The Dual-Driven Mechanism of “Value and Need” Influencing Consumers’ Continuous Purchase Behavior in Blind Box Consumption
Abstract
1. Introduction
2. Literature Review
2.1. Blind Box Features
2.2. Perceived Value and Needs
2.3. S-O-R (Stimulus-Organism-Response) Theoretical Model
3. Research Hypotheses and Models
3.1. Research Hypothesis
3.1.1. Characteristics of Blind Box Products
3.1.2. Blind Box Marketing Strategies
3.1.3. Perceived Value and Perceived Needs
3.2. The Consumer Sustainable Consumption Theoretical Model of Blind Box Products Based on the S-O-R Model
3.3. Questionnaire Design
3.4. Informed Consent
4. Empirical Research
4.1. Sample Demographic Characteristics
4.2. Reliability and Validity Analysis
4.3. Model Testing
4.4. Path Hypothesis Analysis
5. Discussion
6. Conclusions and Suggestions
6.1. Theoretical Contributions
6.2. Practical Contributions
6.3. Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Zhou, H.; Qin, J. Research on the effect of uncertain rewards on impulsive purchase intention of blind box products. Front. Behav. Neurosci. 2022, 16, 946337. [Google Scholar] [CrossRef]
- Chen, Z. Exploring the affective factors encouraging engagement with blind boxes consumption. BCP Bus. Manag. 2022, 18, 137–147. [Google Scholar] [CrossRef]
- Sun, F. Why Consumers Love Blind Boxes. Adv. Econ. Manag. Political Sci. 2024, 97, 289–297. [Google Scholar] [CrossRef]
- Loewenstein, G. The psychology of curiosity: A review and reinterpretation. Psychol. Bull. 1994, 116, 75–98. [Google Scholar] [CrossRef]
- He, H.; Feng, W. Statistical Studies on the Influencing Factors of College Students’ Mystery Box Consumption Based on Path Analysis: A Case Study of Guangzhou. In Proceedings of the 2nd International Conference on Big Data Economy and Digital Management, Changsha, China, 6–8 January 2023. [Google Scholar]
- Ge, T. The Role of Emotional Value of Goods in Guiding Consumer Behaviour: A Case Study Based on Pop Mart. Lect. Notes Educ. Psychol. Public Media 2024, 54, 267–277. [Google Scholar] [CrossRef]
- Weilbächer, R.; Kraemer, P.; Gluth, S. The Reflection Effect in Memory-Based Decisions. Psychol. Sci. 2020, 31, 1439–1451. [Google Scholar] [CrossRef] [PubMed]
- Kahneman, D.; Knetsch, J.L.; Thaler, R.H. Anomalies: The Endowment Effect, Loss Aversion, and Status Quo Bias. J. Econ. Perspect. 1991, 5, 193–206. [Google Scholar] [CrossRef]
- Dai, T. Analysis of Product Characteristics and Marketing Strategies of Blind Box Based on the Study of Consumer Propensity Take Pop Mart as an Example. Lect. Notes Educ. Psychol. Public Media 2024, 54, 106–111. [Google Scholar] [CrossRef]
- Tait, V.R. Loss Aversion and Perspective Taking in the Sunk-Cost Fallacy. Ph.D Thesis, Brigham Young University, Provo, UT, USA, 2015. [Google Scholar]
- Adam, M.; Roethke, K.; Benlian, A. Gamblified digital product offerings: An experimental study of loot box menu designs. Electron. Mark. 2021, 32, 971–986. [Google Scholar] [CrossRef]
- Jane Pan, H.H.; Bowman, S.R.; Feng, S. Spontaneous Reward Hacking in Iterative Self-Refinement. arXiv 2024. [Google Scholar] [CrossRef]
