Spatio-Temporal Overlap of Cattle, Feral Swine, and White-Tailed Deer in North Texas
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Animal Monitoring
2.3. Image Analysis
2.4. Statistical Analysis
3. Results
3.1. Vegetation Type, Time of Day, and Season Influence Image Captures Across Species
3.2. Temporal Overlap Among Species
4. Discussion
4.1. Site Selection by the Species and Potential for Interaction
4.2. Temporal Movements of Species and Potential for Interaction
4.3. Seasonal Effects on Species’ Movements and Habitat Selection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holechek, J.L. Comparative contribution of grasses, forbs, and shrubs to the nutrition of ungulates. Rangelands 1984, 6, 261–263. [Google Scholar]
- Darr, R.L.; Williamson, K.M.; Garver, L.W.; Hewitt, D.G.; DeYoung, C.A.; Fulbright, T.E.; Gann, K.R.; Wester, D.B.; Draeger, D.A. Effects of enhanced nutrition on white-tailed deer foraging behavior. In Linking White-Tailed Deer Density, Nutrition, and Vegetation in a Stochastic Environment; DeYoung, C.A., Fulbright, T.E., Hewitt, D.G., Wester, D.B., Draeger, D.A., Eds.; The Wildlife Society: Washington, DC, USA, 2019; Volume 202, pp. 27–34. [Google Scholar]
- Burke, K.M. Seasonal Diets and Foraging Selectivity of White-Tailed Deer in the Rolling Plains Ecological Region. Master’s Thesis, Southwest Texas State University, San Marcos, TX, USA, 2003; 168p. [Google Scholar]
- Gastelum-Mendoza, F.I.; González-Saldívar, F.N.; Cantú-Ayala, C.M.; Uvalle-Sauceda, J.I.; Guerrero-Cárdenas, I.; Lozano-Cavazos, E.A. Forage diversity and selection in white-tailed deer (Odocoileus virginianus Texanus MEARNS) in Coahuila, Mexico. Agro Product. 2023, 16, 97–107. [Google Scholar] [CrossRef]
- Stewart, K.M.; Bowyer, R.T.; Kie, J.G.; Cimon, N.J.; Johnson, B.K. Temporospatial distributions of elk, mule deer, and cattle: Resource partitioning and competitive displacement. J. Mammology 2002, 83, 229–244. [Google Scholar] [CrossRef]
- Young, T.P.; Palmer, T.M.; Gadd, M.E. Competition and compensation among cattle, zebras, and elephants in a semi-arid savanna in Laikipia, Kenya. Biol. Conserv. 2005, 122, 351–359. [Google Scholar] [CrossRef]
- Stears, K.; Shrader, A.M. Coexistence between wildlife and livestock is contingent on cattle density and season but not differences in body size. PLoS ONE 2020, 15, e0236895. [Google Scholar] [CrossRef]
- Hines, S.L.; Fulbright, T.E.; Ortega-S, A.J.; Webb, S.L.; Hetwitt, D.G.; Boutton, T.W. Compatibility of dual enterprises for cattle and deer in North America: A quantitative review. Rangel. Ecol. Manag. 2021, 74, 21–31. [Google Scholar] [CrossRef]
- Bengis, R.G.; Leighton, F.A.; Fischer, J.R.; Artois, M.; Mörner, T.; Tate, C.M. The role of wildlife in emerging and re-emerging zoonoses. Rev. Sci. Tech.–Off. Int. Des Épizooties 2004, 23, 497–511. [Google Scholar]
- Miller, R.S.; Farnsworth, M.L.; Malmberg, J.L. Diseases at the livestock-wildlife interface: Status, challenges, and opportunities in the United States. Prev. Vet. Med. 2013, 110, 119–132. [Google Scholar] [CrossRef]
- USDA-National Agricultural Statistics Service (NASS) Texas Field Office. Annual Cattle Review: Texas and U.S. Inventory. 2025. Available online: https://data.nass.usda.gov/Statistics_by_State/Texas/Publications/Current_News_Release/2025_Rls/tx-cattle-review-2025.pdf (accessed on 8 August 2025).
