapa.br/en/busca-de-noticias/-/noticia/18262026/partners-formalize-technical-cooperation-for-life-cycle-assessment-studies (accessed on 25 November 2024).
- Ecoinvent. Ecoinvent Database v3.6. Available online: https://support.ecoinvent.org/ecoinvent-version-3.6 (accessed on 26 November 2024).
- Matsuura, M.I.S.F.; Picoli, J.F. Life Cycle Inventories of Agriculture, Forestry and Animal Husbandry—Brazil: For the SRI Project. Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1113475/1/LCI-Agriculture-2018.pdf (accessed on 25 September 2024).
- Ramos, N.P.; Mendes, N.C.; Folegatti, M.I.S.; Bayma, G.; Novaes, R.M.L.; Morandi, M.A.B.; Pighinelli, A.L.M.T.; Savioli, J.P.P.D.; Buffon, V.B. Regionalization of Typical Profiles of Corn, Soybean, and Sugarcane. Available online: https://www.gov.br/anp/pt-br/assuntos/renovabio/arq/arquivos-estudos-relatorio-e-seminarios/ (accessed on 3 December 2024).
- S&T Squared. GHGenius, 5.02b. Available online: https://www.ghgenius.ca/ (accessed on 9 February 2024).
- Pelton, R. Spatial Greenhouse Gas Emissions from US County Corn Production. Int. J. Life Cycle Assess. 2019, 24, 12–25. [Google Scholar] [CrossRef]
- Yang, Y.; Tao, M.; Suh, S. Geographic Variability of Agriculture Requires Sector-Specific Uncertainty Characterization. Int. J. Life Cycle Assess. 2018, 23, 1581–1589. [Google Scholar] [CrossRef]
- International Energy Agency. Carbon Accounting for Sustainable Biofuels. Available online: https://www.iea.org/reports/carbon-accounting-for-sustainable-biofuels (accessed on 9 February 2024).
- ICAO. Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). Available online: https://www.icao.int/environmental-protection/CORSIA/Pages/default.aspx (accessed on 9 February 2024).
- IMO. Study on the Readiness and Availability of Low- and Zero-Carbon Ship Technology and Marine Fuels. Available online: https://wwwcdn.imo.org/localresources/en/MediaCentre/WhatsNew/Documents/MEPC80.INF10.pdf (accessed on 9 February 2024).
- Hestia. Data and Models for More Sustainable Agriculture. Available online: https://www.hestia.earth/ (accessed on 16 October 2024).
- Trase. Intelligence for Sustainable Trade. Available online: https://trase.earth/ (accessed on 16 October 2024).
- IPCC Intergovernmental Panel on Climate Change. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Hirakuri, M.H.; Conte, O.; Prando, A.M.; Castro, C.; Balbinot, A.A., Jr. Diagnosis of Soybean Production in Soybean Macroregions 1, 2, 3, 4, and 5. Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1118962 (accessed on 19 August 2025). (In Portuguese).
- Brazil Bill 15,082. Available online: https://legislacao.presidencia.gov.br/atos/?tipo=LEI&numero=15082&ano=2024&ato=457QzaE1UNZpWT7e9 (accessed on 15 February 2025).
- Brazil Bill 13,576. Available online: https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2017/lei/l13576.htm (accessed on 25 September 2024).
- Brazilian National Agency for Petroleum, Natural Gas, and Biofuels. Resolution 758. Available online: https://atosoficiais.com.br/anp/resolucao-n-758-2018-regulamenta-a-certificacao-da-producao-ou-importacao-eficiente-de-biocombustiveis-de-que-trata-o-art-18-da-lei-no-13-576-de-26-de-dezembro-de-2017-e-o-credenciamento-de-firmas-inspetoras?origin=institui (accessed on 5 February 2025).
- Garofalo, D.F.T.; Novaes, R.M.L.; Pazianotto, R.A.A.; Maciel, V.G.; Brandão, M.; Shimbo, J.Z.; Folegatti-Matsuura, M.I.S. Land-Use Change CO2 Emissions Associated with Agricultural Products at Municipal Level in Brazil. J. Clean. Prod. 2022, 364. [Google Scholar] [CrossRef]
- Embrapa. Brazilian Land Use Change Method. Available online: https://brluc.cnpma.embrapa.br/ (accessed on 2 May 2024).