- Xiaolin, C. Research on Blind Boxes Consumers—Taking Pop Mart as an Example. In Proceedings of the 2021 International Conference on Economic Development and Business Culture (ICEDBC 2021), Xiamen, China, 12 July 2021; pp. 21–26. [Google Scholar]
- Till, C. Architects of time: Labouring on digital futures. Thesis Elev. 2013, 118, 33–47. [Google Scholar] [CrossRef]
- Huang, J. The Impact of Blind Box Economy on Consumer Behavior in Social Media Networks. Highlights Bus. Econ. Manag. 2024, 41, 613–619. [Google Scholar] [CrossRef]
- Zhu, G.; He, Y.; Zhen, R.; Gong, J. A Research on the “Mystery Box Economy” from the Perspective of the Play Theory of Mass Communication—A Case Study of Pop Mart. In Proceedings of the 2nd International Conference on Information Economy, Data Modeling and Cloud Computing, Nanchang, China, 2–4 June 2023. [Google Scholar]
- Zhang, Z. Research on Blind Box and its Marketing Strategy. In Proceedings of the 2021 International Conference on Economic Development and Business Culture (ICEDBC 2021), Xiamen, China, 18–20 June 2021. [Google Scholar]
- Wang, Y. Analysis on Marketing Strategy of “Blind Box Economy”—Taking POP Mart as an Example. Adv. Econ. Manag. Political Sci. 2023, 10, 318–323. [Google Scholar] [CrossRef]
- Whyke, T.; Chen, Z.; Lopez-Mugica, J.; Wang, A. Unboxing the Chinese Blind Boxes among China’s grown-up missing children: Probabilistic and elastic prosumption through mediated collection, exchange and resale of figurines. Glob. Media China 2022, 8, 93–111. [Google Scholar] [CrossRef]
- Liu, Y. A Comprehensive Review of the Blind Box Economy. Adv. Econ. Manag. Political Sci. 2024, 86, 116–121. [Google Scholar] [CrossRef]
- Jiang, R. Analysis of Trend Culture from the Perspective of Social Currency:--Taking the POP MART as an Example. BCP Bus. Manag. 2022, 18, 183–188. [Google Scholar] [CrossRef]
- Zhang, S. Analysis and Enlightenment of Blind Box Culture “Go Viral”. J. Educ. Humanit. Soc. Sci. 2024, 31, 101–106. [Google Scholar] [CrossRef]
- Zhan, L.; Xiong, Y. Research on the Influence Mechanism of Blind Box Product Characteristics on Consumers’ Purchase Intention. In E-Business. New Challenges and Opportunities for Digital-Enabled Intelligent Future; Springer: Cham, Switzerland, 2024; pp. 225–236. [Google Scholar]
- Liu, J. Investigation and Research on Consumer Psychology of Blind Box Consumers: Taking “POP MART” Consumers as an Example. Front. Bus. Econ. Manag. 2022, 6, 138–141. [Google Scholar] [CrossRef]
- Deng, X. Emotional design in blind box for reference and development of cultural and creative products. Highlights Art Des. 2022, 1, 6–10. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, T. The effect of blind box product uncertainty on consumers’ purchase intention: The mediating role of perceived value and the moderating role of purchase intention. The effect of blind box product uncertainty on consumers’ purchase intention: The mediating role of perceived value and the moderating role of purchase intention. Front. Psychol. 2022, 13, 946527. [Google Scholar] [CrossRef]
- Mao-Hua, L. Exploring Short Video Application Users’ Visit Intention: Applying the Stimulus-Organism-Response Model. Asian Soc. Sci. 2019, 15, 8. [Google Scholar] [CrossRef]
- Donovan, R.J.; Rossiter, J.R.; Marcoolyn, G.; Nesdale, A. Store atmosphere and purchasing behavior. J. Retail. 1994, 70, 283–294. [Google Scholar] [CrossRef]
- Kim, M.; Lee, C.-K.; Jung, T. Exploring Consumer Behavior in Virtual Reality Tourism Using an Extended Stimulus-Organism-Response Model. J. Travel Res. 2020, 59, 69–89. [Google Scholar] [CrossRef]
- Teng, T.; Li, H.; Fang, Y.; Shen, L. Understanding the differential effectiveness of marketer versus user-generated advertisements in closed social networking sites: An empirical study of WeChat. Internet Res. 2022. [Google Scholar] [CrossRef]
- Gabriella, D.; Hardjanto, R.; Mawaridi, M.; Harits, M.; Purnami, L. Mindful Consumption Behavior on Second-Hand Fashion Products: Intervariable Influence Analysis of Stimulus-Organism-Response (S-O-R) Model. ASEAN Mark. J. 2021, 13, 6. [Google Scholar] [CrossRef]
- Liu, F.; Lyu, L.; Yang, K. Analysis of Success Factors and Developing Potential of Pop Mart. In Proceedings of the 2021 3rd International Conference on Economic Management and Cultural Industry (ICEMCI 2021), Guangzhou, China, 22–24 October 2021. [Google Scholar] [CrossRef]
- Liu, V. Willingness to Pay for Uncertainty among Consumers. In Proceedings of the 4th International Symposium on Frontiers of Economics and Management Science (FEMS 2023), Macao, China, 15–16 April 2023; Volume 169. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y.; Yang, C.; Chen, J.; Wei, W.; Miao, W.; Sun, H.; Gu, C. Is there any way to increase consumers’ purchase intention regarding surplus food blind-boxes? An exploratory study. BMC Psychol. 2024, 12, 103. [Google Scholar] [CrossRef]
- Bhattarcharya, C.; Sen, S. Consumer-Company Identification: A Framework for Understanding Consumers’ Relationships with Companies. J. Mark. 2003, 67, 76–88. [Google Scholar] [CrossRef]
- Ratyuhono Linggarnusantra, P.; Ananda Sabil, H.; Margono, S.; Agung, Y. The Implication of Perceived Value to Continuance Intention to Use among Mobile Payment Users in Indonesia. In Proceedings of the 4th Social and Humanities Research Symposium (SoRes 2021), Bandung, Indonesia, 23 April 2022; pp. 564–568. [Google Scholar]
- Wahyuningsih, W. Customer Value, Satisfaction and Behavioral Intentions: The Effects of Consumer Search Behavior. ASEAN Mark. J. 2013, 3, 1. [Google Scholar] [CrossRef]
- Jackson, D.L. Revisiting Sample Size and Number of Parameter Estimates: Some Support for the N:q Hypothesis. Struct. Equ. Model. Multidiscip. J. 2003, 10, 128–141. [Google Scholar] [CrossRef]
- Manterola, C.; Grande, L.; Otzen, T.; García, N.; Salazar, P.; Quiroz, G. Confiabilidad, precisión o reproducibilidad de las mediciones. Métodos de valoración, utilidad y aplicaciones en la práctica clínica. Rev. Chil. Infectología 2018, 35, 680–688. [Google Scholar]