- Lewis, J.S.; Corn, J.L.; Mayer, J.J.; Jordan, T.R.; Farnsworth, M.L.; Burdett, C.L.; VerCauteren, K.C.; Sweeney, S.J.; Miller, R.S. Historical, current, and potential population size estimates of invasive wild pigs (Sus scrofa) in the United States. Biol. Invasions 2019, 21, 2373–2384. [Google Scholar] [CrossRef]
- Wishart, J.; Lapidge, S.; Braysher, M.; Sarre, S.D.; Hone, J. Observations on effects of feral pig (Sus scrofa) age and sex on diet. Wildl. Res. 2015, 42, 470–474. [Google Scholar] [CrossRef]
- Gentle, M.; Speed, J.; Marshall, D. Consumption of crops by feral pigs (Sus scrofa) in a fragmented agricultural landscape. Aust. Mammal. 2015, 37, 194–200. [Google Scholar] [CrossRef]
- Pudenz, C.C.; Mitchell, J.L.; Schulz, L.L.; Tonsor, G.T. US Cattle producer adoption of Secure Beef Supply Plan enhanced biosecurity practices and Foot-and-Mouth Disease preparedness. Front. Vet. Sci. 2021, 8, 660857. [Google Scholar] [CrossRef] [PubMed]
- Militzer, N.; McLaws, M.; Rozstalnyy, A.; Li, Y.; Dhingra, M.; Auplish, A.; Mintiens, K.; Sabirovic, M.; von Dobschuetz, S.; Heilmann, M. Characterising biosecurity initiatives globally to support the development of a progressive management pathway for terrestrial animals: A scoping review. Animals 2023, 13, 2672. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.S.; Sweeny, S.J.; Slootmaker, C.; Grear, D.A.; Di Salvo, P.A.; Kiser, D.; Shwiff, S.A. Cross-species transmission between wild pigs, livestock, poultry, wildlife, and humans: Implications for disease risk management in North America. Sci. Rep. 2017, 7, 7821. [Google Scholar] [CrossRef]
- Stallknecht, D.E.; Nettles, V.F.; Erickson, G.A.; Jessup, D.A. Antibodies to vesicular stomatitis virus in populations of feral swine in the United States. J. Wildl. Dis. 1986, 22, 320–325. [Google Scholar] [CrossRef]
- Valdez-Espinoza, U.M.; Fadda, L.A.; Marques, R.; Osorio-Olvera, L.; Jiménez-García, D.; Lira-Noriega, A. The reemergence of the New World screwworm and its potential distribution in North America. Sci. Rep. 2025, 15, 23819. [Google Scholar] [CrossRef]
- Altuna, M.; Hickner, P.V.; Castro, G.; Mirazo, S.; de León, A.A.P.; Arp, A.P. New World screwworm (Cochliomyia hominivorax) myiasis in feral swine of Uruguay: One Health and transboundary disease implications. Parasites Vectors 2021, 14, 26. [Google Scholar] [CrossRef]
- National Agricultural Statistics Service (NASS); Agricultural Statistics Board; United States Department of Agriculture (USDA). Cattle (January 2025). Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/h702q636h/sf26b275x/h989sz55j/catl0125.pdf (accessed on 8 August 2025).
- Harvey, J.G.; Norris, A.B.; Tomeček, J.M.; Cooper-Norris, C.E. Landscape use and activity patterns of feral swine on rangelands in north Texas. Rangel. Ecol. Manag. 2023, 91, 1–10. [Google Scholar] [CrossRef]
- Brown, V.R.; Marlow, M.C.; Maison, R.M.; Gidlewski, T.; Bowen, R.; Bosco-Lauth, A. Current status and future recommendations for feral swine disease surveillance in the United States. J. Anim. Sci. 2019, 97, 2279–2282. [Google Scholar] [CrossRef]
- Kukielka, E.; Barasona, J.A.; Cowie, C.E.; Drewe, J.A.; Gortazar, C.; Cotarelo, I.; Vicente, J. Spatial and temporal interactions between livestock and wildlife in south central Spain assessed by camera traps. Prev. Vet. Med. 2013, 112, 213–221. [Google Scholar] [CrossRef]
- Carrasco-Garcia, R.; Barasona, J.A.; Gortazar, C.; Montoro, V.; Sanchez-Vizcaino, J.M.; Vicente, J. Wildlife and livestock use of extensive farm resources in South Central Spain: Implications for disease transmission. Eur. J. Wildl. Res. 2016, 62, 65–78. [Google Scholar] [CrossRef]
- Scott, A.B.; Phalen, D.; Hernandez-Jover, M.; Singh, M.; Groves, P.; Toribio, J.L.M.L. Wildlife presence and interactions with chickens on Australian commercial chicken farms assessed by camera traps. Avian Dis. 2018, 62, 65–72. [Google Scholar] [CrossRef]
- Ikeda, T.; Uchida, K.; Matsuura, Y.; Takahashi, H.; Yoshida, T.; Kaji, K.; Koizumi, I. Seasonal and diel activity patterns of eight sympatric mammals in northern Japan revealed by an intensive camera-trap survey. PLoS ONE 2016, 11, e0163602. [Google Scholar] [CrossRef] [PubMed]
- Carswell, B.M.; Boyle, S.P.; Brook, R.K.; van Beest, F.M.; Wal, E.V. Variation in spatiotemporal activity may reduce competitive interactions between invasive wild pigs (Sus scrofa) and native mammal species. Can. J. Zool. 2024, 102, 410–418. [Google Scholar] [CrossRef]
- Edge, A.C.; Yates, C.J.; Rosenberger, J.P.; Little, A.R.; Killmaster, C.H.; Johannsen, K.L.; Osborn, D.A.; Miller, K.V.; D’Angelo, G.J. Diel activity relationships of sympatric white-tailed deer, black bear, and wild pig populations in the southern Appalachian Mountains of Georgia. Southeast. Nat. 2025, 24, 70–82. [Google Scholar] [CrossRef]
- Ridout, M.; Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 2009, 14, 322–337. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 9 August 2023).
- Meredith, M.; Ridout, M. Overlap: Estimates of Coefficient of Overlapping for Animal Activity Patterns, R Package version 0.3.4. 2021. Available online: https://cran.r-project.org/package=overlap (accessed on 9 August 2023).
- VerCauteren, K.C.; Lavelle, M.J.; Hygnstrom, S. From the field: Fences and deer-damage management: A review of designs and efficacy. Wildl. Soc. Bull. 2006, 34, 191–200. [Google Scholar] [CrossRef]
- Negus, P.M.; Marshall, J.C.; Clifford, S.E.; Blessing, J.J.; Steward, A.L. No sitting on the fence: Protecting wetlands from feral pig damage by exclusion fences requires effective fence maintenance. Wetl. Ecol. Manag. 2019, 27, 581–585. [Google Scholar] [CrossRef]
- MacDonald, A.M.; Jones, P.F.; Hanlon, J.A.; Martin, B.H.; Jakes, A.F. How did the deer cross the fence: An evaluation of wildlife-friendlier fence modifications to facilitate deer movement. Front. Conserv. Sci. 2022, 3, 991765. [Google Scholar] [CrossRef]
- Cooper, S.M.; Scott, H.M.; de la Garza, G.R.; Deck, A.L.; Cathey, J.C. Distribution and interspecies contact of feral swine and cattle on rangeland in south Texas: Implications for disease transmission. J. Wildl. Dis. 2010, 46, 152–164. [Google Scholar] [CrossRef]
- Cooper, S.M.; Sieckenius, S.S. Habitat selection of wild pigs and northern bobwhites in shrub-dominated rangeland. Southeast. Nat. 2016, 15, 382–393. [Google Scholar] [CrossRef]
- Clontz, L.M.; Pepin, K.M.; VerCauteren, K.C.; Beasley, J.C. Influence of biotic and abiotic factors on home range size and shape of invasive wild pigs (Sus scrofa). Pest Manag. Sci. 2022, 78, 914–928. [Google Scholar] [CrossRef] [PubMed]
- Chinn, S.M.; Hepinstall-Cymerman, J.; Beasley, J.C. Reproduction drives changes in space use and habitat selection in a highly adaptable invasive mammal. J. Mammal. 2023, 104, 479–495. [Google Scholar] [CrossRef]
- Miller, T.G. Swine Feed Efficiency: Influence of Temperature; Iowa Pork Industry Center Fact Sheets, Paper 11; Iowa Pork Industry Center, Iowa State University: Ames, IA, USA, 2012; 2p. [Google Scholar]
- Campbell, T.A.; Long, D.B. Feral swine damage and damage management in forested ecosystems. For. Ecol. Manag. 2009, 257, 2319–2326. [Google Scholar] [CrossRef]
- Schlichting, P.E.; Richardson, C.L.; Chandler, B.; Gipson, P.S.; Mayer, J.J.; Dabbert, C.B. Wild pig (Sus scrofa) reproduction and diet in the Rolling Plains of Texas. Southwest. Nat. 2015, 60, 321–326. [Google Scholar] [CrossRef]
- Oldfield, C.A.; Evans, J.P. Twelve years of repeated wild hog activity promotes population maintenance of an invasive clonal plant in a coastal dune ecosystem. Ecol. Evol. 2016, 6, 2569–2578. [Google Scholar] [CrossRef]
- Cooper, S.M.; Perotto-Baldivieso, H.L.; Owens, M.K.; Meek, M.G.; Figueroa-Pagán, M. Distribution and interaction of white-tailed deer and cattle in a semi-arid grazing system. Agric. Ecosyst. Environ. 2008, 127, 85–92. [Google Scholar] [CrossRef]
- O’Brien, P.; Wal, E.V.; Koen, E.L.; Brown, C.D.; Guy, J.; van Beest, F.M.; Brook, R.K. Understanding habitat co-occurrence and the potential for competition between native mammals and invasive wild pigs (Sus scrofa) at the northern edge of their range. Can. J. Zool. 2019, 97, 537–546. [Google Scholar] [CrossRef]
- Bailey, D.W. Identification and creation of optimum habitat conditions for livestock. Rangel. Ecol. Manag. 2005, 58, 109–118. [Google Scholar] [CrossRef]
