The Techno-Economic Feasibility of Retrofitting Buildings in Turkey Within the NZEB Framework: A Case Study in Izmir
Abstract
1. Introduction
2. Definitions of Energy-Efficient Building Concepts
2.1. Zero-Energy Buildings (ZEBs)
2.2. Positive-Energy Buildings (PEBs)
2.3. Passive House
2.4. TS 825
3. Methodology
- The case study was modelled using the DesignBuilder energy simulation program.
- The model was calibrated using a combination of measured and simulated temperature data, collected at hourly intervals.
- HVAC systems and internal energy gains (user-related, lighting, and equipment) were modelled. The occupant behaviour for a four-person household was defined.
- In the existing case, the effects of changes in the thermal conductivity values (U-values) for walls, floors, roofs, and windows on the payback period (PB) and benefit–cost ratios (BCRs) were evaluated parametrically. The feasible insulation levels were determined based on the benefit–cost ratio (BCR) and payback time (PB).
- The development of scenarios that comply with the TS 825-2008, TS 825-2024, EnerPHit, ZEB, and PEB concepts was undertaken, using the determined levels as reference values.
- The energy demand for the scenarios was calculated using the DesignBuilder software.
- The life-cycle cost (LCC) values of the scenarios were calculated, and a comparative and evaluative analysis was then performed, using the results.
3.1. Case Study
3.2. Building Energy Simulation
- = measured data;
- = simulated data;
- = average of the measured data;
- n = number of the values.
3.3. Techno-Economic Analysis
3.3.1. Benefit–Cost Ratio (BCR) and Payback Period (PB) Analysis
- PB = Payback period;
- I = Investment cost;
- NCI = Annual net cash inflow of the investment.
- BCR = Benefit–cost ratio;
- PVF = Present value factor;
- I = Investment cost;
- r = Discount rate;
- n = Number of periods, year;
- NCI = Annual net cash inflow for the investment.
3.3.2. Life-Cycle Cost Analysis (LCCA)
- LCC = Life-cycle cost;
- I = Investment cost;
- Co&M = Operational and maintenance costs;
- CR = Replacement cost;
- CS = Salvage cost;
- r = Discount rate;
- n = Number of periods, year0;
- nx = Replacement year.
4. Results
4.1. Case Study Findings
4.2. Benefit–Cost Ratio (BCR) and Payback Period (PB) Results
4.3. Life-Cycle Cost (LCC) Results
5. Discussion
5.1. Comparative Analysis of Scenarios Considered for the NZEB Concept
5.2. Limitations
- The calculations were based on climate zone two in Turkey.
- The case study building is a single-family residential building.
- PV-panel integration was applied as the renewable-energy technology.
- An interest rate of 8% was assumed.
- Insulation materials with widespread production and high application frequency were selected.
- PV alternative parameters were not addressed; however, follow-up studies are planned that will take into account parameters that can be adjusted, such as the number of PVs, the use of storage or non-storage systems, and the direction and angle of the units.
- The economic analyses were conducted on the renovation of an existing building and did not cover the construction of a new building.
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aşıkoğlu, A. Cost analysis of insulation materials used to increase energy performance in buildings with Net Present Value method. J. Sustain. Constr. Mater. Technol. 2023, 8, 134–145. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change. Kyoto Protocol to the United Nations Framework Convention on Climate Change. 1998. Available online: https://unfccc.int/resource/docs/convkp/kpeng.pdf (accessed on 21 May 2025).
- Passive House Institute. What is A Passive House? Available online: https://passivehouse.com/ (accessed on 14 June 2025).
- Figueiredo, A.; Kämpf, J.; Vicente, R. Passive house optimization for Portugal: Overheating evaluation and energy performance. Energy Build. 2016, 118, 181–196. [Google Scholar] [CrossRef]
- The Energy Performance of Buildings Directive 2002/91/EC. 2002. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32002L0091 (accessed on 19 May 2025).
- EPBD. Proposal for a Directive of the European Parliament and of the Council Amending Directive 2010/31/EU on the Energy Performance of Buildings; Com(2016) 765 Final, 2016/0381 (Cod); European Commission: Brussels, Belgium, 2016.
- United Nations. Paris Agreement. United Nations Framework Convention on Climate Change. 2015. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 5 May 2025).
- The Energy Performance of Buildings Directive EU/2018/844. 2018. Available online: https://eur-lex.europa.eu/eli/dir/2018/844/oj/eng (accessed on 17 May 2025).
- The Mandatory Implementation of the TS 825 “Thermal Insulation Rules in Buildings” Standard is to be Communicated. Resmi Gazete (32455). 2025. Available online: https://www.resmigazete.gov.tr/eskiler/2025/02/20250220-2.htm (accessed on 12 May 2025).
- Hwang, R.-L.; Chiu, H.-C. A case study-based framework integrating simulation, policy, and technology for nZEB retrofits in Taiwan’s office buildings. Energies 2025, 18, 3854. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, H.; Deng, G.; Liu, X.; Wang, D. Measured performance of energy efficiency measures for zero-energy retrofitting in residential buildings. J. Build. Eng. 2024, 91, 109545. [Google Scholar] [CrossRef]
- Carpino, C.; Chen Austin, M.; Mora, D.; Arcuri, N. Retrofit measures for achieving NZE single-family houses in a tropical climate via multi-objective optimization. Buildings 2024, 14, 566. [Google Scholar]
- Almutairi, H.H.; Almutairi, J.H.; Alhashem, A.E.; Almutairi, A.S. The potential of NZEB for existing and prospective school buildings by applying energy conservation measures and efficient technologies suitable for hot arid climate. Front. Energy Res. 2024, 12, 1503382. [Google Scholar] [CrossRef]
- Jradi, M. A decision-making tool for sustainable energy planning and retrofitting in danish communities and districts. Energies 2025, 18, 692. [Google Scholar] [CrossRef]
- Alsaadani, S.; Hamza, M.; Fahmy, M. Reconciling retrofitting with IEQ to maintain energy, environmental and economic performance: A methodological approach for generic office buildings. Build. Environ. 2024, 264, 111868. [Google Scholar] [CrossRef]
- Şenturk, A.; Özcan, M. Nearly zero energy building design and optimization: A residential building transformation in Türkiye. Energy Explor. Exploit. 2024, 42, 997–1026. [Google Scholar]
- Ekşi, M.; Akarsu, R.T.; Özcan, M. Net-zero energy building transformation: Techno-economic and environmental evaluation in the Mediterranean Region. Environ. Dev. Sustain. 2025. [Google Scholar] [CrossRef]
- Maduta, C.; Melica, G.; D’agostino, D.; Bertoldi, P. Defining Zero-Emission Buildings. Support for the Revision of the Energy Performance of Buildings Directive; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- Laustsen, J. Energy Efficiency Requirements in Building Codes, Energy Efficiency Policies for New Buildings: IEA Information Paper: Support of the G8 Plan of Action; U.S. Department of Energy: Washington, DC, USA, 2008.
- Maduta, C.; D’Agostino, D.; Tsemekidi-Tzeiranaki, S.; Castellazzi, L.; Melica, G.; Bertoldi, P. Towards climate neutrality within the European Union: Assessment of the energy performance of buildings directive implementation in member states. Energy Build. 2023, 301, 113716. [Google Scholar] [CrossRef]
- Panagiotidou, M.; Fuller, R.J. Progress in ZEBs—A review of definitions, policies and construction activity. Energy Policy 2013, 62, 196–206. [Google Scholar] [CrossRef]
- Belussi, L.; Barozzi, B.; Bellazzi, A.; Danza, L.; Devitofrancesco, A.; Fanciulli, C.; Ghellere, M.; Guazzi, G.; Meroni, I.; Salamone, F.; et al. A review of performance of zero energy buildings and energy efficiency solutions. J. Build. Eng. 2019, 25, 100772. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, S.; Shan, K. Design optimization and optimal control of gridconnected and standalone nearly/net zero energy buildings. Appl. Energy 2015, 155, 463–477. [Google Scholar] [CrossRef]
- Wei, W.; Skye, H.M. Residential net-zero energy buildings: Review and perspective. Renew. Sustain. Energy Rev 2021, 142, 110859. [Google Scholar]
- Aljashaami, B.A.; Ali, B.M.; Salih, S.A.; Alwan, N.T.; Majeed, M.H.; Ali, O.M.; Alomar, O.R.; Velkin, V.I.; Shcheklein, S.E. Recent improvements to heating, ventilation, and cooling technologies for buildings based on renewable energy to achieve zero-energy buildings: A systematic review. Results Eng. 2024, 23, 102769. [Google Scholar] [CrossRef]
- Sartori, I.; Napolitano, A.; Voss, K. Net zero energy buildings: A consistent definition framework. Energy Build. 2012, 48, 220–232. [Google Scholar] [CrossRef]
- Hainoun, A.; Stortecky, S.; Horak, D.; Serageldin, A.A. Monitoring and evaluation of integrated energy solutions in a Zero-Energy building (ZEB) in Vienna. Energy Build. 2025, 343, 115906. [Google Scholar] [CrossRef]
- Qin, X.; Yin, J.; Haron, N.A.; Alias, A.H.; Hua, L.T.; Bakar, N.A. Customer perceived value theory and PSO-LightGBM algorithm-based approach to evaluating satisfaction factors with Net-zero energy building retrofits. Edelweiss Appl. Sci. Technol. 2025, 9, 2508–2530. [Google Scholar]
- Johari, F.; Lindberg, O.; Ramadhani, U.H.; Shadram, F.; Munkhammar, J.; Widén, J. Analysis of large-scale energy retrofit of residential buildings and their impact on the electricity grid using a validated UBEM. Appl. Energy 2024, 361, 122937. [Google Scholar] [CrossRef]
- Constantinides, A.; Katafygiotou, M.; Dimopoulos, T.; Kapellakis, I. Retrofitting of an existing cultural hall into a Net-Zero energy building. Energies 2024, 17, 1602. [Google Scholar] [CrossRef]
- Kumar, G.M.S.; Cao, S. State-of-the-art review of positive energy building and community systems. Energies 2021, 14, 5046. [Google Scholar] [CrossRef]
- Kim, M.; Kim, H.S.; Kim, S.; Wee, H.; Koh, Y.; Kim, K.; Lee, M.K.; Lee, J.W.; Kang, Y.T. Indoor CO2 capture driven energy load reduction and ventilation management for plus energy building applications. Energy 2025, 326, 136259. [Google Scholar] [CrossRef]
- Sarir, P.; Sharifzadeh, M. Application of passive and active scenarios to a residential building in a dry and hot climate to achieve a positive energy building (PEB). Heliyon 2024, 10, e30694. [Google Scholar] [CrossRef] [PubMed]
- Schibuola, L.; Tambani, C. Non-renewable energy demand reduction and positive energy buildings in Southern Europe’s urban forms. Energy Build. 2025, 328, 115185. [Google Scholar] [CrossRef]
- Sessa, E.; Brunetti, A.; Ciulla, G.; Guarino, F.; Longo, S.; Cellura, M.; Dragomir, A.; Papina, C. Towards positive energy district assessment: The case study of Bucharest. Energy 2025, 325, 136208. [Google Scholar] [CrossRef]
- Dell’Unto, M.; Sassenou, L.N.; Olivieri, F.; Olivieri, L. Passive strategies as a technical instrument to promote the transition to positive energy districts in the Mediterranean area. Methodology and case study in Spain. Energy Build. 2025, 346, 116237. [Google Scholar] [CrossRef]
- Martinopoulos, G.; Tsimpoukis, A.; Sougkakis, V.; Dallas, P.; Angelakoglou, K.; Giourka, P.; Nikolopoulos, N. A comprehensive approach to nearly zero energy buildings and districts: Analysis of a Region Undergoing Energy Transition. Energies 2024, 17, 5581. [Google Scholar] [CrossRef]
- PHI. Homepage of Passive House Institute. Available online: https://passivehouse.com/ (accessed on 11 April 2025).
- Mihai, M.; Tanasiev, V.; Dinca, C.; Badea, A.; Vidu, R. Passive house analysis in terms of energy performance. Energy Build. 2017, 144, 74–86. [Google Scholar] [CrossRef]
- Rojas, G.; Fletcher, M.; Johnston, D.; Siddall, M. A review of the indoor air quality in residential Passive House dwellings. Energy Build. 2024, 306, 113883. [Google Scholar] [CrossRef]
- Piccardo, C.; Dodoo, A.; Gustavsson, L. Retrofitting a building to passive house level: A life cycle carbon balance. Energy Build. 2020, 223, 110135. [Google Scholar] [CrossRef]
- Foster, J.; Sharpe, T.; Poston, A.; Morgan, C.; Musau, F. Scottish Passive House: Insights into Environmental Conditions in Monitored Passive Houses. Sustainability 2016, 8, 412. [Google Scholar] [CrossRef]
- Leardini, P.; Manfredini, M. Modern housing retrofit: Assessment of upgrade packages to EnerPHit standard for 1940–1960 state houses in Auckland. Buildings 2015, 5, 229–251. [Google Scholar] [CrossRef]
- Mohammadpourkarbasi, H.; Riddle, B.; Liu, C.; Sharples, S. Life cycle carbon assessment of decarbonising UK’s hard-to-treat homes: A comparative study of conventional retrofit vs EnerPHit, heat pump first vs fabric first and ecological vs petrochemical retrofit approaches. Energy Build. 2023, 296, 113353. [Google Scholar] [CrossRef]
- PHI. Criteria for the Passive House, EnerPHit and PHI Low Energy Building Standard, Passive House Institute. Available online: https://passiv.de/downloads/03_building_criteria_en.pdf (accessed on 5 May 2025).
- Arbulu, M.; Oregi, X.; Etxepare, L. Optimisation of passive energy renovation strategies in residential buildings for life cycle global warming potential reduction and cost-effectiveness. Circ. Econ. Sustain. 2025. [Google Scholar] [CrossRef]
- Kılıç Bakırhan, E.; Kayılı, M.T. Energy retrofitting of modern heritage in accordance with passive building standard: The case of Yenişehir Cinema. Megaron 2025, 20, 297–311. [Google Scholar] [CrossRef]
- Mirhosseini, H.; Li, J.; Iulo, L.D.; Freihaut, J.D. Quantifying the enhanced performance of multifamily residential passive house over conventional buildings in terms of energy use. Buildings 2024, 14, 1866. [Google Scholar] [CrossRef]
- Huang, H.; Nazi, W.I.B.W.M.; Yu, Y.; Wang, Y. Energy performance of a high-rise residential building retrofitted to passive building standard–A case study. Appl. Therm. Eng. 2020, 181, 115902. [Google Scholar] [CrossRef]
- Bravo-Orlandini, C.; Gómez-Soberón, J.M.; Valderrama-Ulloa, C.; Sanhueza-Durán, F. Energy, economic, and environmental performance of a single-family house in chile built to passivhaus standard. Sustainability 2021, 13, 1199. [Google Scholar] [CrossRef]
- TS 825; Binalarda Isı Yalıtım Kuralları. Türk Standardları Enstitüsü: Ankara, Türkiye, 1990.
- TS 825; Binalarda Isı Yalıtım Kuralları. Türk Standardları Enstitüsü: Ankara, Türkiye, 2008.
- Binalarda Enerji Performansi Yönetmeliği. Available online: https://www.mevzuat.gov.tr/File/GeneratePdf?mevzuatNo=13594&mevzuatTur=KurumVeKurulusYonetmeligi&mevzuatTertip=5 (accessed on 27 April 2025).
- TS 825; Binalarda Isı Yalıtım Kuralları. Türk Standardları Enstitüsü: Ankara, Türkiye, 2013.
- Paris Anlaşmasının Onaylanmasının Uygun Bulunduğuna Dair Kanun. (The Law on the Ratification of the Paris Agreement). Resmi Gazete (31621). Available online: https://www.resmigazete.gov.tr/eskiler/2021/10/20211007-13.htm (accessed on 12 May 2025).
- Bettemir, Ö.H.; Erzurum, T. Comparative Life cycle assessment of post-disaster housing according to ground type-outdoor temperature-lifespan relationship: Carbon, energy and cost. J. Build. Eng. 2025, 111, 113388. [Google Scholar] [CrossRef]
- Yalaz, E.T.; Dişli, G. Climate-responsive building façade design: Inspirations from historic buildings in semi-cold climate zone. Sustain. Energy Technol. Assess. 2024, 69, 103914. [Google Scholar] [CrossRef]
- Özturan, M.K.; Seyhan, A.K. Determination of optimum insulation thickness of building walls according to four main directions by accounting for solar radiation: A case study of Erzincan, Türkiye. Energy Build. 2024, 304, 113871. [Google Scholar] [CrossRef]
- Alim, H.; Beyhan, F. Assessing the architectural design and implementation potential of local residential buildings with net zero energy approach: Cold climate region. Gazi Univ. J. Sci. Part B Art Humanit. Des. Plan. 2024, 12, 667–686. [Google Scholar]
- Celik, A.; Manay, E.; Şahin, B. Soğuk iklim bölgesinde bulunan LEED sertifikalı bir eğitim binasının enerji ve ekonomik performansının ulusal standartla karşılaştırılması. Gazi Üniversitesi Mühendislik Mimar. Fakültesi Derg. 2025, 40, 777–788. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- The Turkish State Meteorological Service. Available online: https://www.mgm.gov.tr/eng/forecast-cities.aspx (accessed on 15 August 2025).
- Alsmadi, L.; Lei, G.; Li, L. Forecasting day-ahead electricity demand in australia using a CNN-LSTM model with an attention mechanism. Appl. Sci. 2025, 15, 3829. [Google Scholar] [CrossRef]
- Design Builder Software. Available online: https://designbuilder.co.uk/about-us (accessed on 12 June 2025).
- Onset Data Logger. Available online: https://www.onsetcomp.com/ (accessed on 14 August 2025).
- ASHRAE, A. Ashrae guideline 14: Measurement of energy and demand savings. Am. Soc. Heat. Refrig. Air-Cond. Eng. 2002, 35, 41–63. [Google Scholar]
- Wu, Z.; Ding, Y.; Zhang, N.; Gong, X.; Luo, X.; Jin, Y. Feasibility analysis of retrofitting existing residential towards the EnerPHit standard in HSCW zone: A case study in Guilin, China. Energy Build. 2023, 298, 113554. [Google Scholar] [CrossRef]
- Papadopoulos, A.M.; Theodosiou, T.G.; Karatzas, K.D. Feasibility of energy saving renovation measures in urban buildings: The impact of energy prices and the acceptable pay back time criterion. Energy Build. 2002, 34, 455–466. [Google Scholar] [CrossRef]
- Abbas, T.; Ali, G.; Adil, S.A.; Bashir, M.K.; Kamran, M.A. Economic analysis of biogas adoption technology by rural farmers: The case of Faisalabad district in Pakistan. Renew. Energy 2017, 107, 431–439. [Google Scholar] [CrossRef]
- Gobio-Thomas, L.; Darwish, M.; Rovira, A.; Abbas, R.; Barnetche, M.; Solano, J.P.; Torres, A.; Naplocha, K.; Kew, P.; Stojceska, V. A Comprehensive assessment of the economic performance of an innovative solar thermal system: A case study. Sustainability 2025, 17, 455. [Google Scholar] [CrossRef]
- Das, M.; Reddy, K.S. Modelling and optimization of combined supercritical carbon dioxide Brayton cycle and organic Rankine cycle for electricity and hydrogen production. Appl. Energy 2025, 377, 124586. [Google Scholar] [CrossRef]
- Büker, S.; Aşıkoğlu, H.R.; Sevil, G. Finansal Yönetim; Sözkesen Press: Ankara, Türkiye, 2018. [Google Scholar]
- Asdrubali, F.; Ballarini, I.; Corrado, V.; Evangelisti, L.; Grazieschi, G.; Guattari, C. Energy and environmental payback times for an NZEB retrofit. Build. Environ. 2019, 147, 461–472. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Rincón, L.; Vilariño, V.; Pérez, G.; Castell, A. Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renew. Sustain. Energy Rev. 2014, 29, 394–416. [Google Scholar] [CrossRef]
- Gustavsson, L.; Joelsson, A.; Sathre, R. Life cycle primary energy use and carbon emission of an eight-storey wood-framed apartment building. Energy Build. 2010, 42, 230–242. [Google Scholar] [CrossRef]
- Liu, G.; Xu, K.; Zhang, X.; Zhang, G. Factors influencing the service lifespan of buildings: An improved hedonic model. Habitat Int. 2014, 43, 274–282. [Google Scholar] [CrossRef]
- Aktas, C.B.; Bilec, M.M. Impact of lifetime on US residential building LCA results. Int. J. Life Cycle Assess. 2012, 17, 337–349. [Google Scholar] [CrossRef]
- Deetman, S.; Marinova, S.; van der Voet, E.; van Vuuren, D.P.; Edelenbosch, O.; Heijungs, R. Modelling global material stocks and flows for residential and service sector buildings towards 2050. J. Clean. Prod. 2020, 245, 118658. [Google Scholar] [CrossRef]
- Andersen, R.; Negendahl, K. Lifespan prediction of existing building typologies. J. Build. Eng. 2023, 65, 105696. [Google Scholar] [CrossRef]
- Aşıkoğlu Metehan, A.; Şenel Solmaz, A.; Gök, O.; Tokuç, A. Adapting to Climate Change: Assessing Future Residential Energy Demands for Different Climate and Occupancy Scenarios in Turkey. Buildings 2025, 15, 1255. [Google Scholar] [CrossRef]
- Tushar, Q.; Zhang, G.; Bhuiyan, M.A.; Giustozzi, F.; Navaratnam, S.; Hou, L. An optimized solution for retrofitting building façades: Energy efficiency and cost-benefit analysis from a life cycle perspective. J. Clean. Prod. 2022, 376, 134257. [Google Scholar] [CrossRef]
- Central Bank of the Republic of Türkiye. Interest Rates. Available online: https://www.tcmb.gov.tr/wps/wcm/connect/en/tcmb+en (accessed on 6 June 2025).
- Aşıkoğlu, A. The potential of the effect of insulation and photovoltaic panel use in buildings on energy performance for Turkey and LCC analysis. Indoor Built Environ. 2024, 33, 1052–1066. [Google Scholar] [CrossRef]
- Republic of Türkiye Ministry of Environment, Urbanization and Climate Change. Ankara: Construction and Installation Unit Prices. 2025. Available online: https://yfk.csb.gov.tr/en/unit-prices-i-103492 (accessed on 6 June 2025).
- Fuller, S.K.; Petersen, S.R. Nist Handbook 135: Life-Cycle Costing Manual for the Federal Energy Management Program; Department Of Commerce Technology Administration National Institute of Standards and Technology: Gaithersburg, MD, USA, 1995. [Google Scholar]
- Europian Comission. Photovoltaic Geographical Information System. Available online: https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis_en (accessed on 15 June 2025).
- Turkish Statistical Institute. Vehicle Kilometer Statistics. Available online: https://data.tuik.gov.tr/Bulten/Index?p=Tasit-kilometre-Istatistikleri-2023-54055 (accessed on 26 April 2025).
- Al-Wreikat, Y.; Serrano, C.; Sodré, J.R. Driving behaviour and trip condition effects on the energy consumption of an electric vehicle under real-world driving. Appl. Energy 2021, 297, 117096. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Ouyang, M. Energy consumption of electric vehicles based on real-world driving patterns: A case study of Beijing. Appl. Energy 2015, 157, 710–719. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Liu, P.; Zhang, Z. Energy consumption analysis and prediction of electric vehicles based on real-world driving data. Appl. Energy 2020, 275, 115408. [Google Scholar] [CrossRef]
- Atmoko, D.; Susilawati, C.; Devi, B.; Wilkinson, S.; Puspitarini, I.; Lukito, J.A.; Goonetilleke, A. Challenges and opportunities for promoting sustainability in public buildings. Sustainability 2025, 17, 403. [Google Scholar] [CrossRef]
- Firoozi, A.A.; Oyejobi, D.O.; Firoozi, A.A. Innovations in energy-efficient construction: Pioneering sustainable building practices. Clean. Eng. Technol. 2025, 26, 100957. [Google Scholar] [CrossRef]
- Hafez, F.S.; Sa’di, B.; Safa-Gamal, M.; Taufiq-Yap, Y.H.; Alrifaey, M.; Seyedmahmoudian, M.; Stojcevski, A.; Horan, B.; Mekhilef, S. Energy efficiency in sustainable buildings: A systematic review with taxonomy, challenges, motivations, methodological aspects, recommendations, and pathways for future research. Energy Strategy Rev. 2023, 45, 101013. [Google Scholar]
Feature/Criterion | TS 825:2008 (Climate Zone 1) | TS 825:2024 (Climate Zone 2) | EnerPHit (Warm Temperate) | ZEB | PEB |
---|---|---|---|---|---|
Objective | Energy saving via thermal insulation | Comprehensive energy efficiency | Approach Passive House standards in retrofits | Achieve net-zero annual energy use | Achieve net-positive energy production |
Scope of application | New buildings | New and existing buildings (EPBD aligned) | Only existing buildings | New or renovated buildings | Typically new, high-performance buildings |
Annual heating demand limit | Varies by region coefficient | ≤50 kWh/m2·year (proposed) | ≤25 kWh/m2·year or 75% reduction | ≤15–40 kWh/m2·year (proposed) | ≤15–40 kWh/m2·year (proposed) |
Total primary energy demand | Not defined | ≤120 kWh/m2·year (proposed) | ≤250 kW”h/m2·year | Consumption = production | Production > consumption |
Renewable-energy requirement | Not required | PV recommended | Not required, but encouraged | Mandatory (solar, wind, etc.) | Mandatory + surplus production |
Calculation method | Manual TS 825 calculation method | Dynamic simulation / software | PHPP (EnerPHit module included) | Energy balancing approach | Energy balance + PV integration |
Certification status | Mandatory national standard | Will be mandatory (EPBD compliance) | Voluntary, issued by PHI | Project-based (Horizon, EU etc.) | Project-based (Horizon, EU etc.) |
U-Values | |||||
Wall | ≤0.70 | ≤0.40 | ≤0.3 | Not defined | Not defined |
Roof | ≤0.45 | ≤0.3 | ≤0.3 | Not defined | Not defined |
Floor | ≤0.7 | ≤0.35 | ≤0.3 | Not defined | Not defined |
Window | ≤2.40 | ≤1.8 | ≤1.05–1.20 | Not defined | Not defined |
Ref. * | Year | Country | Concepts | Findings | |||
---|---|---|---|---|---|---|---|
ZEB | PEB | PH ** | TS 825 | ||||
[27] | 2025 | Austria | + | + | A 24.4 kWh/m2a energy savings through building-envelope improvements. Self-supply ratio of 124% with renewable-energy production. | ||
[29] | 2024 | Sweden | + | + | + | A 43% energy saving based on PH standard. Reached ZEB/PEB with implementation of PV. | |
[30] | 2024 | Cyprus | + | Energy consumption reduction from 468 to 218 kWh/m2 by refurbishment. PV produced 177 kWh/m2 energy. | |||
[34] | 2025 | Italy | NZEB | PV panels cover up to 96% of total energy demand. | |||
[35] | 2025 | Romania | PED | Retrofit reduced heating demand by 24%. Investigated the feasibility of Positive Energy Districts (PED). | |||
[36] | 2025 | Spain | + | Energy surplus with passive strategies and PV integration. | |||
[37] | 2024 | Greece | + | Payback period for PEB strategies range between 8.7 and 9.6 years. | |||
[47] | 2025 | Turkey | + | A 92% reduction in the heating-energy demand with passive building standard. | |||
[48] | 2024 | USA | + | Energy savings of approximately 50% with PH standard. | |||
[49] | 2020 | China | + | A 96% reduction in heating and an 8.7% reduction in cooling-energy demand, with an approximate 18.4-year payback period, after retrofit. | |||
[50] | 2021 | Chile | + | A 93% reduction in the heating-energy demand and zero cooling-energy demand, with an 11-year payback period. | |||
[56] | 2025 | Turkey | + | Insulation thicknesses (5, 8, and 10 cm.) evaluated over the course of a 50-year life cycle, with a finding of 10 cm optimal insulation thickness. | |||
[57] | 2024 | Turkey | + | Wall with the lowest thermal conductivity value is the most suitable solution. | |||
[58] | 2024 | Turkey | + | Wall insulation achieves an energy savings ranging from 25 to 50%, with the payback period ranging from 0.9 to 4 years. | |||
[59] | 2024 | Turkey | + | Building-envelope improvement resulted in an energy savings of 9.71% in Turkey’s fourth climate zone. | |||
[60] | 2025 | Turkey | + | Construction according to LEED Silver resulted in an energy demand 23% lower than a construction according to TS 825. |
Months | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Average temp. (C° for 29 years) | 9 | 9.9 | 12.4 | 16.2 | 21.1 | 26 | 28.6 | 28.5 | 24.2 | 19.5 | 14.4 | 10.5 | - |
HDDs | 223 | 151 | 123 | - | - | - | - | - | - | - | 105 | 181 | 783 |
T ≤ 15 °C | 27 | 23 | 23 | - | - | - | - | - | - | - | 18 | 26 | 117 |
CDDs | - | - | - | 9 | 12 | 216 | 276 | 235 | 90 | 19 | - | - | 857 |
T > 22 °C | - | - | - | 7 | 8 | 30 | 31 | 31 | 30 | 10 | - | - | 147 |
Material * | Width (cm.) | Conductivity (W/mK) | Specific Heat (J/kgK) | Density (kg/m3) | |
---|---|---|---|---|---|
Wall | Plaster | 3 | 0.35 | 840 | 950 |
Brick | 19 | 0.72 | 840 | 1920 | |
Plaster | 2 | 0.35 | 840 | 950 | |
U-Value | 1.734 (W/m2K) | ||||
Pitched roof | Clay tile | 2.5 | 1 | 800 | 2000 |
Plywood | 2 | 0.15 | 1420 | 700 | |
Screed | 3 | 0.041 | 840 | 1200 | |
Concrete, Reinforced | 12 | 2.5 | 1000 | 2400 | |
plaster | 2 | 0.35 | 840 | 950 | |
U-Value | 2.211 (W/m2K) | ||||
Ground floor | Ceramic | 1 | 1.3 | 840 | 2300 |
Screed | 3 | 0.041 | 840 | 1200 | |
Cast concrete | 12 | 1.13 | 1000 | 2000 | |
U-Value | 2.519 (W/m2K) | ||||
Window | 3 + 6(air) + 3 | Total solar transmission (SHGC): 0.635 | |||
U-Value | 2.016 (W/m2K) |
Type | Temperature/RH Data Logger |
---|---|
Temperature | |
Measurement range | −20 °C to 70 °C |
Resolution | 0.03 °C at 25 °C |
Accuracy | ±0.35 °C from 0 °C to 50 °C |
Relative humidity | |
Measurement range | 5% to 95% RH |
Resolution | 0.03% RH |
Accuracy | ±2.5% typical, 3.5% maximum, from 10 to 90% RH |
Occupied Area | Wall Ratio | Window Ratio | Heating Demand | Cooling Demand | Total Energy Demand |
---|---|---|---|---|---|
m2 | % | % | kWh (annual) | kWh (annual) | kWh (annual) |
78 | 80.18 | 19.82 | 5546.628 | 2897.556 | 11,868.421 |
Wall | Pitched Roof | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
U-Value | Heating + Cooling Demand | Energy Saving | Initial Cost * | BCR | PB | U-Value | Heating + Cooling Demand | Energy Saving | Initial Cost * | BCR | PB | |