- Lisawadi, S.; Ahmed, S.E.; Reangsephet, O.; Shah, M.K.A. Simultaneous estimation of Cronbach’s alpha coefficients. Commun. Stat.-Theory Methods 2019, 48, 3236–3257. [Google Scholar] [CrossRef]
- Willis, C.E.; Perlack, R.D. Multicollinearity: Effects, Symptoms, and Remedies. J. Northeast. Agric. Econ. Counc. 1978, 7, 55–61. [Google Scholar] [CrossRef]
- Alhamami, M.; Alduais, A.; Qasem, F.; Alasmari, M. Psychometric Features of the Arabic Version of the Children’s Communication Checklist (CCC2). J. Multidiscip. Healthc. 2024, 17, 3247–3264. [Google Scholar] [CrossRef] [PubMed]
- Bria, M.; Djakfar, L.; Wicaksono, A. The impacts of mediating the work environment on the mode choice in work trips. Open Eng. 2021, 11, 592–605. [Google Scholar] [CrossRef]
- Gorsuch, R.L. Using Bartlett’s Significance Test to Determine the Number of Factors to Extract. Educ. Psychol. Meas. 1973, 33, 361–364. [Google Scholar] [CrossRef]
- Tobias, S.; Carlson, J.E. Brief Report: Bartlett’s Test of Sphericity and Chance Findings in Factor Analysis. Multivar. Behav. Res. 1969, 4, 375–377. [Google Scholar] [CrossRef]
- Kashiwagi, S. A new proposition on number of factors and communalities in multiple-factor analysis. Jpn. Psychol. Res. 1964, 6, 173–175. [Google Scholar] [CrossRef]
- Schmitt, T.A.; Sass, D.A.; Chappelle, W.; Thompson, W. Selecting the “Best” Factor Structure and Moving Measurement Validation Forward: An Illustration. J. Personal. Assess. 2018, 100, 345–362. [Google Scholar] [CrossRef]
- Churchill, G.A. A Paradigm for Developing Better Measures of Marketing Constructs. J. Mark. Res. 1979, 16, 64–73. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Shi, D.; Maydeu-Olivares, A.; Rosseel, Y. Assessing Fit in Ordinal Factor Analysis Models: SRMR vs. RMSEA. Struct. Equ. Model. Multidiscip. J. 2020, 27, 1–15. [Google Scholar] [CrossRef]
- Bader, M.; Moshagen, M. Assessing the Fitting Propensity of Factor Models. Psychol. Methods 2025, 30, 254–270. [Google Scholar] [CrossRef]
- Japutra, A.; Kumar Roy, S.; Pham, T.-A.N. Relating brand anxiety, brand hatred and obsess: Moderating role of age and brand affection. J. Retail. Consum. Serv. 2021, 60, 102465. [Google Scholar] [CrossRef]
- Gowen, A.A.; Downey, G.; Esquerre, C.; O’Donnell, C.P. Preventing over-fitting in PLS calibration models of near-infrared (NIR) spectroscopy data using regression coefficients. J. Chemom. 2011, 25, 375–381. [Google Scholar] [CrossRef]
- Kock, N. A Note on How to Conduct a Factor-Based PLS-SEM Analysis. Int. J. E-Collab. (IJeC) 2015, 11, 1–9. [Google Scholar] [CrossRef]
- Huang, D. Research on the influence of IP co-branding on consumers’ purchase intention-mediated by consumers’ perceived value. In Proceedings of the 2023 International Conference on Digital Economy and Business Administration (ICDEBA 2023), Hangzhou, China, 19 November 2023; Volume 181. [Google Scholar] [CrossRef]
- Wang, E.S.-T.; Li, F.-Y. Effects of needs-based motivations on attitudes and repurchase intention of energy-efficient products. Energy Effic. 2021, 14, 48. [Google Scholar] [CrossRef]
