Soil Analytical Capabilities for Sustainable Land Management Across National Soil Services in the Mediterranean
Abstract
1. Introduction
2. Materials and Methods
2.1. Survey Design and Distribution
2.2. Data Collection and Analysis
3. Results
3.1. Analytical Capabilities and Methods
3.2. Laboratory Infrastructure and Instrumentation
3.3. Personnel and Data Management
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SDG | Sustainable Development Goal |
CEC | Cation Exchange Capacity |
PRIMA | Partnership for Research and Innovation in the Mediterranean Area |
GSP | Global Soil Partnership |
EC | Electrical Conductivity |
SPE | Saturated Paste Extract |
FAO | Food and Agriculture Organization |
LIS | Laboratory Information Systems |
References
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture-Systems at Breaking Point: Synthesis Report; FAO: Rome, Italy, 2021. [Google Scholar]
- Brevik, E.C.; Slaughter, L.; Singh, B.R.; Steffan, J.J.; Collier, D.; Barnhart, P.; Pereira, P. Soil and Human Health: Current Status and Future Needs. Air Soil Water Res. 2020, 13, 1–23. [Google Scholar] [CrossRef]
- Evangelista, S.J.; Field, D.J.; McBratney, A.B.; Minasny, B.; Ng, W.; Padarian, P.; Dobarco, M.R.; Wadoux, M.J.-C. A proposal for the assessment of soil security: Soil functions, soil services and threats to soil. Soil Secur. 2023, 10, 100086. [Google Scholar] [CrossRef]
- Vogel, H.; Eberhardt, E.; Franko, U.; Lang, B.; Ließ, M.; Weller, U.; Wiesmeier, M.; Wollschläger, U. Quantitative Evaluation of Soil Functions: Potential and State. Front. Environ. Sci. 2019, 7, 164. [Google Scholar] [CrossRef]
- Bouma, J.; Pinto-Correia, T.; Veerman, C. Assessing the role of soils when developing sustainable agricultural production systems focused on achieving the UN-SDGs and the EU Green Deal. Soil Syst. 2021, 5, 56. [Google Scholar] [CrossRef]
- FAO. ITPS. Status of the World’s Soil Resources (SWSR)—Main Report; FAO: Rome, Italy, 2015; Available online: http://www.fao.org/3/a-i5199e.pdf (accessed on 25 August 2025).
- Zucca, C.; Biancalani, R.; Kapur, S.; Akça, E.; Zdruli, P.; Montanarella, L.; Nachtergaele, F. The role of soil information in land degradation and desertification mapping: A review. In Soil Security for Ecosystem Management; Kapur, S., Erşahin, S., Eds.; Springer Briefs in Environment, Security, Development and Peace; Mediterranean Soil Ecosystems 1; Springer: Cham, Switzerland, 2014; Volume 8, pp. 31–59. [Google Scholar] [CrossRef]
- Cornu, S.; Keesstra, S.; Bispo, A.; Fantappie, M.; Egmond, F.V.; Smreczak, B.; Wawer, R.; Pavlů, L.; Sobocká, J.; Bakacsi, Z.; et al. National soil data in EU countries, where do we stand? Eur. J. Soil Sci. 2023, 74, e13398. [Google Scholar] [CrossRef]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H. Soil structure as an indicator of soil functions: A review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Abdelal, Q.; Al-Kilani, M.R. Versatile simplistic correction of T-Higrow sensors for improved soil moisture measurement accuracy. Meas. Sci. Technol. 2024, 35, 095801. [Google Scholar] [CrossRef]
- Abdelal, Q.; Al-Kilani, M.R.; Al-Shishani, G. Impact of Soil Particle Size on Soil Moisture Measurements through Dielectric and Electrical Resistance Properties. Eurasian Soil Sci. 2025, 58, 32. [Google Scholar] [CrossRef]
- Havlin, J.L.; Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Fertilizers; Pearson Education India: Noida, India, 2016. [Google Scholar]
- Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 2017, 15, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Wagg, C.; Bender, S.F.; Widmer, F.; van der Heijden, M.G.A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA 2014, 111, 5266–5270. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, R.L.; Pieterse, C.M.; Bakker, P.A. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Minasny, B.; McBratney, A.B. Digital soil mapping: A brief history and some lessons. Geoderma 2016, 264, 301–311. [Google Scholar] [CrossRef]
