Effect of a Corn Silage-Based Finishing Diet on Growth, Carcass Composition, Meat Quality, Methane Emissions and Carbon Footprint of Crossbred Angus Young Bulls
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Experimental Design
2.2. Gas Emissions Measurement
2.3. Slaughter and Meat Sample Collection
2.4. Prediction of Carcass Composition and Carcass Weight, Energy, and Protein Gain
2.5. Analytical Procedures
2.5.1. Feeds
2.5.2. Muscles, Subcutaneous and Inter-Muscular Adipose Tissue
2.6. Sensory Panel
2.7. Carbon Footprint Calculation
2.8. Statistical Analysis
3. Results
3.1. Feed Intake, Growth Performance, and Carcass Traits
3.2. Carcass Grading and Composition
3.3. CH4 and CO2 Production
3.4. Meat Quality
3.5. Fatty Acid Composition of Lean Meat and Adipose Tissue
3.6. Carbon Footprint
4. Discussion
4.1. Productive Performance
4.2. Carcass Composition
4.3. Methane Emissions
4.4. Meat Quality
4.5. Carbon Footprint
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Pathways Towards Lower Emissions—A Global Assessment of the Greenhouse Gas Emissions and Mitigation Options from Livestock Agrifood Systems; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.D.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; FAO: Rome, Italy, 2006; Available online: https://www.fao.org/3/a0701e/a0701e00.htm (accessed on 4 February 2025).
- Tedeschi, L.O.; Beauchemin, K.A. Galyean appreciation club review: A holistic perspective of the societal relevance of beef production and its impacts on climate change. J. Anim. Sci. 2023, 101, skad024. [Google Scholar] [CrossRef]
- Blaustein-Rejto, D.; Soltis, N.; Blomqvist, L. Carbon opportunity cost increases carbon footprint advantage of grain-finished beef. PLoS ONE 2023, 18, e0295035. [Google Scholar] [CrossRef]
- Haque, M.N. Dietary manipulation: A sustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol. 2018, 60, 15. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Giallongo, F.; Frederick, T.W.; Harper, M.T.; Weeks, H.L.; Branco, A.F.; Moate, P.J.; Deighton, M.H.; Williams, S.R.O.; et al. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc. Natl. Acad. Sci. USA 2015, 112, 10663–10668. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Alves, S.P.; Francisco, A.; Portugal, A.P.; Dentinho, M.T.; Almeida, J.; Da Silva, J.L.R.; Fialho, L.; Cachucho, L.; Jerónimo, E.; et al. Forage based diet as an alternative to a high concentrate diet for finishing young bulls—Effects on growth performance, greenhouse gas emissions and meat quality. Meat Sci. 2023, 198, 109098. [Google Scholar] [CrossRef]
- Instituto Nacional de Estatística (INE). Estatísticas Agrícolas 2020 [Dataset]. 2021. Available online: https://www.ine.pt/xurl/pub/437147278 (accessed on 5 January 2025).
- Keady, T.W.J.; Lively, F.O.; Kilpatrick, D.J.; Moss, B.W. Effects of replacing grass silage with either maize or whole-crop wheat silages on the performance and meat quality of beef cattle offered two levels of concentrates. Anim. Int. J. Anim. Biosci. 2007, 1, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Avilés, C.; Martínez, A.L.; Domenech, V.; Peña, F. Effect of feeding system and breed on growth performance, and carcass and meat quality traits in two continental beef breeds. Meat Sci. 2015, 107, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, K.A.; Ungerfeld, E.M.; Abdalla, A.L.; Alvarez, C.; Arndt, C.; Becquet, P.; Benchaar, C.; Berndt, A.; Mauricio, R.M.; McAllister, T.A.; et al. Invited review: Current enteric methane mitigation options. J. Dairy Sci. 2022, 105, 9297–9326. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Henry Janzen, H.; Little, S.M.; McAllister, T.A.; McGinn, S.M. Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study. Agric. Syst. 2010, 103, 371–379. [Google Scholar] [CrossRef]
- European Union. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Off. J. Eur. Union L 2010, 276, 33–79. [Google Scholar]
- Sauvant, D.; Perez, J.-M.; Tran, G. (Eds.) Tables of Composition and Nutritional Value of feed Materials: Pigs, Poultry, Cattle, Sheep, Goats, Rabbits, Horses and Fish; Brill, Wageningen Academic: Leiden, The Netherlands, 2004. [Google Scholar] [CrossRef]
- European Union Council regulation (EC) nº 1099/2009 of 24 September 2009 on the protection of animals at the time of killing. Off. J. Eur. Union L 2009, 303, 1–30.
- Commission Regulation (EC). Commission Regulation (EC) No 1249/2008 of 10 December 2008. Official Journal of the European Union. 2008. Available online: http://data.europa.eu/eli/reg/2008/1249/oj (accessed on 16 September 2025).
- Institutional Meat Purchase Specifications (IMPS). Fresh Beef Series 100; United States Department of Agriculture: Washington, DC, USA, 2014. [Google Scholar]
- Hankins, O.G.; Howe, P.E. Estimation of the Composition of Beef Carcasses and Cuts; (U.S. Department of Agriculture Technical Bulletin No. 926); U.S. Department of Agriculture: Washington, DC, USA, 1946. [Google Scholar]
- Agricultural Research Council. The Nutrient Requirements of Ruminant Livestock: Technical Review by an Agricultural Research Council Working Party; Commonwealth Agricultural Bureaux: Wallingford, UK, 1980. [Google Scholar]
- Clegg, K.M. The application of the anthrone reagent to the estimation of starch in cereals. J. Sci. Food Agric. 1956, 7, 40–44. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Sukhija, P.S.; Palmquist, D.L. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J. Agric. Food Chem. 1988, 36, 1202–1206. [Google Scholar] [CrossRef]
- ISO 1442:1997; Meat and Meat Products—Determination of Moisture Content. International Organization for Standardization: Geneva, Switzerland, 1997.
- NP 1614; Norma Portuguesa NP 1614 2002: Carne e produtos cárneos: Determinação do teor de humidade método de referência. Instituto Português de Qualidade: Caparica, Portugal, 2002.
- AOAC 920.39. 4.5.01 AOAC Official Method 920.39 Fat (Crude) or Ether Extract in Animal Feed. 1920. Available online: http://138.128.182.170/~aoxlabsgc/files/NORM-TC/005%20Grasa/Norma%20tecnica%20del%20analisis%20de%20grasa.pdf (accessed on 15 January 2025).
- NP 3441; Norma Portuguesa NP 3441 1990: Carnes, Derivados e Produtos Cárneos Determinação do pH Processo de Referência. Instituto Português de Qualidade: Caparica, Portugal, 2007.
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Alves, S.P.; Raundrup, K.; Cabo, Â.; Bessa, R.J.B.; Almeida, A.M. Fatty acid composition of muscle, adipose tissue and liver from muskoxen (Ovibos moschatus) living in west Greenland. PLoS ONE 2015, 10, e0145241. [Google Scholar] [CrossRef]
- Alves, S.P.; Bessa, R.J.B. Comparison of two gas–liquid chromatograph columns for the analysis of fatty acids in ruminant meat. J. Chromatogr. A 2009, 1216, 5130–5139. [Google Scholar] [CrossRef]
- Vahmani, P.; Rolland, D.C.; Gzyl, K.E.; Dugan, M.E.R. Non-conjugated cis/trans 18:2 in beef fat are mainly δ-9 desaturation products of trans-18:1 isomers. Lipids 2016, 51, 1427–1433. [Google Scholar] [CrossRef]
- American Meat Science Association (AMSA). AMSA Meat Color Measurement Guidelines; American Meat Science Association: Kearney, MO, USA, 2012; pp. 1–135. [Google Scholar]
- Cross, H.R.; Moen, R.M.; Stanfield, M.S. Training and testing of judges for sensory analysis of meat quality. Food Technol. 1978, 32, 48–54. [Google Scholar]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/37456.html (accessed on 6 January 2025).
- IPCC. Climate Change 2007: Synthesis Report: A Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- IPCC. Intergovernmental Panel on Climate Change. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- NIR. Portuguese National Inventory Report on Greenhouse Gases, 1990–2019. 2021. Available online: https://unfccc.int/documents/271508 (accessed on 16 September 2025).
- ECOALIM. An LCA Database for Animal Feed. 2014. Available online: https://eng-ecoalim.hub.inrae.fr/ (accessed on 6 January 2025).
- CarbonCloud Database. Explore Climate Footprints. Available online: https://apps.carboncloud.com/climatehub/ (accessed on 6 January 2025).