- Oyserman, D. Identity-based motivation and consumer behavior. J. Consum. Psychol. 2009, 19, 276–279. [Google Scholar] [CrossRef]
- Legkauskas, V. Žmogaus socialinės motyvacijos pagrindai. Sociologija. Mintis Veiksmas 2004, 14, 53–63. [Google Scholar] [CrossRef]
- Brieger, S. Social Identity and Environmental Concern: The Importance of Contextual Effects. Environ. Behav. 2018, 51, 828–855. [Google Scholar] [CrossRef]
- Chen, R.; Perry, P.; Boardman, R.; McCormick, H. Augmented reality in retail: A systematic review of research foci and future research agenda. Int. J. Retail Distrib. Manag. 2021, 50, 498–518. [Google Scholar] [CrossRef]
- Sheth, J.N.; Newman, B.I.; Gross, B.L. Why we buy what we buy: A theory of consumption values. J. Bus. Res. 1991, 22, 159–170. [Google Scholar] [CrossRef]
- Belk, R. Possessions as the Extended Self. J. Consum. Res. 1988, 15, 139–168. [Google Scholar] [CrossRef]
Construct | Items | Source |
---|---|---|
IP characteristics (IP) | IC1: I like the IP characters (such as anime and film characters) in the blind boxes. IC2: The IP in the blind boxes is unique and attracts me to purchase them. IC3: I will buy the corresponding blind box because of my love for a certain IP. | [1,9] |
Economic attribute (EA) | EA1: I think blind boxes have some potential for collection appreciation. EA2: The price of the blind box matches its practical value. EA3: After purchasing a blind box, if I can get a rare version, I will feel that it is “worth the money”. | [23] |
Social attribute (SA) | SA1: Purchasing blind boxes allows me to integrate into the “blind box enthusiasts” circle around me. SA2: Discussing the styles drawn in the blind boxes with others can enhance our communication. SA3: Sharing the opening video / pictures of the blind box on social platforms can attract more attention. | [32] |
Fun attribute (FA) | FA1: The anticipation before opening the blind box makes me feel very interesting. FA2: The random style design of the blind box increases the fun of purchasing. FA3: The process of collecting blind boxes can make me feel relaxed. | [22] |
Nondeterminacy (NO) | NO1: The uncertainty of “not knowing which version to get” makes me want to purchase more. NO2: The “low probability of hidden versions” of the blind box actually stimulates my desire to purchase. NO3: The merchants not disclosing the specific probability of winning a rare version makes this ambiguity more appealing to me, making me want to try. | [26,33] |
Satisfy the experience (SE) | SE1: The online and offline pop-up stores / themed activities of the blind box can enhance my consumption experience. SE2: The opening experience of the blind box after receiving it exceeded my expectations. SE3: The promotion of new blind box information by the merchants meets my need for “novelty”. | [2] |
Identity (ID) | ID1: Purchasing a certain type of blind box makes me feel like I belong to the “trendy enthusiast” group. ID2: The brand concept of the blind box aligns with my values, making me willing to support it. ID3: Having common topics with other blind box consumers makes me feel recognized. | [9] |
Perceptive value (PV) | PV1: The joy brought by purchasing a blind box exceeds its price. PV2: The blind box meets my emotional and entertainment needs, making it valuable. PV3: From the perspectives of collection, social interaction, etc., the blind box is meaningful to me. | [36] |
Perceived Needs (PN) | PN1: I think I have an emotional need to continue purchasing blind boxes. PN2: The blind box has become an indispensable part of my daily consumption. PN3: I will actively follow new blind box products because I need to satisfy my collection desire. | [37] |
Continuous purchasing behavior (CPB) | CPB1: I will continue to purchase blind boxes of this brand/series. CPB2: I will recommend purchasing these blind boxes to others. CPB5: I plan to collect this type of blind box product for a long time. | [34] |
Sample | Category | Number | Percentage% |
---|---|---|---|
Gender | Male | 296 | 51.1 |
Female | 283 | 48.9 | |
Age | 18–24 | 70 | 12.1 |
25–34 | 148 | 25.6 | |
35–44 | 211 | 36.4 | |
45–54 | 100 | 17.3 | |
Over 55 | 50 | 8.6 | |
Occupation | Student | 40 | 6.9 |
Freelance or self-employed | 411 | 71.0 | |
Public officials or public institutions | 58 | 9.7 | |
Others | 72 | 12.4 | |
Frequency of purchasing blind box products | More than once a day | 28 | 4.8 |
Once a day | 107 | 18.5 | |
Once a week | 221 | 38.2 | |
1 to 2 times a month | 165 | 28.5 | |
Less than or equal to once a month | 296 | 51.1 |
Dimension | Items | Collinearity Statistics (VIF) | Corrected Item-to-Total Correlation | Cronbach’s α if Item Deleted | Cronbach’s α |
---|---|---|---|---|---|
IC | IC1 | 1.779 | 0.662 | 0.756 | 0.817 |
IC2 | 1.857 | 0.679 | 0.739 | ||
IC3 | 1.804 | 0.667 | 0.751 | ||
EA | EA1 | 1.881 | 0.680 | 0.736 | 0.816 |
EA2 | 1.925 | 0.690 | 0.725 | ||
EA3 | 1.677 | 0.635 | 0.781 | ||
SA | SA1 | 1.512 | 0.582 | 0.721 | 0.772 |
SA2 | 1.659 | 0.629 | 0.668 | ||
SA3 | 1.601 | 0.609 | 0.690 | ||
FA | FA1 | 1.891 | 0.686 | 0.760 | 0.827 |
FA2 | 1.842 | 0.676 | 0.770 | ||
FA3 | 1.918 | 0.692 | 0.755 | ||
NO | NO1 | 1.672 | 0.634 | 0.767 | 0.811 |
NO2 | 1.869 | 0.681 | 0.719 | ||
NO3 | 1.809 | 0.666 | 0.734 | ||
SE | SE1 | 1.606 | 0.614 | 0.698 | 0.777 |
SE2 | 1.604 | 0.614 | 0.698 | ||
SE3 | 1.595 | 0.611 | 0.701 | ||
ID | ID1 | 1.695 | 0.640 | 0.745 | 0.805 |
ID2 | 1.764 | 0.658 | 0.727 | ||
ID3 | 1.759 | 0.657 | 0.728 | ||
PV | PV1 | 1.614 | 0.615 | 0.747 | 0.795 |
PV2 | 1.812 | 0.669 | 0.689 | ||
PV3 | 1.682 | 0.632 | 0.728 | ||
PN | PN1 | 1.719 | 0.645 | 0.774 | 0.817 |
PN2 | 1.810 | 0.663 | 0.755 | ||
PN3 | 1.975 | 0.701 | 0.714 | ||
CPB | CPB1 | 1.630 | 0.621 | 0.770 | 0.807 |
CPB2 | 1.824 | 0.668 | 0.723 | ||
CPB3 | 1.857 | 0.677 | 0.714 |
Dimension | Items | KMO | Bartlett Sphere Test | Factor Loading | Commonality | Eigenvalue | Total Variation Explained% |
---|---|---|---|---|---|---|---|
IC | IC1 | 0.718 | 0 | 0.851 | 0.724 | 2.197 | 73.224 |
IC2 | 0.862 | 0.743 | |||||
IC3 | 0.854 | 0.730 | |||||
EA | EA1 | 0.713 | 0 | 0.863 | 0.744 | 2.195 | 73.161 |
EA2 | 0.869 | 0.755 | |||||
EA3 | 0.834 | 0.695 | |||||
SA | SA1 | 0.697 | 0 | 0.811 | 0.658 | 2.062 | 68.719 |
SA2 | 0.844 | 0.712 | |||||
SA3 | 0.831 | 0.691 | |||||
FA | FA1 | 0.722 | 0 | 0.863 | 0.745 | 2.231 | 74.350 |
FA2 | 0.857 | 0.734 | |||||
FA3 | 0.867 | 0.751 | |||||
NO | NO1 | 0.712 | 0 | 0.835 | 0.697 | 2.176 | 72.531 |
NO2 | 0.864 | 0.747 | |||||
NO3 | 0.856 | 0.732 | |||||
SE | SE1 | 0.703 | 0 | 0.833 | 0.693 | 2.075 | 69.163 |
SE2 | 0.832 | 0.692 | |||||
SE3 | 0.830 | 0.689 | |||||
ID | ID1 | 0.713 | 0 | 0.841 | 0.707 | 2.158 | 71.924 |
ID2 | 0.852 | 0.726 | |||||
ID3 | 0.851 | 0.725 | |||||
PV | PV1 | 0.705 | 0 | 0.827 | 0.684 | 2.130 | 70.987 |
PV2 | 0.862 | 0.742 | |||||
PV3 | 0.839 | 0.704 | |||||
PN | PN1 | 0.713 | 0 | 0.840 | 0.705 | 2.198 | 73.269 |
PN2 | 0.853 | 0.727 | |||||
PN3 | 0.875 | 0.766 | |||||
CPB | CPB1 | 0.709 | 0 | 0.828 | 0.685 | 2.166 | 72.189 |
CPB2 | 0.858 | 0.736 | |||||
CPB3 | 0.863 | 0.745 |
Dimension | Items | Unstandardized Factor Loading | Standardize Factor Loading | SE | p-Value | AVE | CR |
---|---|---|---|---|---|---|---|
IC | IC1 | 1 | 0.786 | - | - | 0.598 | 0.817 |
IC2 | 1.007 | 0.770 | 0.048 | 0 | |||
IC3 | 0.964 | 0.763 | 0.047 | 0 | |||
EA | EA1 | 1 | 0.779 | - | - | 0.600 | 0.818 |
EA2 | 1.028 | 0.796 | 0.048 | 0 | |||
EA3 | 0.979 | 0.747 | 0.050 | 0 | |||
SA | SA1 | 1 | 0.699 | - | - | 0.532 | 0.773 |
SA2 | 1.103 | 0.768 | 0.061 | 0 | |||
SA3 | 1.009 | 0.719 | 0.059 | 0 | |||
FA | FA1 | 1 | 0.789 | - | - | 0.615 | 0.828 |
FA2 | 0.965 | 0.751 | 0.048 | 0 | |||
FA3 | 1.066 | 0.811 | 0.048 | 0 | |||
NO | NO1 | 1 | 0.738 | - | - | 0.589 | 0.811 |
NO2 | 1.110 | 0.803 | 0.055 | 0 | |||
NO3 | 1.055 | 0.760 | 0.056 | 0 | |||
SE | SE1 | 1 | 0.746 | - | - | 0.537 | 0.777 |
SE2 | 0.913 | 0.722 | 0.050 | 0 | |||
SE3 | 0.941 | 0.731 | 0.051 | 0 | |||
ID | ID1 | 1 | 0.753 | - | - | 0.579 | 0.805 |
ID2 | 1.031 | 0.759 | 0.053 | 0 | |||
ID3 | 1.041 | 0.771 | 0.052 | 0 | |||
PV | PV1 | 1 | 0.719 | - | - | 0.567 | 0.797 |
PV2 | 1.094 | 0.793 | 0.056 | 0 | |||
PV3 | 1.020 | 0.745 | 0.057 | 0 | |||
PN | PN1 | 1 | 0.780 | - | - | 0.599 | 0.818 |
PN2 | 0.875 | 0.749 | 0.045 | 0 | |||
PN3 | 0.970 | 0.793 | 0.046 | 0 | |||
CPB | CPB1 | 1 | 0.738 | - | - | 0.584 | 0.808 |
CPB2 | 1.065 | 0.771 | 0.055 | 0 | |||
CPB3 | 1.062 | 0.783 | 0.056 | 0 |
Latent Variable | CPB | EA | FA | IC | ID | NO | PV | SA | SE | SP |
---|---|---|---|---|---|---|---|---|---|---|
CPB | ||||||||||
EA | 0.801 | |||||||||
FA | 0.805 | 0.650 | ||||||||
IC | 0.764 | 0.654 | 0.614 | |||||||
ID | 0.735 | 0.602 | 0.614 | 0.560 | ||||||
NO | 0.798 | 0.633 | 0.648 | 0.573 | 0.602 | |||||
PV | 0.764 | 0.659 | 0.680 | 0.595 | 0.615 | 0.659 | ||||
SA | 0.737 | 0.608 | 0.625 | 0.607 | 0.580 | 0.628 | 0.625 | |||
SE | 0.729 | 0.585 | 0.574 | 0.537 | 0.559 | 0.584 | 0.590 | 0.564 | ||
SP | 0.795 | 0.590 | 0.644 | 0.599 | 0.612 | 0.606 | 0.631 | 0.585 | 0.562 |
Latent Variable | CPB | EA | FA | IC | ID | NO | PV | SA | SE | PN |
---|---|---|---|---|---|---|---|---|---|---|
CPB | 0.850 | |||||||||
EA | 0.801 | 0.855 | ||||||||
FA | 0.814 | 0.823 | 0.862 | |||||||
IC | 0.805 | 0.818 | 0.820 | 0.856 | ||||||
ID | 0.794 | 0.823 | 0.825 | 0.821 | 0.848 | |||||
NO | 0.800 | 0.809 | 0.823 | 0.798 | 0.814 | 0.852 | ||||
PV | 0.795 | 0.819 | 0.817 | 0.812 | 0.804 | 0.809 | 0.843 | |||
SA | 0.789 | 0.793 | 0.801 | 0.806 | 0.800 | 0.801 | 0.804 | 0.829 | ||
SE | 0.785 | 0.798 | 0.800 | 0.791 | 0.800 | 0.796 | 0.787 | 0.788 | 0.832 | |
PN | 0.804 | 0.796 | 0.799 | 0.812 | 0.807 | 0.809 | 0.792 | 0.770 | 0.781 | 0.856 |
Common Indices | d-ULS | d-G | SRMR | NFI |
---|---|---|---|---|
Criteria | <0.95 | <0.95 | <0.08 | >0.8 |
Values | 0.779 | 0.643 | 0.041 | 0.845 |
Hypothesis | Path | β Co-Efficient | T Statistics | p Values | Decision |
---|---|---|---|---|---|
H1a | IC → PV | 0.153 | 3.533 | *** | Accept |
H1b | IC → PN | 0.216 | 5.109 | *** | Accept |
H1c | IC → CPB | 0.116 | 2.822 | *** | Accept |
H2a | EA → PV | 0.184 | 4.290 | *** | Accept |
H2b | EA → PN | 0.113 | 2.776 | ** 0.006 | Accept |
H2c | EA → CPB | 0.102 | 2.266 | * 0.014 | Accept |
H3a | SA → PV | 0.156 | 3.521 | *** | Accept |
H3b | SA → PN | 0.041 | 0.914 | ns, 0.361 | Not Accept |
H3c | SA → CPB | 0.105 | 2.562 | ** 0.010 | Accept |
H4a | FA → PV | 0.153 | 3.781 | *** | Accept |
H4b | FA → PN | 0.105 | 2.270 | 0.023 | Accept |
H4c | FA → CPB | 0.153 | 3.460 | *** 0.001 | Accept |
H5a | NO → PV | 0.149 | 3.904 | *** | Accept |
H5b | NO → PN | 0.208 | 4.456 | *** | Accept |
H5c | NO → CPB | 0.100 | 2.203 | * 0.028 | Accept |
H6a | SE → PV | 0.087 | 2.262 | * 0.024 | Accept |
H6b | SE → PN | 0.110 | 2.678 | ** 0.007 | Accept |
H6c | SE → CPB | 0.093 | 2.222 | * 0.026 | Accept |
H7a | ID → PV | 0.086 | 2.075 | * 0.038 | Accept |
H7b | ID → PN | 0.161 | 3.442 | *** 0.001 | Accept |
H7c | ID → CPB | 0.043 | 0.958 | ns, 0.338 | Not Accept |
H8 | PV → CPB | 0.084 | 2.011 | * 0.044 | Accept |
H9 | PN → CPB | 0.171 | 4.014 | ** 0.010 | Accept |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Mu, J.; Yang, C. The Dual-Driven Mechanism of “Value and Need” Influencing Consumers’ Continuous Purchase Behavior in Blind Box Consumption. Sustainability 2025, 17, 8452. https://doi.org/10.3390/su17188452
Zhou L, Mu J, Yang C. The Dual-Driven Mechanism of “Value and Need” Influencing Consumers’ Continuous Purchase Behavior in Blind Box Consumption. Sustainability. 2025; 17(18):8452. https://doi.org/10.3390/su17188452
Chicago/Turabian StyleZhou, Linglin, Juncheng Mu, and Chun Yang. 2025. "The Dual-Driven Mechanism of “Value and Need” Influencing Consumers’ Continuous Purchase Behavior in Blind Box Consumption" Sustainability 17, no. 18: 8452. https://doi.org/10.3390/su17188452
APA StyleZhou, L., Mu, J., & Yang, C. (2025). The Dual-Driven Mechanism of “Value and Need” Influencing Consumers’ Continuous Purchase Behavior in Blind Box Consumption. Sustainability, 17(18), 8452. https://doi.org/10.3390/su17188452