- Brazilian National Agency for Petroleum, Natural Gas, and Biofuels. Certification of Efficient Production or Import of Biofuels. Available online: https://www.gov.br/anp/pt-br/assuntos/renovabio/certificados-producao-importacao-eficiente-biocombustiveis (accessed on 19 February 2025).
- Ecoinvent Ecoinvent Database v3.9.1. Available online: https://ecoinvent.org/the-ecoinvent-database/ (accessed on 2 May 2024).
- GFLI Global Feed LCA Institute (GFLI) Database. Available online: https://globalfeedlca.org/gfli-database/ (accessed on 25 September 2024).
- Novaes, R.M.L.; Tubiello, F.N.; Garofalo, D.F.T.; de Santis, G.; Pazianotto, R.A.A.; Matsuura, M.I.S.F. Brazil’s Agricultural Land, Cropping Frequency and Second Crop Area: FAOSTAT Statistics and New Estimates; Embrapa Environment: Jaguariuna, Brazil, 2022. [Google Scholar]
- Embrapa. Systems of Corn Production. Available online: https://www.embrapa.br/agencia-de-informacao-tecnologica/cultivos/milho/producao/sistemas-diferenciais-de-cultivo (accessed on 8 August 2024).
- IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J., Slade, R., Khourdajie, A., Al Diemen, R., van McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; ISBN 9781009157926. [Google Scholar]
- IPCC. N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2006. [Google Scholar]
- Matsuura, M.I.S.F.; Scachetti, M.T.; Chagas, M.F.; Seabra, J.E.A.; Bonomi, A.M.; Bayma, G.; Picoli, J.F.; Morandi, M.A.B.; Ramos, N.P.; Cavalett, O.; et al. RenovaCalc: Method and Tool to Account for the Carbon Intensity of Biofuels under the RenovaBio Program. Technical Report. Available online: https://www.gov.br/anp/pt-br/assuntos/consultas-e-audiencias-publicas/consulta-audiencia-publica/2018/arquivos-consultas-e-audiencias-publicas-2018/cap-10-2018/cp10-2018_nota-tecnica-renova-calc.pdf (accessed on 25 September 2024). (In Portuguese)
- ANL Argonne National Laboratory. GREET Model. Available online: https://greet.anl.gov/ (accessed on 25 September 2024).
- Lumivero. Software @Risk v7.5. Available online: https://lumivero.com/products/at-risk/ (accessed on 2 February 2025).
- ANL Argonne National Laboratory. R&D GREET 2024. Available online: https://greet.anl.gov/index.php?content=greetdotnet (accessed on 9 February 2025).
- ISCC International Sustainability & Carbon Certification. ISCC EU 205. Greenhouse Gas Emissions. Available online: https://www.iscc-system.org/wp-content/uploads/2022/05/ISCC_EU_205_Greenhouse-Gas-Emissions-v4.0.pdf (accessed on 25 August 2025).
- Ecoinvent. Ecoinvent Database v3.7. Available online: https://support.ecoinvent.org/ecoinvent-version-3.7 (accessed on 25 August 2025).
- EU. JEC (JRC-Eucar-Concawe) E3-Database. Available online: https://biograce.net/content/ghgcalculationtools/methodology (accessed on 9 February 2025).
- Maciel, V.G.; Novaes, R.M.L.; Brandão, M.; Cavalett, O.; Pazianotto, R.A.A.; Garofalo, D.T.; Folegatti-Matsuura, M.I.S. Towards a Non-Ambiguous View of the Amortization Period for Quantifying Direct Land-Use Change in LCA. Int. J. Life Cycle Assess. 2022, 27, 1299–1315. [Google Scholar] [CrossRef]
- EU. BioGrace. Available online: http://www.biograce.net/content/ghgcalculationtools/recognisedtool/ (accessed on 20 April 2017).