- Forbes, J.M. Voluntary Food Intake and Diet Selection in Farm Animals, 2nd ed.; CABI: Wallingford, UK, 2007. [Google Scholar]
- Cooke, D.; Monahan, F.; Brophy, P.; Boland, M. Comparison of concentrates or concentrates plus forages in a total mixed ration or discrete ingredient format: Effects on beef production parameters and on beef composition, colour, texture and fatty acid profile. Ir. J. Agric. Food Res. 2004, 43, 201–216. [Google Scholar]
- Johnson, C.O.L.E.; Huber, J.T.; King, K.J. Storage and utilization of brewers wet grains in diets for lactating dairy cows. J. Dairy Sci. 1987, 70, 98–107. [Google Scholar] [CrossRef]
- Valverde, P. Barley spent grain and its future. Cerveza Malta 1994, 22, 7–26. [Google Scholar]
- Zinn, R.A.; Barreras, A.; Owens, F.N.; Plascencia, A. Performance by feedlot steers and heifers: Daily gain, mature body weight, dry matter intake, and dietary energetics. J. Anim. Sci. 2008, 86, 2680–2689. [Google Scholar] [CrossRef]
- Martin, C.; Morgavi, D.; Doreau, M. Methane mitigation in ruminants: From microbe to the farm scale. Animal 2010, 4, 351–365. [Google Scholar] [CrossRef]
- Allen, V.G.; Fontenot, J.P.; Kelly, R.F.; Notter, D.R. Forage systems for beef production from conception to slaughter: III. Finishing systems. J. Anim. Sci. 1996, 74, 625–638. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Francisco, A.; Portugal, A.P.; Paulos, K.; Dentinho, M.T.; Almeida, J.M.; Regedor, L.; Fialho, L.; Cachucho, L.; Jerónimo, E.; et al. Effects of partial substitution of grain by agroindustrial byproducts and sunflower seed supplementation in beef haylage-based finisher diets on growth, in vitro methane production and carcass and meat quality. Meat Sci. 2022, 188, 108782. [Google Scholar] [CrossRef] [PubMed]
- Cooper, K.B.; Pillmore, S.L.; Kirkpatrick, T.J.; Wesley, K.R.; Lawrence, T.; Tennant, T.; Nichols, W.; Hutcheson, J. PSI-5 Comparison of ninth-tenth-eleventh rib section to carcass components in serially harvested steer carcasses. J. Anim. Sci. 2020, 98 (Suppl. 4), 273–274. [Google Scholar] [CrossRef]
- Koch, R.M.; Dikeman, M.E.; Lipsey, R.J.; Allen, D.M.; Crouse, J.D. Characterization of biological types of cattle—Cycle ii: iii. Carcass composition, quality and palatability. J. Anim. Sci. 1979, 49, 448–460. [Google Scholar] [CrossRef]
- Nour, A.Y.M.; Thonney, M.L. Technical note: Chemical composition of Angus and Holstein carcasses predicted from rib section composition. J. Anim. Sci. 1994, 72, 1239–1241. [Google Scholar] [CrossRef]
- McEvers, T.J.; May, N.D.; Reed, J.A.; Walter, L.J.; Hutcheson, J.P.; Lawrence, T.E. Estimation of carcass composition using rib dissection of calf-fed Holstein steers supplemented zilpaterol hydrochloride. J. Anim. Sci. 2018, 96, 1396–1404. [Google Scholar] [CrossRef]
- Duckett, S.K.; Neel, J.P.S.; Sonon, R.N., Jr.; Fontenot, J.P.; Clapham, W.M.; Scaglia, G. Effects of winter stocker growth rate and finishing system on: II. Ninth–tenth–eleventh-rib composition, muscle color, and palatability1. J. Anim. Sci. 2007, 85, 2691–2698. [Google Scholar] [CrossRef]