- Yarrow, G.K. The Potential for Interspecific Resource Competition Between White-Tailed Deer and Feral Hogs in the Post Oak Savannah Region of Texas. Ph.D. Thesis, Stephen F. Austin State University, Nacogdoches, TX, USA, 1987; 245p. [Google Scholar]
- Grovenburg, T.W.; Monteith, K.L.; Klaver, R.W.; Jenks, J.A. Predator evasion by white-tailed deer fawns. Anim. Behav. 2012, 84, 59–65. [Google Scholar] [CrossRef]
- Wiemers, D.W.; Fulbright, T.E.; Wester, D.B.; Ortega-S, J.A.; Rasmussen, A.; Hewitt, D.G.; Hellickson, M.W. Role of thermal environment in habitat selection by male white-tailed deer during summer in Texas, USA. Wildl. Biol. 2014, 20, 47–56. [Google Scholar] [CrossRef]
- Quinton, D.A.; Horejsi, R.G.; Flinders, J.T. Influence of brush control on white-tailed deer diets in north-central Texas. J. Range Manag. 1979, 32, 93–97. [Google Scholar] [CrossRef]
- Owens, M.K.; Launchbaugh, K.L.; Holloway, J.W. Pasture characteristics affecting spatial distribution by cattle in mixed brush communities. J. Range Manag. 1991, 44, 118–123. [Google Scholar] [CrossRef]
- Teague, R.; Borchardt, R.; Ansley, J.; Pinchak, B.; Cox, J.; Foy, J.K.; McGrann, J. Sustainable management strategies for mesquite rangeland: The Waggoner Kite project. Rangelands 1997, 19, 4–8. [Google Scholar]
- Barasona, J.A.; Latham, M.C.; Acevedo, P.; Armenteros, J.A.; Latham, A.D.M.; Gortazar, C.; Carro, F.; Soriguer, R.C.; Vicente, J. Spatiotemporal interactions between wild boar and cattle: Implications for cross-species disease transmission. Vet. Res. 2014, 45, 122. [Google Scholar] [CrossRef]
- Langholz, J.A.; Jay-Russell, M.T. Potential role of wildlife in pathogenic contamination of fresh produce. Hum.-Wildl. Interact. 2013, 7, 140–157. [Google Scholar]
- Barasona, J.A.; VerCauteren, K.C.; Saklou, N.; Gortazar, C.; Vicente, J. Effectiveness of cattle operated bump gates and exclusion fences in preventing ungulate multi-host sanitary interaction. Prev. Vet. Med. 2013, 111, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Zamir, L.; Baum, M.; Bardenstein, S.; Blum, S.E.; Moran-Gilad, J.; Markovich, M.P.; King, R.; Lapid, R.; Hamad, R.; Even-Tov, B.; et al. The association between natural drinking water sources and the emergence of zoonotic leptospirosis among grazing beef cattle herds during a human outbreak. One Health 2022, 14, 100372. [Google Scholar] [CrossRef] [PubMed]
- Saldo, E.A.; Jensen, A.J.; Muthersbaugh, M.S.; Butfiloski, J.W.; Cantrell, J.; Kilgo, J.C.; Ruth, C.; Yarrow, G.K.; Jachowski, D.S. Spatiotemporal overlap with invasive wild pigs (Sus scrofa) varies by species and season in a temperate ecosystem. Ecosphere 2023, 14, e4500. [Google Scholar] [CrossRef]
- Dykstra, A.M.; Baruzzi, C.; VerCauteren, K.; Strickland, B.; Lashley, M. Biological invasions disrupt activity patterns of native wildlife: An example from wild pigs. Food Webs 2023, 34, e00270. [Google Scholar] [CrossRef]
- Piccione, G.; Giannetto, C.; Casella, S.; Caola, G. Daily locomotor activity in five domestic animals. Anim. Biol. 2010, 60, 15–24. [Google Scholar] [CrossRef]
- Sawalhah, M.N.; Cibils, A.F.; Maladi, A.; Cao, H.; Vanleeuwen, D.M.; Holechek, J.L.; Rubio, C.M.B.; Wesley, R.L.; Endecott, R.L.; Mulliniks, T.J.; et al. Forage and weather influence day versus nighttime cow behavior and calf weaning weights on rangeland. Rangel. Ecol. Manag. 2016, 69, 134–143. [Google Scholar] [CrossRef]
- Garabedian, J.E.; Cox, K.J.; Vukovich, M.; Kilgo, J.C. Co-occurrence of native white-tailed deer and invasive wild pigs: Evidence for competition? Ecosphere 2023, 14, e4435. [Google Scholar] [CrossRef]
- Franckowiak, G.A.; Torres-Poché, Z.; Poché, R.M. Activity patterns by feral hogs in the Texas panhandle. Am. Midl. Nat. 2018, 180, 233–245. [Google Scholar] [CrossRef]
- Wolfson, D.W.; Schlichting, P.E.; Boughton, R.K.; Miller, R.S.; VerCauteren, K.C.; Lewis, J.S. Comparison of daily activity patterns across seasons using GPS telemetry and camera trap data for a widespread mammal. Ecosphere 2023, 14, e4728. [Google Scholar] [CrossRef]
- Triguero-Ocana, R.; Barasona, J.A.; Carro, F.; Soriguer, R.C.; Vicente, J.; Acevedo, P. Spatio-temporal trends in the frequency of interspecific interactions between domestic and wild ungulates from Mediterranean Spain. PLoS ONE 2019, 14, e0211216. [Google Scholar] [CrossRef] [PubMed]
- Kurz, J.C.; Marchinton, R.L. Radiotelemetry studies of feral hogs in South Carolina. J. Wildl. Manag. 1972, 36, 1240–1248. [Google Scholar] [CrossRef]
- Russo, L.; Massei, G.; Genov, P.V. Daily home range and activity of wild boar in a Mediterranean area free from hunting. Ethol. Ecol. Evol. 1997, 9, 287–294. [Google Scholar] [CrossRef]
- Keuling, O.; Stier, N.; Roth, M. How does hunting influence activity and spatial usage in wild boar Sus scrofa L.? Eur. J. Wildl. Res. 2008, 54, 729–737. [Google Scholar] [CrossRef]
- Podgórski, T.; Baś, G.; Jędrzejewska, B.; Sönnichsen, L.; Śnieżko, S.; Jędrzejewski, W.; Okarma, H. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: Primeval forest and metropolitan area. J. Mammal. 2013, 94, 109–119. [Google Scholar] [CrossRef]
- Bedson, C.P.E.; Thomas, L.; Wheeler, P.M.; Reid, N.; Harris, W.E.; Lloyd, H.; Mallon, D.; Preziosi, R. Estimating density of mountain hares using distance sampling: A comparison of daylight visual surveys, night-time thermal imaging and camera traps. Wildl. Biol. 2021, 3, wlb-00802. [Google Scholar] [CrossRef]
- Webb, S.L.; Gee, K.L.; Strickland, B.K.; Demarais, S.; DeYoung, R.W. Measuring fine-scale white-tailed deer movements and environmental influences using GPS collars. Int. J. Ecol. 2010, 2010, 459610. [Google Scholar] [CrossRef]
- Guthmann, A.; Onyango, M.B.; Iannarilli, F.; Packer, C. Livestock activity shifts large herbivore temporal distributions to their crepuscular edges. J. Anim. Ecol. 2024, 93, 231–245. [Google Scholar] [CrossRef]
- Di Bitetti, M.S.; Iezzi, M.E.; Cruz, P.; Varela, D.; De Angelo, C. Effects of cattle on habitat use and diel activity of large native herbivores in a South American rangeland. J. Nat. Conserv. 2020, 58, 125900. [Google Scholar] [CrossRef]
- Crawford, D.A.; Conner, L.M.; Morris, G.; Cherry, M.J. Predation risk increases intraspecific heterogeneity in white-tailed deer diel activity patterns. Behav. Ecol. 2021, 32, 41–48. [Google Scholar] [CrossRef]
- Kautz, T.M.; Fowler, N.L.; Petroelje, T.R.; Beyer, D.E.; Duquette, J.F.; Belant, J.L. White-tailed deer exploit temporal refuge from multi-predator and human risks on roads. Ecol. Evol. 2022, 12, e9125. [Google Scholar] [CrossRef]
- Beier, P.; McCullough, D.R. Factors influencing white-tailed deer activity patterns and habitat use. Wildl. Monogr. 1990, 109, 3–51. [Google Scholar]
- Pollock, M.T.; Whittaker, D.G.; Demarais, S.; Zaiglin, R.E. Vegetation characteristics influencing site selection by male white-tailed deer in Texas. J. Range Manag. 1994, 47, 235–239. [Google Scholar] [CrossRef]
- Giro, A.; Pezzopane, J.R.M.; Junior, W.B.; de Faria Pedroso, A.; Lemes, A.P.; Botta, D.; Romanello, N.; do Nascimento Barreto, A.; Garcia, A.R. Behavior and body surface temperature of beef cattle in integrated crop-livestock systems with or without tree shading. Sci. Total Environ. 2019, 684, 587–596. [Google Scholar] [CrossRef]
- do Nascimento Barreto, A.; Junior, W.B.; Pezzopane, J.R.M.; de Campos Bernardi, A.C.; de Faria Pedroso, A.; Marcondes, C.R.; Jacintho, M.A.C.; Romanello, N.; De Sousa, M.A.P.; Costa, L.N.; et al. Thermal comfort and behavior of beef cattle in pasture-based systems monitored by visual observation and electronic device. Appl. Anim. Behav. Sci. 2022, 253, 105687. [Google Scholar] [CrossRef]
- Cheleuitte-Nieves, C.; Perotto-Baldevieso, H.L.; Wu, X.B.; Cooper, S.M. Environmental and landscape influences on the spatial and temporal distribution of a cattle herd in a South Texas rangeland. Ecol. Process. 2020, 9, 39. [Google Scholar] [CrossRef]
- Zuo, H.; Miller-Goodman, M.S. Landscape use by cattle affected by pasture developments and season. J. Range Manag. 2004, 57, 426–434. [Google Scholar] [CrossRef]
- Dykes, J.L. Thermal Ecology of White-Tailed Deer on Southwestern Rangelands. Ph.D. Thesis, Texas A&M University–Kingsville, Kingsville, TX, USA, 2022; 104p. [Google Scholar]
- Williams, W.J.; Wardroup, S.E.; Traweek, M.S. White-Tailed Deer Breeding Chronology And Reproduction; Federal Aid in Fish and Wildlife Restoration Project W-127-R-3, Job 95; Texas Parks and Wildlife Department: Austin, TX, USA, 1995; 44p. [Google Scholar]
- Cowie, C.E.; Hutchings, M.R.; Barasona, J.A.; Gortázar, C.; Vicente, J.; White, P.C. Interactions between four species in a complex wildlife: Livestock disease community: Implications for Mycobacterium bovis maintenance and transmission. Eur. J. Wildl. Res. 2016, 62, 51–64. [Google Scholar] [CrossRef]
- D’Angelo, G.J.; Comer, C.E.; Kilgo, J.C.; Drennan, C.D.; Osborn, D.A.; Miller, K.V. Daily movements of female white-tailed deer relative to parturition and breeding. Proc. Annu. Conf. Southeast Assoc. Fish Wildl. Agencies 2005, 58, 292–301. [Google Scholar]
- Adams, C.E.; Higginbotham, B.J.; Rollins, D.; Taylor, R.B.; Skiles, R.; Mapston, M.; Turman, S. Regional perspectives and opportunities for feral hog management in Texas. Wildl. Soc. Bull. 2005, 33, 1312–1320. [Google Scholar] [CrossRef]
- Mapston, M.E. Feral hogs in Texas. Texas Cooperative Extension Wildlife Services. B–6149; Texas A&M University System: College Station, TX, USA, 2004; 26p. [Google Scholar]
- Richardson, C.; Lionberger, J.; Miller, G. White-Tailed Deer Management in the Rolling Plains of Texas; Texas Parks and Wildlife Department: Austin, TX, USA, 2008; 40p. [Google Scholar]
- Norris, A.B.; Miller, M.S.; Muir, J.P.; Harp, R.M.; Kinman, L.A.; Cherry, N.M. Winter dynamics of white-tailed deer browse nutritive value in the southern cross timbers and prairies of Texas. Southwest. Nat. 2023, 67, 27–38. [Google Scholar] [CrossRef]
- Friesenhahn, B.A.; DeYoung, R.W.; Cherry, M.J.; Perotto-Baldivieso, H.L.; VerCauteren, K.C.; Snow, N.P. Movements and resource selection of wild pigs associated with growth stages of corn. Crop Prot. 2023, 163, 106119. [Google Scholar] [CrossRef]
- Johann, F.; Handschuh, M.; Linderoth, P.; Heurich, M.; Dormann, C.F.; Arnold, J. Variability of daily space use in wild boar Sus scrofa. Wildl. Biol. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Allison, C.D.; Kothmann, M.M.; Rittenhouse, L.R. Efficiency of forage harvest by grazing cattle. J. Range Manag. 1982, 35, 351–354. [Google Scholar] [CrossRef]
- Pinchak, W.E.; Canon, S.K.; Heitschmidt, R.K.; Dowhower, S.L. Effect of long-term, year-long grazing at moderate and heavy rates of stocking on diet selection and forage intake dynamics. J. Range Manag. 1990, 43, 304–309. [Google Scholar] [CrossRef]
- Ansley, R.J.; Cooper, C.E.; Zhang, T. Invasion promotes invasion: Facilitation of C3 perennial grass dominance in mixed C3/C4 grassland by an invasive C3 woody sprouter (Prosopis glandulosa). Ecol. Evol. 2019, 9, 13438–13449. [Google Scholar] [CrossRef]
- Whitney, T.R.; Waldron, D.F.; Willingham, T.D. Evaluating nutritional status of Dorper and Rambouillet ewes in range sheep production. Sheep Goat Res. J. 2009, 24, 10–16. [Google Scholar]
- Scifres, C.J.; Kothmann, M.M.; Mathis, G.W. Range site and grazing system influence regrowth after spraying honey mesquite. J. Range Manag. 1974, 27, 97–100. [Google Scholar] [CrossRef]
- Whisenant, S.G.; Burzlaff, D.F. Predicting green weight of mesquite (Prosopis glandulosa Torr.). J. Range Manag. 1978, 31, 396–397. [Google Scholar] [CrossRef]
- Kramp, B.A.; Ansley, R.J.; Tunnell, T.R. Survival of mesquite seedlings emerging from cattle and wildlife feces in a semi-arid grassland. Southwest. Nat. 1998, 43, 300–312. [Google Scholar]
- Ansley, R.J.; Pinchak, W.E.; Owens, M.K. Mesquite pod removal by cattle, feral hogs, and native herbivores. Rangel. Ecol. Manag. 2017, 70, 469–476. [Google Scholar] [CrossRef]
- Elston, J.J.; Hewitt, D.G. Intake of mast by wildlife and the potential for competition with wild boars. Southwest. Nat. 2010, 55, 57–66. [Google Scholar] [CrossRef]
- Fay, A.S.; Zenas, S.J.; Smith, M.D.; Ditchkoff, S.S. Impacts of wild pigs on acorn availability as a food source for native wildlife. Wildl. Res. 2023, 50, 1123–1130. [Google Scholar] [CrossRef]
- Saldo, E.A.; Jenson, A.J.; Muthersbaugh, M.S.; Ruth, C.; Cantrell, J.; Butfiloski, J.W.; Yarrow, G.K.; Kilgo, J.C.; Jackowski, D.S. Unintended consequences of wildlife feeders on spatiotemporal activity of white-tailed deer, coyotes, and wild pigs. J. Wildl. Manag. 2024, 88, e22644. [Google Scholar] [CrossRef]
- McDonough, M.D. Population Response of Eastern Wild Turkeys and White-Tailed Deer to Removal of Wild Pigs. Master’s Thesis, Auburn University, Auburn, AL, USA, 2023; 76p. [Google Scholar]
- Lavelle, M.J.; Kay, S.L.; Pepin, K.M.; Grear, D.A.; Campa, H., III; VerCauteren, K.C. Evaluating wildlife-cattle contact rates to improve the understanding of dynamics of bovine tuberculosis transmission in Michigan, USA. Prev. Vet. Med. 2016, 135, 28–36. [Google Scholar] [CrossRef]
- Yang, A.; Boughton, R.K.; Miller, R.S.; Wight, B.; Anderson, W.M.; Beasley, J.C.; VerCauteren, K.C.; Pepin, K.M.; Wittemyer, G. Spatial variation in direct and indirect contact rates at the wildlife-livestock interface for informing disease management. Prev. Vet. Med. 2021, 194, 105423. [Google Scholar] [CrossRef]
- Yang, A.; Schlichting, P.; Wight, B.; Anderson, W.M.; Chinn, S.M.; Wilber, M.Q.; Miller, R.S.; Beasley, J.C.; Boughton, R.K.; VerCauteren, K.C.; et al. Effects of social structure and management on risk of disease establishment in wild pigs. J. Anim. Ecol. 2021, 90, 820–833. [Google Scholar] [CrossRef]
Vegetation Type | |||
---|---|---|---|
Species | Bottomland | Deep Upland | Shallow Upland |
Cattle | 149.9 ± 45.8 X | 109.8 ± 23.8 X | 208.2 ± 63.5 X |
Deer | 59.1 ± 20.5 X,Y | 22.3 ± 5.6 Y | 34.5 ± 12.0 Y |
Swine 2 | 16.1 ± 7.0 A,Y | 2.8 ± 1.0 B,Z | 7.8 ± 3.5 A,B,Z |
Species | |||
---|---|---|---|
Time Block | Cattle | Deer | Swine |
0:00–3:59 | 29.3 ± 6.0 C,X | 10.8 ± 2.6 B,Y | 1.0 ± 0.4 C,Z |
4:00–7:59 | 41.5 ± 8.4 C,X | 18.0 ± 4.2 A,B,Y | 2.3 ± 0.8 A,B,C,Z |
8:00–11:59 | 135.1 ± 26.4 A,X | 21.7 ± 5.0 A,Y | 5.0 ± 1.6 A,Z |
12:00–15:59 | 79.7 ± 15.7 B,X | 16.9 ± 4.0 A,B,Y | 3.3 ± 1.1 A,B,Z |
16:00–19:59 | 99.8 ± 19.6 A,B,X | 13.7 ± 3.3 A,B,Y | 3.7 ± 1.2 A,B,Z |
20:00–23:59 | 36.8 ± 7.4 C,X | 14.2 ± 3.4 A,B,Y | 2.1 ± 0.7 B,C,Z |
Species | Δ |
---|---|
Cattle and Swine | 0.920 (0.879–0.960) |
Cattle and Deer | 0.765 (0.734–0.795) |
Swine and Deer | 0.829 (0.772–0.888) |
Season | ||||
---|---|---|---|---|
Species | Summer | Fall | Winter | Spring |
Cattle | 40.6 ± 8.0 B,X | 128.0 ± 24.3 A,X | 137.3 ± 26.1 A,X | 117.7 ± 22.4 A,X |
Deer | 29.2 ± 6.3 A,B,X | 35.1 ± 7.5 A,Y | 11.0 ± 2.5 C,Y | 20.3 ± 4.4 B,Y |
Swine | 2.0 ± 0.7 B,Y | 6.5 ± 1.9 A,Z | 5.3 ± 1.6 A,Y | 3.5 ± 1.1 A,B,Z |
Vegetation Type | Species | Δ |
---|---|---|
Bottomland | Cattle and Swine | 0.889 (0.832–0.934) |
Cattle and Deer | 0.779 (0.735–0.824) | |
Swine and Deer | 0.828 (0.754–0.899) | |
Shallow Upland | Cattle and Swine | 0.755 (0.656–0.855) |
Cattle and Deer | 0.596 (0.537–0.650) | |
Swine and Deer | 0.823 (0.724–0.914) | |
Deep Upland | Cattle and Swine | 0.842 (0.754–0.913) |
Cattle and Deer | 0.825 (0.779–0.866) | |
Swine and Deer | 0.814 (0.708–0.901) |
Season | Species | Δ |
---|---|---|
Summer | Cattle and Swine | 0.744 (0.609–0.853) |
Cattle and Deer | 0.796 (0.742–0.847) | |
Swine and Deer | 0.680 (0.533–0.814) | |
Fall | Cattle and Swine | 0.808 (0.724–0.874) |
Cattle and Deer | 0.836 (0.790–0.880) | |
Swine and Deer | 0.766 (0.674–0.846) | |
Winter | Cattle and Swine | 0.875 (0.803–0.937) |
Cattle and Deer | 0.806 (0.744–0.859) | |
Swine and Deer | 0.715 (0.600–0.825) | |
Spring | Cattle and Swine | 0.738 (0.630–0.835) |
Cattle and Deer | 0.739 (0.683–0.796) | |
Swine and Deer | 0.818 (0.716–0.916) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harvey, J.G.; Norris, A.B.; Tomeček, J.M.; Cooper-Norris, C.E. Spatio-Temporal Overlap of Cattle, Feral Swine, and White-Tailed Deer in North Texas. Sustainability 2025, 17, 8354. https://doi.org/10.3390/su17188354
Harvey JG, Norris AB, Tomeček JM, Cooper-Norris CE. Spatio-Temporal Overlap of Cattle, Feral Swine, and White-Tailed Deer in North Texas. Sustainability. 2025; 17(18):8354. https://doi.org/10.3390/su17188354
Chicago/Turabian StyleHarvey, Jacob G., Aaron B. Norris, John M. Tomeček, and Caitlyn E. Cooper-Norris. 2025. "Spatio-Temporal Overlap of Cattle, Feral Swine, and White-Tailed Deer in North Texas" Sustainability 17, no. 18: 8354. https://doi.org/10.3390/su17188354
APA StyleHarvey, J. G., Norris, A. B., Tomeček, J. M., & Cooper-Norris, C. E. (2025). Spatio-Temporal Overlap of Cattle, Feral Swine, and White-Tailed Deer in North Texas. Sustainability, 17(18), 8354. https://doi.org/10.3390/su17188354