- Blonk. Consultants Agri-Footprint v6.3. Available online: https://blonksustainability.nl/tools-and-databases/agri-footprint (accessed on 17 October 2024).
- Cerri, C.E.P.; You, X.; Cherubin, M.R.; Moreira, C.S.; Raucci, G.S.; Castigioni, B.d.A.; Alves, P.A.; Cerri, D.G.P.; Mello, F.F.d.C.; Cerri, C.C. Assessing the Greenhouse Gas Emissions of Brazilian Soybean Biodiesel Production. PLoS ONE 2017, 12, e0176948. [Google Scholar] [CrossRef]
- Pré Sustainability SimaPro v9.6.0.1. Available online: https://simapro.com/ (accessed on 17 October 2024).
- Liu, X.; Kwon, H.; Wang, M.; O’Connor, D. Life Cycle Greenhouse Gas Emissions of Brazilian Sugar Cane Ethanol Evaluated with the GREET Model Using Data Submitted to RenovaBio. Environ. Sci. Technol. 2023, 57, 11814–11822. [Google Scholar] [CrossRef]
- ISO 14067:2018; Greenhouse Gases—Carbon Footprint of Products—Requirements and Guidelines for Quantification. ISO: Geneva, Switzerland, 2018. Available online: https://www.iso.org/standard/71206.html (accessed on 15 May 2025).
- Daioglou, V.; Woltjer, G.; Strengers, B.; Elbersen, B.; Barberena Ibañez, G.; Sánchez, G.D.; Gil, B.J.; van Vuuren, D.P. Progress and Barriers in Understanding and Preventing Indirect Land-use Change. Biofuels Bioprod. Biorefin. 2020, 14, 924–934. [Google Scholar] [CrossRef]
- Pendrill, F.; Gardner, T.A.; Meyfroidt, P.; Persson, U.M.; Adams, J.; Azevedo, T.; Bastos Lima, M.G.; Baumann, M.; Curtis, P.G.; De Sy, V.; et al. Disentangling the Numbers behind Agriculture-Driven Tropical Deforestation. Science 2022, 377, eabm9267. [Google Scholar] [CrossRef]
- Seixas, C.D.S.; Neumaier, N.; Balbinot, J.A.A.; Krzyzanowski, F.C.; Leite, R.M.V.B.d.C. Tecnologias de Produção de Soja; Embrapa Soybean: Londrina, Brazil, 2020. [Google Scholar]
- International Fertilizer Association. IFASTAT: Consumption of Fertilizers. Available online: https://www.ifastat.org/databases/plant-nutrition (accessed on 22 October 2024).
- Macedo, I.C.; Seabra, J.E.A.; Silva, J.E.A.R. Green House Gases Emissions in the Production and Use of Ethanol from Sugarcane in Brazil: The 2005/2006 Averages and a Prediction for 2020. Biomass Bioenergy 2008, 32, 582–595. [Google Scholar] [CrossRef]
- Macedo, I.C.; Leal, M.R.L.V.; da Silva, J. Greenhouse Gases Emissions in the Production and Use of Ethanol from Sugarcane in Brazil. Available online: https://repositorio.cetesb.sp.gov.br/handle/123456789/3852 (accessed on 25 September 2024).
- Seabra, J.E.A.; Macedo, I.C.; Chum, H.L.; Faroni, C.E.; Sarto, C.A. Life Cycle Assessment of Brazilian Sugarcane Products: GHG Emissions and Energy Use. Biofuels Bioprod. Biorefin. 2011, 5, 519–532. [Google Scholar] [CrossRef]
- IDEA. Sugarcane Agroindustry Performance Indicators: Crops 2012/2013 and 2013/2014; IDEA: Ribeirão Preto, Brazil, 2014. [Google Scholar]
- Cavalett, O.; Chagas, M.F.; Magalhães, P.S.G.; Carvalho, J.L.N.; Cardoso, T.F.; Franco, H.C.J.; Braunbeck, O.A.; Bonomi, A. The Agricultural Production Model. In Green Energy and Technology: Virtual Biorefinery. An Optimization Strategy for Renewable Carbon Valorization; Bonomi, A.M., Cavalett, O., da Cunha, M.P., Lima, M.A.P., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 13–51. [Google Scholar]
- Pereira, L.G.; Cavalett, O.; Bonomi, A.; Zhang, Y.; Warner, E.; Chum, H.L. Comparison of Biofuel Life-Cycle GHG Emissions Assessment Tools: The Case Studies of Ethanol Produced from Sugarcane, Corn, and Wheat. Renew. Sustain. Energy Rev. 2019, 110, 1–12. [Google Scholar] [CrossRef]
- Guarenghi, M.M.; Garofalo, D.F.T.; Seabra, J.E.A.; Moreira, M.M.R.; Novaes, R.M.L.; Ramos, N.P.; Nogueira, S.F.; de Andrade, C.A. Land Use Change Net Removals Associated with Sugarcane in Brazil. Land 2023, 12, 584. [Google Scholar] [CrossRef]
- Escobar, N.; Tizado, E.J.; zu Ermgassen, E.K.H.J.; Löfgren, P.; Börner, J.; Godar, J. Spatially-Explicit Footprints of Agricultural Commodities: Mapping Carbon Emissions Embodied in Brazil’s Soy Exports. Glob. Environ. Change 2020, 62, 102067. [Google Scholar] [CrossRef]
- Mongabay. Amazon Deforestation in Brazil Plunges 31% to Lowest Level in 9 Years. Available online: https://news.mongabay.com/2024/11/amazon-deforestation-in-brazil-plunges-31-to-lowest-level-in-9-years/ (accessed on 15 May 2025).
- Gonçalves, C.K.; Monteiro, L.; Bovee, V.; Arceo, N.M.P. Companies Collaborating for Sustainable Soy Landscapes: Progress and Transition Pathways. Available online: https://weforum.ent.box.com/s/hheie7132493v78f0logfufx8i213t7z (accessed on 15 May 2025).
- MapBiomas Land Cover and Use. Coverage and Transitions Statistics by Biomes—MapBiomas Brasil Collection 9. Available online: https://data.mapbiomas.org/dataset.xhtml?persistentId=doi:10.58053/MapBiomas/7VJZWK (accessed on 15 May 2025).
- Donke, A.C.G.; Novaes, R.M.L.; Pazianotto, R.A.A.; Moreno-Ruiz, E.; Reinhard, J.; Picoli, J.F.; da Folegatti-Matsuura, M.I.S. Integrating Regionalized Brazilian Land Use Change Datasets into the Ecoinvent Database: New Data, Premises and Uncertainties Have Large Effects in the Results. Int. J. Life Cycle Assess. 2020, 25, 1027–1042. [Google Scholar] [CrossRef]
- van Middelaar, C.E.; Cederberg, C.; Vellinga, T.V.; van der Werf, H.M.G.; de Boer, I.J.M. Exploring Variability in Methods and Data Sensitivity in Carbon Footprints of Feed Ingredients. Int. J. Life Cycle Assess. 2013, 18, 768–782. [Google Scholar] [CrossRef]
- Brazil Targets of ABC+. Available online: https://www.gov.br/agricultura/pt-br/assuntos/sustentabilidade/planoabc-abcmais/abc/metas-do-abc (accessed on 1 September 2025).
- de Lima, C.Z.; Estevam, C.G.; Pavão, E.M.; Pinto, T.P.; Assad, E.D. Greenhouse Gases Mitigation Potential of Soy Farming: Decarbonization Actions to Be Taken by 2030; FGV-EESP: São Paulo, Brazil, 2022. [Google Scholar]
- EU. Deforestation-Free Products. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52025XC04524 (accessed on 25 September 2024).
- McKinsey & Company. Beyond Net Zero: Brazil’s Massive Opportunity to Decarbonize the World. Available online: https://www.mckinsey.com.br/our-insights/all-insights/beyond-net-zero-brazils-massive-opportunity-to-decarbonize-the-world (accessed on 3 September 2025).
- Nepomuceno, A.L.; Balbinot, A.A., Jr.; Rufino, C.F.G.; Debiasi, H.; Nogueira, M.A.; Franchini, J.C.; Alves, F.V.; Carnevalli, R.A.; de Almeida, R.G.; Bungenstab, D.J.; et al. LCS Program-Low Carbon Soybean: A New Concept of Sustainable Soybean; Embrapa Soja: Londrina, Brazil, 2023. [Google Scholar]
- Matsuura, M.I.S.F.; Savioli, J.P.D.; Pighinelli, A.L.M.T.; Ramos, N.P.; Novaes, R.M.; Hiramoto, T.E.; Ferreira, R.P.; Anselmi, A. Footprint Pro Carbono. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1162996/footprint-pro-carbono-a-calculadora-para-a-pegada-de-carbono-de-commodities-agricolas (accessed on 16 October 2024).
Sources | Corn | Soybean | Sugarcane |
---|---|---|---|
Yield | Average from Conab [3] and IBGE [2] | Average from Conab [3] and IBGE [2] | Conab [3], considering the total area a |
Agricultural practices | Surveys from Hirakuri et al. [31] | Surveys from Hirakuri et al. [31] | Data submitted by producers to RenovaBio [32,33,34] |
Direct land use change | BRLUC v2.0 [35,36] | ||
Reference period | 2017–2019 | 2017–2019 | 2019–2021 |
Sample | 0.4 Mha (1st crop) 3.5 Mha (2nd crop) | 11.1 Mha | 90 mills 187.4 Mt cane (27.4% of total) |
States with raw data b | 14 (7 considered representative for 1st crop and 8 for 2nd crop) (73.0%—1st crop) (96.4%—2nd crop) | 14 (10 considered representative) (93.3%) | 10 (7 considered representative) (86.7%) |
Companies, institutions, and unions that took part in the validation process | Agronomic Institute of Campinas (IAC), CEOX Consulting, Embrapa Corn and Sorghum, FS, Inpasa Brasil, National Corn Ethanol Union (UNEM), National Union of Bioenergy (UDOP), Pecege Institute | 3tentos, Bayer, Biofuels Producers Association of Brazil (APROBIO), Brazilian Association of Vegetable Oils Industry (Abiove), Brazilian Biodiesel and Bioquerosene Union (Ubrabio), Bunge, Embrapa Soybean, Federal University of Mato Grosso (UFMT), University of Rio Verde (UniRV) | Agronomic Institute of Campinas (IAC), Brazilian Biorenewables National Laboratory (LNBR), Embrapa Cerrados, ENER Consult, National Union of Bioenergy (UDOP), Organization of Sugarcane Producers Associations of Brazil (ORPLANA), Raízen, São Paulo State University (Unesp), Union of Sugarcane and Bioenergy Industry (UNICA) |
Inputs/Outputs | Unit | Minimum | Most Likely | Maximum |
---|---|---|---|---|
Production | ||||
Limestone (calcitic/dolomitic) | g CO2e/kg | 10.5 | 38.8 | 130.0 |
Urea | g CO2e/kg N | 1179.8 | 3487.4 | 3487.4 |
Monoammonium phosphate (MAP) | g CO2e/kg P2O5 | 1011.0 | 1946.2 | 1946.2 |
Potassium chloride | g CO2e/kg K2O | 576.0 | 626.2 | 626.2 |
Corn seeds | g CO2e/kg | 1250.2 | 1250.2 | 1979.4 |
Soybean seeds | g CO2e/kg | 400.0 | 431.8 | 2.808.8 |
Diesel | g CO2e/kg | 562.7 | 668.5 | 668.5 |
Emissions from use | ||||
Limestone (dolomitic) | g CO2e/kg | 220.0 | 480.0 | 480.0 |
Limestone (calcitic) | g CO2e/kg | 220.0 | 440.0 | 440.0 |
Urea | g CO2e/kg N | 620.0 | 1560.0 | 1560.0 |
Diesel | g CO2e/kg | 3156.6 | 3156.6 | 3222.5 |
Data | Unit | São Paulo | Goiás | Minas Gerais | Mato Grosso do Sul | Brazil i |
---|---|---|---|---|---|---|
Certified mills with primary data | n. | 33 | 18 | 17 | 7 | 90 |
Participation used to generate the national inventory a | % | 54.9% | 10.9% | 10.4% | 7.0% | - |
Yield b | t cane/ha | 65.86 | 65.29 | 68.52 | 61.28 | 58.27 |
Burned area | % | 4.84 | 4.20 | 5.29 | 1.80 | 7.31 |
Direct land use change (dLUC) c | t CO2e/ha.yr | 0.40 | −0.21 | 0.16 | 0.40 | 0.28 |
Limestone d | kg/t cane | 11.87 | 8.93 | 13.03 | 14.96 | 11.85 |
Gypsum | kg/t cane | 5.37 | 3.63 | 6.09 | 4.36 | 5.01 |
Synthetic N fertilizers e | kg N/t cane | 1.00 | 0.90 | 1.00 | 1.15 | 1.01 |
Synthetic P2O5 fertilizers f | kg P2O5/t cane | 0.60 | 0.57 | 0.69 | 0.86 | 0.62 |
Synthetic K2O fertilizers g | kg K2O/t cane | 0.78 | 0.84 | 0.94 | 0.86 | 0.84 |
Diesel h | L/t cane | 4.23 | 3.93 | 4.33 | 4.01 | 4.12 |
Grid electricity | kWh/t cane | 0.04 | 0.57 | 0.14 | - | 0.91 |
Data | Unit | Mato Grosso | Paraná | Rio Grande do Sul | Goiás | Mato Grosso do Sul | Brazil h |
---|---|---|---|---|---|---|---|
Participation used to generate the national inventory a | % | 29.5% | 16.9% | 15.6% | 10.7% | 8.8% | - |
Yield b | t soy/ha | 3.36 | 3.65 | 2.98 | 3.38 | 3.42 | 3.34 |
Direct land use change (dLUC) c | t CO2e/ha.yr | 3.40 | 0.59 | 2.03 | 0.87 | 0.70 | 2.32 |
Limestone d | kg/t soy | 148.98 | 136.93 | 167.68 | 147.97 | 146.04 | 149.80 |
Gypsum | kg/t soy | - | - | - | 16.01 | 39.78 | 5.67 |
Seeds | kg/t soy | 14.72 | 12.32 | 16.10 | 16.93 | 12.18 | 14.52 |
Synthetic N fertilizers e | kg N/t soy | 5.75 | 4.90 | 3.92 | 3.64 | 4.47 | 4.74 |
Synthetic P2O5 fertilizers f | kg P2O5/t soy | 32.27 | 27.96 | 22.60 | 28.32 | 24.74 | 28.26 |
Potassium chloride | kg K2O/t soy | 22.35 | 19.20 | 29.81 | 21.54 | 21.67 | 22.85 |
Diesel g | L/t soy | 10.52 | 11.17 | 13.18 | 10.92 | 12.06 | 11.23 |
2,4-D | kg/t soy | 0.04 | 0.21 | 0.05 | 0.14 | 0.34 | 0.12 |
Glyphosate | kg/t soy | 0.99 | 0.79 | 0.97 | 0.89 | 1.18 | 1.00 |
Pesticides | kg/t soy | 0.61 | 0.63 | 1.73 | 0.86 | 0.77 | 0.91 |
Data | Unit | Rio Grande do Sul | Minas Gerais | Paraná | Goiás | Bahia | Brazil h |
---|---|---|---|---|---|---|---|
Participation used to generate the national inventory a | % | 26.2% | 24.3% | 17.5% | 9.3% | 8.6% | - |
Yield b | t corn/ha | 7.26 | 9.00 | 10.56 | 8.40 | 6.60 | 7.26 |
Direct land use change (dLUC) c | t CO2e/ha.yr | 1.95 | 1.62 | 1.33 | 1.33 | 1.98 | 2.01 |
Limestone d | kg/t corn | 68.87 | 55.56 | 47.36 | 59.52 | 75.76 | 61.76 |
Gypsum | kg/t corn | - | - | - | 2.71 | - | 0.25 |
Seeds | kg/t corn | 2.75 | 2.22 | 1.89 | 2.38 | 3.03 | 2.47 |
Synthetic N fertilizers e | kg N/t corn | 15.36 | 18.47 | 17.88 | 18.93 | 23.86 | 18.23 |
Synthetic P2O5 fertilizers f | kg P2O5/t corn | 16.50 | 13.34 | 6.84 | 10.71 | 18.18 | 13.57 |
Potassium chloride | kg K2O/t corn | 11.02 | 17.33 | 11.37 | 4.29 | 12.12 | 13.66 |
Diesel B10 g | L/t corn | 5.70 | 4.70 | 3.76 | 5.25 | 4.68 | 4.82 |
2,4-D | kg/t corn | - | - | 0.05 | 0.05 | 0.05 | 0.02 |
Glyphosate | kg/t corn | 0.17 | 0.17 | 0.12 | 0.21 | 0.25 | 0.19 |
Pesticides | kg/t corn | 0.69 | 0.78 | 0.80 | 0.79 | 1.02 | 0.76 |
Data | Unit | Mato Grosso | Paraná | Goiás | Mato Grosso do Sul | Minas Gerais | Brazil h |
---|---|---|---|---|---|---|---|
Participation used to generate the national inventory a | % | 46.0% | 18.0% | 13.5% | 13.2% | 3.7% | - |
Yield b | t corn/ha | 6.30 | 6.26 | 6.18 | 5.24 | 5.50 | 6.06 |
Direct land use change (dLUC) c | t CO2e/ha.yr | 4.77 | 1.33 | 1.33 | 1.08 | 1.62 | 2.01 |
Limestone d | kg/t corn | 80.90 | 80.90 | 80.90 | 80.90 | 80.90 | 79.61 |
Gypsum | kg/t corn | - | - | 1.91 | 14.96 | - | 2.23 |
Seeds | kg/t corn | 3.24 | 3.24 | 3.24 | 3.24 | 0.96 | 3.14 |
Synthetic N fertilizers e | kg N/t corn | 12.52 | 17.59 | 10.80 | 16.18 | 4.88 | 13.31 |
Synthetic P2O5 fertilizers f | kg P2O5/t corn | 8.59 | 8.20 | 7.48 | 5.42 | 2.53 | 7.71 |
Potassium chloride | kg K2O/t corn | 8.06 | 9.64 | 11.10 | 5.70 | 2.03 | 8.20 |
Diesel B10 g | L/t corn | 4.97 | 6.32 | 5.85 | 5.83 | 1.92 | 5.30 |
2,4-D | kg/t corn | - | - | - | - | - | 0.00 |
Glyphosate | kg/t corn | 0.23 | 0.15 | 0.24 | 0.22 | 0.18 | 0.21 |
Pesticides | kg/t corn | 0.26 | 0.32 | 0.52 | 0.58 | 0.14 | 0.35 |
(a) Sugarcane | ||||||||
Parameters | Unit | Brazil | São Paulo | |||||
Agri-footprint a | BioGrace b | GHGenius c | Res 758 d | This study e | Ecoinvent f | This study e | ||
Yield | t cane/ha | 73.80 | 68.70 | 73.70 | - | 58.27 | 71.94 | 65.86 |
Burned area | % | - | 75.24 | - | 18.00 | 7.31 | - | 4.84 |
Limestone | kg/t cane | 5.42 | 5.34 | 4.44 | 5.79 | 11.85 | 1.75 | 11.87 |
Synthetic N fertilizers | kg N/t cane | 1.04 | 0.91 | 1.40 | 1.11 | 1.01 | 1.09 | 1.00 |
Synthetic P2O5 fertilizers | kg P2O5/t cane | 0.38 | 0.41 | 0.61 | 0.44 | 0.62 | 0.37 | 0.60 |
Synthetic K2O fertilizers | kg K2O/t cane | 1.07 | 1.08 | 1.21 | 1.35 | 0.84 | 1.22 | 0.78 |
Diesel h | L/t cane | 1.86 | 0.74 | 3.66 | 3.18 | 4.17 | X g | 4.23 |
(b) Soybean | ||||||||
Parameters | Unit | Brazil | Mato Grosso | |||||
Agri-footprint a | BioGrace b | Res 758 d | This study i | Cerri et al. j | Ecoinvent c | This study i | ||
Yield | t soy/ha | 3.11 | 2.80 | - | 3.34 | 3.13 | 3.36 | 3.36 |
Limestone | kg/t soy | 128.60 | - | 249.00 | 149.80 | 140.26 | 77.60 | 148.98 |
Synthetic N fertilizers | kg N/t soy | 2.65 | 2.86 | 2.80 | 4.74 | 2.24 | 5.41 | 5.75 |
Synthetic P2O5 fertilizers | kg P2O5/t soy | 26.66 | 23.59 | 27.20 | 28.26 | 24.92 | 35.24 | 32.27 |
Synthetic K2O fertilizers | kg K2O/t soy | 26.00 | 22.16 | 32.70 | 22.85 | 26.52 | 26.40 | 22.35 |
Diesel h | L/t soy | 26.17 | 20.93 | 10.70 | 11.23 | 8.63 | 9.83 | 10.52 |
(c) Corn | ||||||||
Parameters | Unit | Brazil | Rio Grande do Sul (1st Crop) | Mato Grosso (2nd Crop) | ||||
Agri-footprint a | Res 758 d | This study i (1st Crop) | Ecoinvent c | This study i | Ecoinvent c | This study i | ||
Yield | t corn/ha | 5.15 | - | 7.26 | 7.26 | 7.26 | 6.30 | 6.30 |
Limestone | kg N/t corn | 77.67 | 42.30 | 61.76 | - | 68.87 | 35.00 | 80.90 |
Synthetic N fertilizers | kg N/t corn | 12.76 | 12.60 | 18.23 | 15.78 | 15.36 | 12.55 | 12.52 |
Synthetic P2O5 fertilizers | kg P2O5/t corn | 6.85 | 10.90 | 13.57 | 16.84 | 16.50 | 9.36 | 8.59 |
Synthetic K2O fertilizers | kg K2O/t corn | 7.47 | 11.20 | 13.66 | 10.80 | 11.02 | 7.80 | 8.06 |
Diesel h | L/t corn | 18.39 | 4.80 | 4.82 | 5.34 | 5.70 | 4.70 | 4.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, L.G.; Ramos, N.P.; Pighinelli, A.L.M.T.; Novaes, R.M.L.; Seabra, J.E.A.; Debiasi, H.; Hirakuri, M.H.; Folegatti, M.I.S. State-Level Inventories and Life Cycle GHG Emissions of Corn, Soybean, and Sugarcane Produced in Brazil. Sustainability 2025, 17, 8482. https://doi.org/10.3390/su17188482
Pereira LG, Ramos NP, Pighinelli ALMT, Novaes RML, Seabra JEA, Debiasi H, Hirakuri MH, Folegatti MIS. State-Level Inventories and Life Cycle GHG Emissions of Corn, Soybean, and Sugarcane Produced in Brazil. Sustainability. 2025; 17(18):8482. https://doi.org/10.3390/su17188482
Chicago/Turabian StylePereira, Lucas G., Nilza Patrícia Ramos, Anna Leticia M. T. Pighinelli, Renan M. L. Novaes, Joaquim E. A. Seabra, Henrique Debiasi, Marcelo H. Hirakuri, and Marília I. S. Folegatti. 2025. "State-Level Inventories and Life Cycle GHG Emissions of Corn, Soybean, and Sugarcane Produced in Brazil" Sustainability 17, no. 18: 8482. https://doi.org/10.3390/su17188482
APA StylePereira, L. G., Ramos, N. P., Pighinelli, A. L. M. T., Novaes, R. M. L., Seabra, J. E. A., Debiasi, H., Hirakuri, M. H., & Folegatti, M. I. S. (2025). State-Level Inventories and Life Cycle GHG Emissions of Corn, Soybean, and Sugarcane Produced in Brazil. Sustainability, 17(18), 8482. https://doi.org/10.3390/su17188482