- Black, J.L.; Davison, T.M.; Box, I. Methane emissions from ruminants in Australia: Mitigation potential and applicability of mitigation strategies. Animals 2021, 11, 951. [Google Scholar] [CrossRef]
- Abbott, D.W.; Aasen, I.M.; Beauchemin, K.A.; Grondahl, F.; Gruninger, R.; Hayes, M.; Huws, S.; Kenny, D.A.; Krizsan, S.J.; Kirwan, S.F.; et al. Seaweed and seaweed bioactives for mitigation of enteric methane: Challenges and opportunities. Animals 2020, 10, 2432. [Google Scholar] [CrossRef]
- Goopy, J.P.; Donaldson, A.; Hegarty, R.; Vercoe, P.E.; Haynes, F.; Barnett, M.; Oddy, V.H. Low-methane yield sheep have smaller rumens and shorter rumen retention time. Br. J. Nutr. 2014, 111, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.E.; Waters, S.M.; Kenny, D.A.; Kirwan, S.F.; Conroy, S.; Kelly, A.K. Effect of divergence in residual methane emissions on feed intake and efficiency, growth and carcass performance, and indices of rumen fermentation and methane emissions in finishing beef cattle. J. Anim. Sci. 2021, 99, skab275. [Google Scholar] [CrossRef]
- Ryan, C.V.; Pabiou, T.; Purfield, D.C.; Conroy, S.; Kirwan, S.F.; Crowley, J.J.; Murphy, C.P.; Evans, R.D. Phenotypic relationship and repeatability of methane emissions and performance traits in beef cattle using a GreenFeed system. J. Anim. Sci. 2022, 100, skac349. [Google Scholar] [CrossRef] [PubMed]
- Blaxter, K.L. The Energy Metabolism of Ruminants; London Hutchinson: London, UK, 1967. [Google Scholar]
- Johnson, D.E.; Hill, T.M.; Carmean, B.R.; Branine, M.E.; Lodman, D.W.; Ward, G.M. Perspectives on Ruminant Methane Emission; Beef Program Report; Department of Animal Sciences, Colorado State University: Fort Collins, CO, USA, 1993. [Google Scholar]
- McDonald, P.; Greenhalgh, J.F.D.; Morgan, C.; Edwards, R.; Sinclair, L.; Wilkinson, R. Animal Nutrition; Pearson Education: London, UK, 2021. [Google Scholar]
- Kjeldsen, M.H.; Johansen, M.; Weisbjerg, M.R.; Hellwing, A.L.F.; Bannink, A.; Colombini, S.; Crompton, L.; Dijkstra, J.; Eugène, M.; Guinguina, A.; et al. Predicting CO2 production of lactating dairy cows from animal, dietary, and production traits using an international dataset. J. Dairy Sci. 2024, 107, 6771–6784. [Google Scholar] [CrossRef]
- Madsen, J.; Bjerg, B.S.; Hvelplund, T.; Weisbjerg, M.R.; Lund, P. Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants. Livest. Sci. 2010, 129, 223–227. [Google Scholar] [CrossRef]
- Mancini, R.A.; Hunt, M.C. Current research in meat color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef]
- Holman, B.W.B.; Mao, Y.; Coombs, C.E.O.; van de Ven, R.J.; Hopkins, D.L. Relationship between colorimetric (instrumental) evaluation and consumer-defined beef colour acceptability. Meat Sci. 2016, 121, 104–106. [Google Scholar] [CrossRef]