- Nenkam, A.M.; Wadoux, A.M.C.; Minasny, B.; Silatsa, F.B.; Yemefack, M.; Ugbaje, S.U.; McBratney, A.B. Applications and challenges of digital soil mapping in Africa. Geoderma 2024, 449, 117007. [Google Scholar] [CrossRef]
- Bouslihim, Y.; Rochdi, A.; Aboutayeb, R.; El Amrani-Paaza, N.; Miftah, A.; Hssaini, L. Soil aggregate stability mapping using remote sensing and GIS-based machine learning technique. Front. Earth Sci. 2021, 9, 748859. [Google Scholar] [CrossRef]
- Bouslihim, Y.; Bouasria, A.; Jelloul, A.; Khiari, L.; Dahhani, S.; Mrabet, R.; Moussadek, R. Baseline high-resolution maps of soil nutrients in Morocco to support sustainable agriculture. Sci. Data 2025, 12, 1389. [Google Scholar] [CrossRef]
- Mohammed, S.; Alsafadi, K.; Talukdar, S.; Kiwan, S.; Hennawi, S.; Alshihabi, O.; Sharaf, M.; Harsanyie, E. Estimation of soil erosion risk in southern part of Syria by using RUSLE integrating geo informatics approach. Appl. Soc. Environ. 2020, 20, 100375. [Google Scholar] [CrossRef]
- Khanal, S.; Kc, K.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote sensing in agriculture-Accomplishments, limitations, and opportunities. Remote Sens. 2020, 12, 3783. [Google Scholar] [CrossRef]
- Al-Khreisat, A.; Abdelal, Q.; Al-Kilani, M.R.; Al-Bakri, J.; Damra, I.; Al-Kilani, O. Water-energy-carbon cost of compensating atmospheric water losses from open irrigation ponds in arid regions. Glob. J. Environ. Sci. Manag. 2025, 11, e728181. [Google Scholar]
- Kohl, L.; Vielhauer, C.; Öztürk, A.; Minarsch, E.-M.L.; Ahl, C.; Niether, W.; Clifton-Brown, J.; Gattinger, A. Field Evaluation of a Portable Multi-Sensor Soil Carbon Analyzer: Performance, Precision, and Limitations Under Real-World Conditions. Soil Syst. 2025, 9, 67. [Google Scholar] [CrossRef]
- Hamouda, F.; Puig-Sirera, A.; Bonzi, L.; Remorini, D.; Massai, R.; Rallo, G. Design and validation of a soil moisture-based wireless sensors network for the smart irrigation of a pear orchard. Agric. Water Manag. 2024, 305, 109138. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Xiang, M.; Li, Y.; Yang, J.; Lei, K.; Li, Y.; Li, F.; Zheng, D.F.; Fang, X.Q.; Cao, Y. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environ. Pollut. 2021, 278, 116911. [Google Scholar] [CrossRef]
- Zhao, B.; Chen, J.; Zhang, J.; Qin, S. Soil microbial biomass and activity response to repeated drying–rewetting cycles along a soil fertility gradient modified by long-term fertilization management practices. Geoderma 2010, 160, 218–224. [Google Scholar] [CrossRef]
- Banerjee, S.; Walder, F.; Büchi, L.; Meyer, M.; Held, A.Y.; Gattinger, A.; Keller, T.; Charles, R.; van der Heijden, M.G.A. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 2019, 13, 1722–1736. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ferreiro, J.; Gascó, G.; Gutiérrez, B.; Méndez, A. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biol. Fertil. Soils 2012, 48, 511–517. [Google Scholar] [CrossRef]
- Al-Kilani, M.R.; Al-Bakri, J.; Rahbeh, M.; Abdelal, Q.; Yalew, S.; Mul, M. Assessment of meteorological drought impacts on rainfed agriculture using remote sensing–derived biomass productivity. Environ. Monit. Assess. 2024, 196, 879. [Google Scholar] [CrossRef] [PubMed]
- Al-Kilani, M.R. Agricultural land measures for climate change adaptation in arid regions: Can the farmers do it alone. J. Arid Land Agric. 2024, 10, 82–93. [Google Scholar] [CrossRef]
- Morvan, X.; Saby, N.P.; Arrouays, D.; Le Bas, C.; Jones, R.J.; Verheijen, F.G.; Bellamy, P.H.; Stephens, M.; Kibblewhite, M.G. Soil monitoring in Europe: A review of existing systems and requirements for harmonisation. Sci. Total Environ. 2008, 391, 1–12. [Google Scholar] [CrossRef]
- Zdruli, P.; Zucca, C. Restoring Land and Soil Health to Ensure Sustainable and Resilient Agriculture in the Near East and North Africa Region—State of Land and Water Resources for Food and Agriculture Thematic Paper; Food and Agriculture Organization of the United Nations (FAO): Cairo, Egypt, 2023; 80p. [Google Scholar] [CrossRef]
- Zucca, C.; Le, Q.B.; Karampiperis, P.; Lemann, T.; