Exploring the Development Potential of Critical Metals in New Energy Vehicles: Evidence from Megacity Shanghai, China
Abstract
1. Introduction
2. Research Methodology and Data Sources
2.1. Concept Definition
2.2. System Definition
2.3. Models and Methods
2.3.1. Calculation Method for the Stock of New Energy Passenger Vehicles
2.3.2. Calculation Method for the Disposal Volume of New Energy Passenger Vehicles
2.3.3. Calculation Method for the Stock, Demand, and Disposal Volume of Critical Metals in Discarded New Energy Passenger Vehicle Power Batteries
2.3.4. Calculation Method for the Demand and Disposal Volume of Ternary Batteries and New Energy Vehicles Based on the Consistency Analysis of Battery and Vehicle Lifespan
2.4. Scenario Setting
2.4.1. Baseline Scenario
2.4.2. Intermediate Scenario
2.4.3. Intensified Scenario
2.4.4. Basic Battery Scenario
2.4.5. Scenario of Battery Technology Progress
2.4.6. Scenario Where the Battery Lifespan Is Consistent with the Vehicle Lifespan
2.4.7. Scenario Where the Battery Lifespan Is Half of the Vehicle Lifespan
2.5. Data Source
3. Results
3.1. Research Findings
3.1.1. Renewable Energy Passenger Vehicle Ownership, Demand, and Scrappage Volume
3.1.2. Stock, Demand, and Scrappage of Critical Metals in Power Batteries of New Energy Passenger Vehicles
3.2. Sensitivity Analysis
4. Discussion
4.1. Strategic Benefits of Recycling Critical Metals from Discarded New Energy Passenger Vehicle Power Batteries
4.2. Environmental Benefits of Recycling Critical Metals from Discarded New Energy Passenger Vehicle Power Batteries
4.3. Economic Benefits of Recycling Critical Metals from Discarded New Energy Passenger Vehicle Power Batteries
5. Conclusions and Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, W.Q.; Wang, P.; Zhong, W.Q. Challenges and security strategies of China’s critical metals supply for carbon neutrality pledge. Bull. Chin. Acad. Sci. 2022, 37, 1577–1585. [Google Scholar] [CrossRef]
- Wu, Q.S.; Zhou, N.; Cheng, J.H. A review and prospects of the supply security of strategic critical minerals. Resour. Sci. 2020, 42, 1439–1451. [Google Scholar]
- IEA. Critical Minerals Market Review 2023; International Energy Agency: Paris, France, 2023. Available online: https://www.iea.org/reports/critical-minerals-market-review-2023 (accessed on 5 March 2024).
- Sun, X.L.; Ji, Q. Further enhance the global competitiveness of China’s new energy technologies. Natl. Gov. 2023, 26–29. [Google Scholar] [CrossRef]
- IEA. The Role of Critical Minerals in Clean Energy Transitions; OECD Publishing: Paris, France, 2021. Available online: https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions (accessed on 5 March 2025).
- Huang, J.; Dong, X.; Chen, J.; Zeng, A. The slow-release effect of recycling on rapid demand growth of critical metals from EV batteries up to 2050: Evidence from China. Resour. Policy 2023, 82, 103504. [Google Scholar] [CrossRef]
- State Council Office of the People’s Republic of China. Notice of the General Office of the State Council on the Issuance of the Development Plan for the New Energy Vehicle Industry (2021–2035). Available online: https://www.gov.cn/gongbao/content/2020/content_5560291.htm (accessed on 7 March 2024).
- Xinhua News Agency. Statement by Mr. Ding Xuexiang at the World Climate Action Summit of the United Nations Climate Change Conference in Dubai. 2023. Available online: https://www.gov.cn/govweb/yaowen/liebiao/202312/content_6918159.htm (accessed on 6 March 2024).
- Dale, H.; Cui, H.Y.; Marie, R.B. The Electric Vehicle Capital of the World: Toward a Vision of Total Electrification; International Council on Clean Transportation: Beijing, China, 2020. [Google Scholar]
- Shanghai Publishing. [Convenient] @ New Energy Vehicle Owners, Charging Is More Convenient! The City Added 51,000 Public (Including Dedicated) Charging Piles. Available online: https://mp.weixin.qq.com/s/0F7OYitg4X2GXNLkRuAvJQ (accessed on 7 March 2024).
- CCTV. Shanghai’s New Energy Vehicle Ownership Reaches 1.288 Million, Ranks No. 1 in Global Cities. 2024. Available online: https://news.cnr.cn/native/gd/20240123/t20240123_526568010.shtml (accessed on 11 August 2025).
- General Office of Shanghai Municipal People’s Government. Shanghai Implementation Plan for Accelerating the Development of New Energy Vehicle Industry (2021–2025); Shanghai Municipal People’s Government: Shanghai, China, 2021.
- Li, J.; Zeng, G.; Horta, S.; Martínez-Alanis, P.R.; Jacas Biendicho, J.; Ibáñez, M.; Xu, B.; Ci, L.; Cabot, A.; Sun, Q. Crystallographic engineering in micron-sized SiOx anode material toward stable high-energy-density lithium-ion batteries. ACS Nano 2025, 19, 16096–16109. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Luo, D.; Zhang, X.; Gao, S.; Gao, R.; Ma, Q.; Park, H.W.; Or, T.; Zhang, Y.; Chen, Z. Sustainable regeneration of spent cathodes for lithium-ion and post-lithium-ion batteries. Nat. Sustain. 2024, 7, 776–785. [Google Scholar] [CrossRef]
- Wesselkamper, J.; Hendrickson, T.P.; Lux, S.; von Delft, S. Recycling or Second Use? Supply Potentials and Climate Effects of End-of-Life Electric Vehicle Batteries. Environ. Sci. Technol. 2025, 59, 15751–15765. [Google Scholar] [CrossRef]
- Ziyao, A.; Jingjing, Y.; Haizhong, A.N.; Huajiao, L.I.; Di, D.O.N.G.; Meng, L.I.U.; Bo, R.E.N.; Baihua, L.I. Effectiveness evaluation of copper resource recycling strategies for China’s new energy vehicles. Resour. Sci. 2022, 44, 2440–2455. [Google Scholar]
- Baars, J.; Domenech, T.; Bleischwitz, R.; Melin, H.E.; Heidrich, O. Circular economy strategies for electric vehicle batteries reduce reliance on raw materials. Nat. Sustain. 2021, 4, 71–79. [Google Scholar] [CrossRef]
- Habib, K.; Hansdottir, S.T.; Habib, H. Critical metals for electromobility: Global demand scenarios for passenger vehicles, 2015–2050. Resour. Conserv. Recycl. 2020, 154, 104603. [Google Scholar] [CrossRef]
- Huang, C.; Xu, M.; Cui, S.; Li, Z.; Fang, H.; Wang, P. Copper-induced ripple effects by the expanding electric vehicle fleet: A crisis or an opportunity. Resour. Conserv. Recycl. 2020, 161, 104861. [Google Scholar] [CrossRef]
- Maisel, F.; Neef, C.; Marscheider-Weidemann, F.; Nissen, N.F. A forecast on future raw material demand and recycling potential of lithium-ion batteries in electric vehicles. Resour. Conserv. Recycl. 2023, 192, 106920. [Google Scholar] [CrossRef]
- Xu, D.X.; Dai, T.; Liu, L.T. Evolution of cobalt material flow in Japan from 2000 to 2020. Resour. Sci. 2023, 45, 2264–2275. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Q.; Liu, J.; Hao, Y.; Tang, Y.; Li, Y. The impacts of critical metal shortage on China’s electric vehicle industry development and countermeasure policies. Energy 2022, 248, 123646. [Google Scholar] [CrossRef]
- Li, J.; Li, F.Q.; Huang, L. Study on the recycling potential of cobalt metal from end-of-life products. China Environ. Sci. 2023, 43, 2960–2969. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wang, P.; Tang, L. Forecast of rare earth demand driven by electric vehicle industry in China: 2010–2060. Sci. Technol. Her. 2022, 40, 50–61. [Google Scholar]
- Dunn, J.; Kendall, A.; Slattery, M. Electric vehicle lithium-ion battery recycled content standards for the US—targets, costs, and environmental impacts. Resour. Conserv. Recycl. 2022, 185, 106488. [Google Scholar] [CrossRef]
- Nurdiawati, A.; Agrawal, T.K. Creating a circular EV battery value chain: End-of-life strategies and future perspective. Resour. Conserv. Recycl. 2022, 185, 106484. [Google Scholar] [CrossRef]
- Song, L.L.; Cao, Z.; Dai, M. Material metabolism and carbon emission reduction strategies of passenger cars in China’s mainland. Resour. Sci. 2021, 43, 501–512. [Google Scholar] [CrossRef]
- Tang, C.; Sprecher, B.; Tukker, A.; Mogollon, J.M. The impact of climate policy implementation on lithium, cobalt and nickel demand: The case of the Dutch automotive sector up to 2040. Resour. Policy 2021, 74, 102351. [Google Scholar] [CrossRef]
- Pauliuk, S.; Dhaniati, N.M.A.; Muller, D.B. Reconciling Sectoral Abatement Strategies with Global Climate Targets: The Case of the Chinese Passenger Vehicle Fleet. Environ. Sci. Technol. 2012, 46, 140–147. [Google Scholar] [CrossRef]
- Song, H.; Wang, C.; Sen, B.; Liu, G. China Factor: Exploring the Byproduct and Host Metal Dynamics for Gallium-Aluminum in a Global Green Transition. Environ. Sci. Technol. 2022, 56, 2699–2708. [Google Scholar] [CrossRef]
- Chen, X.; Weng, C. An examination of policy disclosure for adoption of electric vehicles and its impact on economic development with moderation of financial risk. Int. J. Veh. Inf. Commun. Syst. 2024, 9, 292–308. [Google Scholar] [CrossRef]
- Huang, Z.; Shi, Y.; Liang, D. Risk Identification and Prioritization in China’s New Energy Vehicle Supply Chain: An Integrated Tanimoto Similarity and Fuzzy-DEMATEL Approach; IEEE Transactions on Engineering Management: New York City, NY, USA, 2025. [Google Scholar]
- China Association of Automobile Manufacturers. Automotive Industry Production and Sales in September 2023. Available online: http://www.caam.org.cn/chn/4/cate_39/con_5236269.html (accessed on 8 March 2024).
- Shanghai Automobile Industry Association. Shanghai Automobile Industry Association Statistics 2021. Available online: http://36.99.117.104:8081/html/xingyetongji/show_17131.html (accessed on 7 March 2024).
- Yili Vehicle Knowledge Network. Shanghai Vehicle Sales Statistics and Analysis Report 2021. Available online: https://www.hfyili.cn/a/84422 (accessed on 6 March 2024).
- Zeng, A.; Chen, W.; Rasmussen, K.D.; Zhu, X.; Lundhaug, M.; Müller, D.B.; Tan, J.; Keiding, J.K.; Liu, L.; Dai, T.; et al. Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages. Nat. Commun. 2022, 13, 1341. [Google Scholar] [CrossRef]
- Sakunai, T.; Ito, L.; Tokai, A. Environmental impact assessment on production and material supply stages of lithium-ion batteries with increasing demands for electric vehicles. J. Mater. Cycles Waste Manag. 2021, 23, 470–479. [Google Scholar] [CrossRef]
- Deng, X.; Ge, J. Global wind power development leads to high demand for neodymium praseodymium (NdPr): A scenario analysis based on market and technology development from 2019 to 2040. J. Clean. Prod. 2020, 277, 123299. [Google Scholar] [CrossRef]
- Shanghai Municipal People’s Government. Notice of the General Office of the Shanghai Municipal People’s Government on Transmitting the Implementation Measures of Shanghai Municipality for Encouraging the Purchase and Use of New Energy Vehicles Formulated by Five Departments of the Municipal Development and Reform Commission. Available online: https://www.shanghai.gov.cn/ (accessed on 7 March 2024).
- An, F.; Qin, L.Z.; Wang, W.W.; Kang, L.P.; Mao, S.Y.; Jia, J.M.Z. Study on the Retirement Progress of Traditional Fuel Vehicles in China and Assessment of Environmental Benefits; Energy and Transportation Innovation Center: Beijing, China, 2020. [Google Scholar]
- Wang, P.; Yang, Y.; Heidrich, O.; Chen, L.; Chen, L.; Fishman, T.; Chen, W. Regional rare-earth element supply and demand balanced with circular economy strategies. Nat. Geosci. 2024, 17, 94–102. [Google Scholar] [CrossRef]
- China Society of Automotive Engineers (CSAE). “Energy-Saving and New Energy Vehicle Technology Roadmap 2.0” Officially Released. 2020. Available online: https://www.sae-china.org/news/society/202010/3957.html (accessed on 11 August 2025).
- China Automotive Power Battery Industry Innovation Alliance. Information Release | Monthly Power Battery Report, 11 January 2024. Available online: https://mp.weixin.qq.com/s/OU1uV15dvUsQnpbfvaMZtQ (accessed on 23 February 2024).
- Yao, K.; Zhang, L.; Huang, Y.; Chen, X.; Zhao, Y. Modeling long-term substitution potential of sodium-ion batteries under cost-parity scenarios. Nat. Energy 2025, 10, 392–404. [Google Scholar] [CrossRef]
- International Council on Clean Transportation (ICCT). Electrifying Road Transport with Less Mining: Strategies to Reduce Critical Mineral Demand. 2024. Available online: https://theicct.org/wp-content/uploads/2024/12/ID-206-%E2%80%93-Battery-outlook_report_final.pdf (accessed on 13 August 2025).
- Song, W.; Chen, J.; Wang, Z.; Kudreyko, A.; Qi, D.; Zio, E. Remaining Useful Life Prediction of Lithium-Ion Battery Based on Adaptive Fractional Lévy Stable Motion with Capacity Regeneration and Random Fluctuation Phenomenon. Fractal Fract. 2023, 7, 827. [Google Scholar] [CrossRef]
- Guo, J.; Li, Y.; Pedersen, K.; Stroe, D.-I. Lithium-Ion Battery Operation, Degradation, and Aging Mechanism in Electric Vehicles: An Overview. Energies 2021, 14, 5220. [Google Scholar] [CrossRef]
- Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A Review on Electric Vehicles: Technologies and Challenges. Smart Cities 2021, 4, 372–404. [Google Scholar] [CrossRef]
- First Financial Network. Shanghai Automobile Market Survey: New Energy Vehicle Market Share Exceeds 30%, Independent Brand Double Line Attack into Joint Venture Hinterland. Available online: https://www.yicai.com/news/101171377.html (accessed on 9 March 2024).
- Pescadores.com. Automobile Sales Growth Hits Three-Year Low in 2015, but New Energy Vehicle Production up 4 Times. Available online: https://www.thepaper.cn/newsDetail_forward_1419759 (accessed on 7 March 2024).
- Shanghai Automobile Sales Industry Association. Shanghai Automobile Sales Industry Development Report. 2020. Available online: https://www.shsasta.cn/article/56_0_0_0.html (accessed on 7 March 2024).
- Shanghai Automobile Industry Association. Shanghai Automobile Industry Association 2020 Annual Statistics. Available online: http://36.99.117.104:8081/html/xingyetongji/show_17097.html (accessed on 7 March 2024).
- Shanghai Municipal Bureau of Statistics. Shanghai Statistical Yearbook; China Statistics Press: Beijing, China, 2023.
- Shen, J.; Chen, X.; Li, H.; Cui, X.; Zhang, S.; Bu, C.; An, K.; Wang, C.; Cai, W. Incorporating Health Cobenefits into Province-Driven Climate Policy: A Case of Banning New Internal Combustion Engine Vehicle Sales in China. Environ. Sci. Technol. 2023, 57, 1214–1224. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Song, L.; Zhong, F.; Wang, W.; Hao, M.; Jian, X.; Chen, W. Spatiotemporal patterns of end-of-life passenger vehicle resources in China. Resour. Sci. 2025, 47, 950–962. [Google Scholar] [CrossRef]
- Peng, T.; Ou, X.; Yuan, Z.; Yan, X.; Zhang, X. Development and application of China provincial road transport energy demand and GHG emissions analysis model. Appl. Energy 2018, 222, 313–328. [Google Scholar] [CrossRef]
- Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook (2015–2022); China Statistics Press: Beijing, China, 2023.
- U.S. Geological Survey. Mineral Commodity Summaries 2023; U.S. Geological Survey: Reston, VA, USA, 2023.
- IEA. Global EV Outlook 2024; IEA: Paris, France, 2024. Available online: https://www.iea.org/reports/global-ev-outlook-2024 (accessed on 13 August 2025).
- Vox. The Clean Energy Transition Can’t Happen Without These Minerals. 2024. Available online: https://www.vox.com/climate/415038/critical-minerals-supply-chain-lithium-innovation (accessed on 5 March 2024).
- Xu, C.; Dai, Q.; Gaines, L.; Hu, M.; Tukker, A.; Steubing, B. Future material demand for automotive lithium-based batteries. Commun. Mater. 2020, 1, 99. [Google Scholar] [CrossRef]
- Ministry of Industry and Information Technology of the People’s Republic of China. Announcement of the Ministry of Industry and Information Technology of the People’s Republic of China. Available online: https://wap.miit.gov.cn/zwgk/zcwj/wjfb/gg/art/2023/art_ad77622c8a904f2a846f90f4452b23eb.html (accessed on 7 March 2024).
- CCTV. Seize the New Round of Scientific and Technological Revolution and Industrial Transformation and Seize the Commanding Heights of Future Industrial Competition. 2021. Available online: https://www.cnr.cn/ziben/yw/20221124/t20221124_526072896.shtml (accessed on 7 March 2025).
- He, P.W.; Peng, Y.S. Urban mineral development and utilization: Prospects, influencing factors and management policies. China Min. Mag. 2023, 32, 1–10. [Google Scholar]
- Tencent. China’s New Energy Industry May Have Reached Its “Most Dangerous” Moment. Available online: https://new.qq.com/rain/a/20231223A07VZB00 (accessed on 5 March 2024).
- Argonne National Laboratory. Low-Cobalt, Manganese-Rich Cathodes for Lithium-Ion Batteries. Technical Report. 2024. Available online: https://www.anl.gov/partnerships/lowcobalt-manganeserich-cathodes-for-lithiumion-batteries (accessed on 1 May 2025).
- Fang, K. Understanding the Feasibility of Manganese Substitution for Cobalt in Lithium-ion Battery Cathodes. ACS Appl. Energy Mater. 2021, 4, 123–130. [Google Scholar] [CrossRef]
- Rajkamal, A. Engineering lithium nickel cobalt manganese oxides as cathode materials: Challenges and substitution limits. J. Energy Storage Mater. 2024, 25, 1056–1064. [Google Scholar]
- Greindl, Z.; Tooze, G.; Ofosuhene-Wise, M.; Askeljung, A.; Coast, L.; Zabey, E. Waste Management: Priority Actions Towards a Nature-Positive Future; World Economic Forum: New York, NY, USA, 2023. [Google Scholar]
- Ministry of Ecology and Environment. Comprehensive Environmental Management of E-Waste in China (2012–2021); Ministry of Ecology and Environment: Beijing, China, 2021.
- Zhang, S.; Jiang, Y.; Zhang, S.; Choma, E.F. Health benefits of vehicle electrification through air pollution in Shanghai, China. Sci. Total Environ. 2024, 914, 169859. [Google Scholar] [CrossRef]
- Editorial. Batteries show the difficulties of being greener. Nat. Mater. 2022, 21, 131. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Cai, H.; Ou, L.; Elgowainy, A.; Alam, M.R.; Benavides, P.T.; Benvenutti, L.; Burnham, A.; Do, T.N.; Farhad, M.; et al. Greenhouse Gases, Regulated Emissions, and Energy Use in Technologies Model ® (2021 Excel); U.S. Department of Energy: Oak Ridge, TN, USA, 2021.
- Yoo, E.; Lee, U.; Kelly, J.C.; Wang, M. Life-cycle analysis of battery metal recycling with lithium recovery from a spent lithium-ion battery. Resour. Conserv. Recycl. 2023, 196, 107040. [Google Scholar] [CrossRef]
- Wu, J.; Xiao, L.; Shen, L.; Ran, J.; Zhong, H.; Zhu, Y.; Chen, H. Recent advancements in hydrometallurgical recycling technologies of spent lithium-ion battery cathode materials. Rare Met. 2024, 43, 879–899. [Google Scholar] [CrossRef]
- Zeng, X.; Xiao, T.; Xu, G.; Albalghiti, E.; Shan, G.; Li, J. Comparing the costs and benefits of virgin and urban mining. J. Manag. Sci. Eng. 2022, 7, 98–106. [Google Scholar] [CrossRef]
- Swain, B. Recovery and recycling of lithium: A review. Sep. Purif. Technol. 2017, 172, 388–403. [Google Scholar] [CrossRef]
- Globe. Global Power Battery Recycling Industry Accelerates, Huge Potential for Industry Spac. 2023. Available online: https://world.huanqiu.com/article/4DcPjhl35xv (accessed on 6 March 2024).
- CBC Metals. China Nickel, Lithium, Cobalt Price Trend Market Information. Available online: https://www.cbcie.com/ (accessed on 7 March 2024).
- Metal.com. China Battery-Grade Lithium Carbonate Spot Price Analysis. 2024. Available online: https://www.metal.com/en/newscontent/103125995 (accessed on 12 August 2025).
- Fan, E.; Li, L.; Wang, Z.; Lin, J.; Huang, Y.; Yao, Y.; Chen, R.; Wu, F. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chem. Rev. 2020, 120, 7020–7063. [Google Scholar] [CrossRef]
- Yang, Y.; Meng, X.; Cao, H.; Lin, X.; Liu, C.; Sun, Y.; Zhang, Y.; Sun, Z. Selective recovery of lithium from spent lithium iron phosphate batteries: A sustainable process. Green Chem. 2018, 20, 3121–3133. [Google Scholar] [CrossRef]
- Hao, S.S.; Dong, Q.Y.; Li, J.H. Analysis and tendency on the recycling mode of used EV batteries based on cost accounting. China Environ. Sci. 2021, 41, 4745–4755. [Google Scholar] [CrossRef]
BEVs * | PHEVs * | |
---|---|---|
Battery Capacity (kWh/vehicle) | 40 | 9 |
Critical Metal Types | Content (kg/kWh) | |
---|---|---|
Lithium Nickel Cobalt Aluminum Oxide Battery (NCA) * | Lithium Manganese Oxide Battery (LMO) * | |
Co | 0.18 | 0.00 |
Li | 0.10 | 0.14 |
Mn | 0.00 | 2.57 |
Ni | 0.95 | 0.00 |
Region | Unit/(Ten Thousand t) | |||
---|---|---|---|---|
Co * | Li * | Mn * | Ni * | |
Globe | 19 | 13 | 2000 | 330 |
China | 0.22 | 1.9 | 99 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, P.; Pan, Y.; Peng, Y.; Chen, L.; Zuo, L.; Song, H. Exploring the Development Potential of Critical Metals in New Energy Vehicles: Evidence from Megacity Shanghai, China. Sustainability 2025, 17, 8388. https://doi.org/10.3390/su17188388
He P, Pan Y, Peng Y, Chen L, Zuo L, Song H. Exploring the Development Potential of Critical Metals in New Energy Vehicles: Evidence from Megacity Shanghai, China. Sustainability. 2025; 17(18):8388. https://doi.org/10.3390/su17188388
Chicago/Turabian StyleHe, Pengwei, Yonghuai Pan, Yashan Peng, Li Chen, Lyushui Zuo, and Huiling Song. 2025. "Exploring the Development Potential of Critical Metals in New Energy Vehicles: Evidence from Megacity Shanghai, China" Sustainability 17, no. 18: 8388. https://doi.org/10.3390/su17188388
APA StyleHe, P., Pan, Y., Peng, Y., Chen, L., Zuo, L., & Song, H. (2025). Exploring the Development Potential of Critical Metals in New Energy Vehicles: Evidence from Megacity Shanghai, China. Sustainability, 17(18), 8388. https://doi.org/10.3390/su17188388