- Bidner, T.D.; Schupp, A.R.; Montgomery, R.E.; Carpenter, J.C., Jr. Acceptability of beef finished on all-forage, forage-plus-grain or high energy diets. J. Anim. Sci. 1981, 53, 1181–1187. [Google Scholar] [CrossRef]
- Schmutz, M.; Weindl, P.; Carrasco, S.; Bellof, G.; Schmidt, E. Effect of breed, grazing system and concentrate supplementation on fattening performance, carcass value and meat quality of steers. Arch. Anim. Breed. 2013, 56, 943–957. [Google Scholar] [CrossRef]
- Kim, T.-I.; Mayakrishnan, V.; Lim, D.-H.; Yeon, J.-H.; Baek, K.-S. Effect of fermented total mixed rations on the growth performance, carcass and meat quality characteristics of Hanwoo steers. Anim. Sci. J. 2018, 89, 606–615. [Google Scholar] [CrossRef]
- European Food Safety Authority. Annual Report 2012; EFSA: Parma, Italy, 2012. [Google Scholar]
- Bessa, R.J.B.; Alves, S.P.; Santos-Silva, J. Constraints and potentials for the nutritional modulation of the fatty acid composition of ruminant meat. Eur. J. Lipid Sci. Technol. 2015, 117, 1325–1344. [Google Scholar] [CrossRef]
- Vahmani, P.; Ponnampalam, E.N.; Kraft, J.; Mapiye, C.; Bermingham, E.N.; Watkins, P.J.; Proctor, S.D.; Dugan, M.E.R. Bioactivity and health effects of ruminant meat lipids: Invited review. Meat Sci. 2020, 165, 108114. [Google Scholar] [CrossRef] [PubMed]
- Alves, S.P.; Vahmani, P.; Mapiye, C.; McAllister, T.A.; Bessa, R.J.B.; Dugan, M.E.R. Trans-10 18:1 in ruminant meats: A review. Lipids 2021, 56, 539–562. [Google Scholar] [CrossRef]
- Glasser, F.; Doreau, M.; Maxin, G.; Baumont, R. Fat and fatty acid content and composition of forages: A meta-analysis. Anim. Feed Sci. Technol. 2013, 185, 19–34. [Google Scholar] [CrossRef]
- Bessa, R.J.B.; Portugal, P.V.; Mendes, I.A.; Santos-Silva, J. Effect of lipid supplementation on growth performance, carcass and meat quality and fatty acid composition of intramuscular lipids of lambs fed dehydrated lucerne or concentrate. Livest. Prod. Sci. 2005, 96, 185–194. [Google Scholar] [CrossRef]
- Griinari, J.M.; Bauman, D.E. Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. In Advances in Conjugated Linoleic Acid Research; Yurawecz, M.P., Mossoba, M.M., Kramer, J.K.G., Pariza, M.W., Nelson, G.J., Eds.; AOCS Press: Champaign, IL, USA, 2019. [Google Scholar]
- Aldai, N.; de Renobales, M.; Barron, L.J.R.; Kramer, J.K.G. What are the trans fatty acids issues in foods after discontinuation of industrially produced trans fats? Ruminant products, vegetable oils, and synthetic supplements. Eur. J. Lipid Sci. Technol. 2013, 115, 1378–1401. [Google Scholar] [CrossRef]
- O’Brian, D.; Shalloo, L. A Review of Livestock Methane Emission Factors (2016-CCRP-DS.11) EPA Research Report; Environmental Protection Agency. Johnstown Castle, Co.: Wexford, Ireland, 2021. [Google Scholar]
- Rotz, C.A.; Asem-Hiablie, S.; Dillon, J.; Bonifacio, H. Cradle-to-farm gate environmental footprints of beef cattle production in Kansas, Oklahoma, and Texas. J. Anim. Sci. 2015, 93, 2509–2519. [Google Scholar] [CrossRef] [PubMed]