Unit/No | (W/m2K) | kWh | % | USD | Year | (W/m2K) | kWh | % | USD | Year | ||
1 | 1.159 | 8106 | 4.002 | 401.937 | 0.972 | 11.996 | 1.76 | 7790 | 7.745 | 118.74 | 5.389 | 2.163 |
2 | 0.871 | 7947 | 5.885 | 458.616 | 1.286 | 9.062 | 1.222 | 7512 | 11.037 | 136.853 | 6.815 | 1.710 |
3 | 0.697 | 7849 | 7.046 | 515.282 | 1.387 | 8.403 | 0.936 | 7356 | 12.884 | 154.966 | 7.196 | 1.620 |
4 | 0.582 | 7780 | 7.863 | 571.947 | 1.404 | 8.304 | 0.759 | 7256 | 14.069 | 173.079 | 7.180 | 1.623 |
5 | 0.499 | 7727 | 8.491 | 628.613 | 1.383 | 8.428 | 0.638 | 7187 | 14.886 | 191.192 | 6.997 | 1.666 |
6 | 0.436 | 7686 | 8.976 | 685.279 | 1.344 | 8.674 | 0.55 | 7135 | 15.502 | 209.305 | 6.753 | 1.726 |
7 | 0.388 | 7652 | 9.376 | 741.945 | 1.296 | 8.996 | 0.483 | 7095 | 15.975 | 227.418 | 6.497 | 1.794 |
8 | 0.349 | 7622 | 9.834 | 798.611 | 1.248 | 9.337 | 0.431 | 7063 | 16.354 | 245.531 | 6.230 | 1.871 |
9 | 0.318 | 7597 | 10.030 | 855.276 | 1.2 | 9.71 | 0.389 | 7036 | 16.674 | 263.644 | 5.973 | 1.951 |
10 | 0.291 | 7573 | 10.315 | 911.942 | 1.153 | 10.109 | 0.355 | 7015 | 16.923 | 281.757 | 5.726 | 2.035 |
11 | 0.269 | 7552 | 10.563 | 968.608 | 1.109 | 10.512 | 0.326 | 6997 | 17.136 | 299.87 | 5.489 | 2.123 |
12 | 0.25 | 7533 | 10.788 | 1025.27 | 1.068 | 10.912 | 0.301 | 6981 | 17.325 | 317.983 | 5.273 | 2.210 |
13 | 0.233 | 7515 | 11.002 | 1081.94 | 1.028 | 11.341 | 0.28 | 6968 | 17.479 | 336.096 | 5.063 | 2.302 |
14 | 0.218 | 7498 | 11.203 | 1138.61 | 0.992 | 11.746 | 0.262 | 6956 | 17.621 | 354.208 | 4.873 | 2.392 |
15 | 0.206 | 7483 | 11.380 | 1195.27 | 0.957 | 12.176 | 0.246 | 6946 | 17.74 | 372.321 | 4.695 | 2.482 |
16 | 0.194 | 7468 | 11.558 | 1251.94 | 0.925 | 12.598 | 0.232 | 6936 | 17.858 | 390.434 | 4.524 | 2.576 |
17 | 0.184 | 7454 | 11.724 | 1308.6 | 0.896 | 13.009 | 0.219 | 6928 | 17.953 | 408.547 | 4.366 | 2.669 |
18 | 0.175 | 7441 | 11.878 | 1365.27 | 0.868 | 13.434 | 0.208 | 6921 | 18.036 | 426.66 | 4.219 | 2.763 |
19 | 0.167 | 7427 | 12.044 | 1421.94 | 0.842 | 13.838 | 0.197 | 6914 | 18.119 | 444.773 | 4.081 | 2.856 |
20 | 0.159 | 7415 | 12.186 | 1478.6 | 0.817 | 14.273 | 0.188 | 6909 | 18.178 | 462.886 | 3.947 | 2.953 |
Unit/No | Glass Structure | Pane Type | Glass Type | Filler Type |
---|---|---|---|---|
1 | 3 + 12 + 3 | Double | Clear | Air |
2 | 3 + 16 + 3 | Double | Clear | Air |
3 | 3 + 16 + 3 | Double | Clear | Argon |
4 | 3 + 12 + 3 + 12 + 3 | Triple | Clear | Air |
5 | 3 + 16 + 3 + 16 + 3 | Triple | Clear | Air |
6 | 3 + 12 + 3 + 12 + 3 | Triple | Clear | Argon |
7 | 3 + 16 + 3 + 16 + 3 | Triple | Clear | Argon |
8 | 4 + 12 + 4 + 12 + 4 | Triple | Low-e | Air |
9 | 4 + 12 + 4 + 12 + 4 | Triple | Low-e | Argon |
10 | 4 + 16 + 4 + 16 + 4 | Triple | Low-e | Argon |
Ground Floor | Window | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
U-Value | Heating + Cooling Demand | Energy Saving | Initial Cost * | BCR | PB | U-Value | Heating + Cooling Demand | Energy Saving | Initial Cost * | BCR | PB | |
Unit/No | (W/m2K) | kWh | % | USD | Year | (W/m2K) | kWh | % | USD | Year | ||
1 | 1.504 | 8199 | 2.901 | 124.526 | 0.998 | 11.680 | 1.585 | 8326 | 1.397 | 181.632 | 0.739 | 15.765 |
2 | 1.093 | 8099 | 4.085 | 138.363 | 1.273 | 9.156 | 1.583 | 8307 | 1.622 | 204.173 | 0.767 | 15.193 |
3 | 0.859 | 8042 | 4.76 | 152.199 | 1.355 | 8.598 | 1.413 | 8284 | 1.894 | 235.468 | 0.775 | 15.029 |
4 | 0.707 | 8003 | 5.222 | 166.035 | 1.369 | 8.512 | 1.157 | 8246 | 2.344 | 267.317 | 0.845 | 13.793 |
5 | 0.6 | 7977 | 5.53 | 179.871 | 1.343 | 8.675 | 1.088 | 8232 | 2.51 | 278.763 | 0.87 | 13.395 |
6 | 0.522 | 7956 | 5.779 | 193.708 | 1.308 | 8.911 | 0.953 | 8227 | 2.569 | 282.511 | 0.877 | 13.287 |
7 | 0.462 | 7940 | 5.968 | 207.544 | 1.264 | 9.219 | 0.929 | 8216 | 2.581 | 293.43 | 0.887 | 13.145 |
8 | 0.414 | 7927 | 6.122 | 221.380 | 1.219 | 9.562 | 0.764 | 8114 | 3.908 | 380.799 | 0.991 | 11.765 |
9 | 0.375 | 7916 | 6.252 | 235.217 | 1.174 | 9.926 | 0.596 | 8078 | 4.334 | 382.309 | 1.093 | 10.665 |
10 | 0.343 | 7907 | 6.359 | 249.053 | 1.130 | 10.314 | 0.569 | 8057 | 4.701 | 395.264 | 1.12 | 10.405 |
11 | 0.316 | 7899 | 6.454 | 262.889 | 1.088 | 10.708 | ||||||
12 | 0.293 | 7891 | 6.549 | 276.725 | 1.051 | 11.091 | ||||||
13 | 0.273 | 7884 | 6.631 | 290.562 | 1.015 | 11.484 | ||||||
14 | 0.255 | 7878 | 6.702 | 304.398 | 0.980 | 11.887 | ||||||
15 | 0.24 | 7873 | 6.762 | 318.234 | 0.947 | 12.304 | ||||||
16 | 0.227 | 7868 | 6.821 | 332.070 | 0.917 | 12.714 | ||||||
17 | 0.214 | 7863 | 6.88 | 345.907 | 0.889 | 13.116 | ||||||
18 | 0.203 | 7858 | 6.939 | 359.743 | 0.863 | 13.512 | ||||||
19 | 0.194 | 7854 | 6.978 | 373.579 | 0.837 | 13.924 | ||||||
20 | 0.185 | 7850 | 7.034 | 387.416 | 0.813 | 14.331 |
Provided Inputs | Simulation Outputs | |||
---|---|---|---|---|
Azimuth angle 0° | Power per panel | 550 Watt | Slope angle | 8° |
PV technology | Crystalline silicon | Yearly PV energy production | 4771.23 kWh | |
PV installed | 3.3 kWp | Yearly in-plane irradiation | 1910.36 kWh/m2 | |
Number of panels | 6 | Spectral effects | 0.41% | |
Azimuth angle 179° | Power per panel | 550 Watt | Slope angle | 8° |
PV technology | Crystalline silicon | Yearly PV energy production | 4153.3 kWh | |
PV installed | 3.3 kWp | Yearly in-plane irradiation | 1676.77 kWh/m2 | |
Number of panels | 6 | Spectral effects | 0.31% |
Ref. Case | TS 825:2008 (Climate Zone 1) | TS 825:2024 (Climate Zone 2) | EnerPHit (Warm Temperate) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RC | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | ||
U-Value kWh/m2 | Wall | 1.73 | 0.697 (3) | 0.697 (3) | 0.697 (3) | 0.388 (7) | 0.388 (7) | 0.388 (7) | 0.291 (10) | 0.291 (10) | 0.291 (10) |
Roof | 2.41 | 0.431 (8) | 0.431 (8) | 0.431 (8) | 0.3 (12) | 0.3 (12) | 0.3 (12) | 0.3 (12) | 0.3 (12) | 0.3 (12) | |
G.floor | 3.14 | 0.615 (4) | 0.615 (4) | 0.615 (4) | 0.352 (8) | 0.352 (8) | 0.352 (8) | 0.290 (10) | 0.290 (10) | 0.290 (10) | |
Window | 2.02 | 0.762 (9) | 0.762 (9) | 0.762 (9) | 0.762 (9) | 0.762 (9) | 0.762 (9) | 0.569 (10) | 0.569 (10) | 0.569 (10) | |
Rnw. Energy production (kWh) | - | - | 8924.53 | 8924.53 | - | 8924.53 | 8924.53 | - | 8924.53 | 8924.53 | |
Elct. Vehicle (kWh) | - | - | - | 2295.00 | - | - | 2295.00 | - | - | 2295.00 | |
Heating demand (kWh) | 5546.63 | 2724.07 | 2724.07 | 2724.07 | 1987.77 | 1987.77 | 1987.77 | 1809.65 | 1809.65 | 1809.65 | |
Primary energy demand (kWh) | 11,868.42 | 8437.83 | 8437.83 | 10,732.83 | 7628.92 | 7628.92 | 9923.92 | 6442.76 | 6442.76 | 8737.76 | |
Energy saving (kWh) | - | 3430.59 | 3430.59 | 3430.59 | 4239.50 | 4239.50 | 4239.50 | 5425.66 | 5425.66 | 5245.66 | |
Net energy demand (kWh) | 11,868.42 | 8437.83 | −486.70 | 1808.30 | 7628.92 | −1295.61 | 999.39 | 6442.76 | −2481.77 | −186.77 | |
Inves. Cost (USD) | 0.00 | 1401.77 | 7401.77 | 7401.77 | 1804.93 | 7804.93 | 7804.93 | 2231.97 | 8231.97 | 8231.97 | |
Opr. Maint. Cost (USD) | 1164.43 | 827.85 | −47.73 | 177.61 | 748.49 | −127.02 | 98.15 | 632.11 | −243.39 | −18.23 | |
Repl. Cost (USD) | 185.00 | 185.00 | 185.00 | 185.00 | 185.00 | 185.00 | |||||
Salvage Cost (USD) | 150.00 | 150.00 | 150.00 | 150.00 | 150.00 | 150.00 | |||||
LCC (USD) | 13,570.94 | 11,050.00 | 6874.99 | 9501.30 | 10,528.21 | 6354.16 | 8978.39 | 9598.93 | 5424.88 | 8049.10 | |
ZEB | NZEB | NZEB | |||||||||
PEB | - | - | + | - | - | + | - | - | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aşıkoğlu Metehan, A. The Techno-Economic Feasibility of Retrofitting Buildings in Turkey Within the NZEB Framework: A Case Study in Izmir. Sustainability 2025, 17, 8399. https://doi.org/10.3390/su17188399
Aşıkoğlu Metehan A. The Techno-Economic Feasibility of Retrofitting Buildings in Turkey Within the NZEB Framework: A Case Study in Izmir. Sustainability. 2025; 17(18):8399. https://doi.org/10.3390/su17188399
Chicago/Turabian StyleAşıkoğlu Metehan, Ahunur. 2025. "The Techno-Economic Feasibility of Retrofitting Buildings in Turkey Within the NZEB Framework: A Case Study in Izmir" Sustainability 17, no. 18: 8399. https://doi.org/10.3390/su17188399
APA StyleAşıkoğlu Metehan, A. (2025). The Techno-Economic Feasibility of Retrofitting Buildings in Turkey Within the NZEB Framework: A Case Study in Izmir. Sustainability, 17(18), 8399. https://doi.org/10.3390/su17188399