- Berton, M.; Cesaro, G.; Gallo, L.; Pirlo, G.; Ramanzin, M.; Tagliapietra, F.; Sturaro, E. Environmental impact of a cereal-based intensive beef fattening system according to a partial life cycle assessment approach. Livest. Sci. 2016, 190, 81–88. [Google Scholar] [CrossRef]
Ingredient | ||||||
---|---|---|---|---|---|---|
Chemical Composition (% DM 1) | Control Concentrate 2 | TMR Concentrate 3 | GF Pelleted 4 | Maize Silage | Breer’s Spent Wet Grains | Straw |
Dry Matter (%) | 88 | 88.3 | 89 | 29.8 | 29.7 | 97.5 |
Crude Protein | 14.7 | 13.7 | 16.9 | 7.73 | 29.0 | - |
Ether Extract | 7.3 | 6.9 | 5.6 | - | - | - |
Crude Fibre | 6.6 | 5.0 | 6 | 22.5 | 20.8 | - |
Starch | 42.6 | 58.6 | 45 | 33.0 | 1.2 | - |
NDF 5 | 22.5 | 14.2 | 20.2 | 46.5 | 43.2 | - |
ADF 6 | 8.2 | 6.0 | 7.9 | 26.0 | 27.4 | - |
Calcium | 0.74 | 1.6 | 1.1 | - | - | - |
Phosphorus | 0.65 | 0.53 | 0.45 | - | - | - |
Sodium | 0.20 | 0.43 | 0.45 | - | - | - |
Diets | ||
---|---|---|
Control | TMR | |
Ingredients (g/kg DM) | ||
Control concentrate | 887 | - |
TMR concentrate | - | 328 |
Maize silage | - | 471 |
Brewer’s spent wet grains | - | 189 |
Straw | 113 | 12 |
Chemical composition (g/kg DM) | ||
DM (g/kg as fed) | 862 | 393 |
Crude Protein | 132 | 137 |
Ether Extract | 75 | 51 |
Crude Fibre | 91 | 162 |
NDF 1 | 321 | 491 |
ADF 2 | 123 | 235 |
ADL 3 | 21 | 30 |
Sugar | 34.1 | 18.5 |
Starch | 396 | 312 |
Ash | 54 | 76 |
Calcium (mg/g) | 4.79 | 4.90 |
In Vitro Digestibility (g/kg) | ||
DM 4 | 789 | 694 |
OM 5 | 779 | 709 |
Metabolizable Energy 6 (MJ/kg DM) | 11.9 | 10.9 |
Fatty acid profile (g/kg FA) | ||
14:0 | - | 0.9 |
16:0 | 300 | 281 |
18:0 | 60 | 36 |
c9-18:1 | 223 | 200 |
c11-18:1 | 5.4 | 7.5 |
18:2n − 6 | 348 | 416 |
20:0 | 17.9 | 7.6 |
18:3n − 3 | 15.3 | 38.5 |
22:0 | 12.0 | 5.6 |
24:0 | 18.5 | 7.7 |
Total FA (g/kg DM) | 65.6 | 39.5 |
Feed cost (€/kg DM) | 0.441 | 0.305 |
Diets | SEM 1 | p-Value | ||
---|---|---|---|---|
Control | TMR | |||
DM 2 intake (kg/d) | 10.6 | 9.2 | 0.191 | 0.035 |
ME 3 intake (MJ/d) | 126 | 100 | 0.38 | 0.001 |
Initial LW 4 | 501 | 499 | 12.5 | 0.920 |
Slaughter LW (kg) | 634 | 610 | 12.5 | 0.302 |
LW gain (kg) | 133 | 111 | 8.1 | 0.191 |
Average daily gain (g/d) | 1693 | 1442 | 78 | 0.024 |
Cold carcass weight (kg) | 354 | 338 | 9.0 | 0.345 |
Dressing percentage (%) | 55.7 | 55.4 | 0.513 | 0.757 |
Feed efficiency | 0.16 | 0.15 | 0.009 | 0.717 |
Feed costs (€/d) | 4.67 | 2.80 | 0.072 | 0.003 |
Feed costs (€/kg LW gain) | 2.86 | 2.05 | 0.137 | 0.053 |
Diets | SEM | p-Value | ||
---|---|---|---|---|
Control | TMR | |||
9th–11th Ribs Dissection 1 (%) | ||||
Separable fat | 22.3 | 21.4 | 2.16 | 0.795 |
Separable lean | 57.8 | 57.7 | 1.75 | 0.987 |
Separable bone | 17.3 | 17.8 | 0.13 | 0.102 |
Carcass estimations 2 (%) | ||||
Separable fat | 21.4 | 20.6 | 1.78 | 0.795 |
Separable lean | 62.4 | 62.3 | 1.42 | 0.987 |
Separable bone | 14.9 | 15.1 | 0.08 | 0.102 |
Carcass (kg) | ||||
Weight | 354 | 338 | 9.0 | 0.345 |
Lean Body Mass | 278 | 268 | 12.9 | 0.638 |
Protein | 60.1 | 57.9 | 2.79 | 0.638 |
Bone | 61.2 | 60.4 | 1.65 | 0.776 |
Water | 202 | 196 | 9.4 | 0.638 |
Fat | 75.2 | 69.6 | 4.87 | 0.499 |
Carcass energy (MJ) | 4375 | 4102 | 138 | 0.298 |
Carcass weight (CW) gain 3 (kg) | 82.4 | 68.0 | 5.03 | 0.191 |
Carcass energy gain 3,4 (MJ) | 973 | 809 | 59.7 | 0.191 |
Carcass protein (CPr) gain 3 (kg) | 15.6 | 12.9 | 0.95 | 0.191 |
Diets | SEM | p-Value | ||
---|---|---|---|---|
Control | TMR | |||
CH4 (g/d) | 121 | 192 | 7.2 | 0.020 |
CH4 (g/kg DMI) | 11.5 | 21.0 | 0.64 | 0.009 |
CH4 (g/kg LW gain) | 78 | 150 | 4.66 | 0.008 |
CH4 (g/kg CW gain) | 126 | 243 | 7.54 | 0.008 |
CH4 (kg/kg CPr gain) | 33.3 | 64.3 | 1.99 | 0.008 |
CH4 Energy losses | ||||
CH4 (MJ/d) | 6.08 | 9.65 | 0.361 | 0.020 |
CH4 (% GE Intake) | 3.0 | 5.7 | 0.20 | 0.011 |
CO2 (kg/d) | 8.94 | 8.88 | 0.05 | 0.511 |
CO2 (kg/kg DMI) | 0.84 | 0.97 | 0.018 | 0.039 |
CO2 (kg/kg LW gain) | 5.72 | 7.07 | 0.498 | 0.196 |
CH4/CO2 (g/kg) | 13.6 | 21.7 | 0.34 | 0.004 |
Diets | SEM 1 | p-Value | ||
---|---|---|---|---|
Control | TMR | |||
Dry matter (%) | 27.6 | 26.7 | 0.26 | 0.128 |
Fat (%) | 3.08 | 2.88 | 0.186 | 0.524 |
pH | 5.75 | 5.73 | 0.032 | 0.657 |
Cooking loss (%) | 32.7 | 31.7 | 0.42 | 0.236 |
Shear force (N/cm2) | 57.1 | 45.2 | 4.22 | 0.186 |
Colour parameters | ||||
L* | 40.2 | 42.5 | 0.36 | 0.046 |
a* | 23.0 | 24.7 | 0.79 | 0.272 |
b* | 13.6 | 15.1 | 0.48 | 0.165 |
C* | 26.7 | 28.8 | 0.90 | 0.231 |
H* | 30.5 | 31.4 | 0.31 | 0.167 |
Sensory traits | ||||
Tenderness | 3.48 | 4.16 | 0.107 | 0.046 |
Juiciness | 3.03 | 3.45 | 0.060 | 0.039 |
Flavour | 2.43 | 2.49 | 0.044 | 0.484 |
Overall acceptability | 3.84 | 4.27 | 0.082 | 0.065 |
Diet | SEM | p Value | ||
---|---|---|---|---|
Control | TMR | |||
Total FA | 2273 | 1899 | 134 | 0.188 |
FA profile | ||||
16:0 | 698 | 678 | 24.5 | 0.617 |
c9-16:1 1 | 42.6 | 30.7 | 6.08 | 0.299 |
18:0 | 534 | 522 | 10.7 | 0.499 |
c9-18:1 | 559 | 397 | 64.6 | 0.219 |
18:2n − 6 | 114 | 58 | 7.4 | 0.034 |
18:3n − 3 | 5.1 | 3.6 | 0.68 | 0.265 |
20:4n − 6 | 17.6 | 13.2 | 0.78 | 0.058 |
20:5n − 3 | 1.7 | 1.0 | 0.15 | 0.083 |
Biohydrogenation intermediates (BHI) | ||||
t10–18:1 | 34.0 | 8.6 | 3.50 | 0.036 |
t11–18:1 | 17.8 | 13.2 | 1.23 | 0.118 |
c9,t11-18:2 | 5.6 | 3.5 | 0.63 | 0.150 |
Partial sums | ||||
SFA | 1327 | 1272 | 37.7 | 0.410 |
MUFA | 745 | 508 | 82.3 | 0.179 |
cis-MUFA | 659 | 463 | 76.2 | 0.211 |
trans-MUFA | 86.4 | 45.3 | 6.33 | 0.044 |
PUFA | 147 | 83 | 9.87 | 0.045 |
n − 6 PUFA 2 | 138 | 76 | 8.9 | 0.039 |
n − 3 PUFA 3 | 8.9 | 7.0 | 0.97 | 0.313 |
BHI 4 | 117 | 63 | 9.9 | 0.061 |
FA Ratios | ||||
n − 6/n − 3 PUFA | 18.6 | 11.5 | 0.81 | 0.025 |
SCD-17 5 | 22.6 | 19.1 | 1.45 | 0.236 |
t10-/t11-18:1 | 1.8 | 0.6 | 0.03 | 0.001 |
Diet | SEM | p Value | ||
---|---|---|---|---|
Control | TMR | |||
Total FA (mg/g DM) | 863 | 815 | 29.4 | 0.366 |
FA profile | ||||
16:0 | 265 | 307 | 1.5 | 0.002 |
c9–16:1 1 | 26.0 | 26.4 | 0.42 | 0.530 |
18:0 | 210 | 224 | 2.4 | 0.051 |
c9-18:1 | 312 | 287 | 2.4 | 0.017 |
18:2n − 6 | 29.4 | 18.8 | 0.14 | 0.001 |
18:3n − 3 | 1.4 | 1.3 | 0.04 | 0.137 |
Biohydrogenation intermediates (BHI) | ||||
t10–18:1 | 28.0 | 12.1 | 1.03 | 0.008 |
t11–18:1 | 9.8 | 11.3 | 0.46 | 0.144 |
c9,t11-18:2 | 4.3 | 3.5 | 0.102 | 0.029 |
Other CLA 2 | 0.6 | 0.2 | 0.05 | 0.030 |
Partial Sums | ||||
SFA | 532 | 589 | 1.38 | 0.001 |
MUFA | ||||
cis-MUFA | 369 | 340 | 2.4 | 0.013 |
trans-MUFA | 51.5 | 35.8 | 0.99 | 0.008 |
PUFA | 31.3 | 20.4 | 0.18 | 0.001 |
BHI | 62.0 | 44.0 | 0.93 | 0.005 |
FA ratios | ||||
n − 6/n − 3 PUFA | 20.1 | 14.8 | 0.43 | 0.009 |
SCD-17 3 | 30.5 | 27.6 | 0.34 | 0.027 |
t10-/t11-18:1 | 3.16 | 1.12 | 0.153 | 0.011 |
Diets | SEM 1 | p-Value | ||
---|---|---|---|---|
Control | TMR | |||
kg CO2eq/kg LW 2 gain | ||||
Digestive tract | 1.86 | 3.60 | 0.202 | 0.026 |
Feeds | 3.70 | 2.00 | 0.166 | 0.018 |
Manure | 0.29 | 0.41 | 0.022 | 0.059 |
Finishing period carbon footprint | 5.9 | 6.0 | 0.34 | 0.770 |
kg CO2eq/kg CW 3 gain | ||||
Finishing period carbon footprint | 9.5 | 10.0 | 0.80 | 0.716 |
kg CO2eq/kg CPr 4 gain | ||||
Finishing period carbon footprint | 50.3 | 52.8 | 4.21 | 0.716 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, D.M.; Bernardino, S.; Rodrigues, N.; Gama, I.; Almeida, J.M.; Teixeira, R.F.M.; Santos-Silva, J.; Alves, S.P.; Domingos, T.; Martin, C.; et al. Effect of a Corn Silage-Based Finishing Diet on Growth, Carcass Composition, Meat Quality, Methane Emissions and Carbon Footprint of Crossbred Angus Young Bulls. Sustainability 2025, 17, 8417. https://doi.org/10.3390/su17188417
Soares DM, Bernardino S, Rodrigues N, Gama I, Almeida JM, Teixeira RFM, Santos-Silva J, Alves SP, Domingos T, Martin C, et al. Effect of a Corn Silage-Based Finishing Diet on Growth, Carcass Composition, Meat Quality, Methane Emissions and Carbon Footprint of Crossbred Angus Young Bulls. Sustainability. 2025; 17(18):8417. https://doi.org/10.3390/su17188417
Chicago/Turabian StyleSoares, Diana M., Sílvia Bernardino, Nuno Rodrigues, Ivo Gama, João M. Almeida, Ricardo F. M. Teixeira, José Santos-Silva, Susana P. Alves, Tiago Domingos, Cecile Martin, and et al. 2025. "Effect of a Corn Silage-Based Finishing Diet on Growth, Carcass Composition, Meat Quality, Methane Emissions and Carbon Footprint of Crossbred Angus Young Bulls" Sustainability 17, no. 18: 8417. https://doi.org/10.3390/su17188417
APA StyleSoares, D. M., Bernardino, S., Rodrigues, N., Gama, I., Almeida, J. M., Teixeira, R. F. M., Santos-Silva, J., Alves, S. P., Domingos, T., Martin, C., Marques, G. M., & Bessa, R. J. B. (2025). Effect of a Corn Silage-Based Finishing Diet on Growth, Carcass Composition, Meat Quality, Methane Emissions and Carbon Footprint of Crossbred Angus Young Bulls. Sustainability, 17(18), 8417. https://doi.org/10.3390/su17188417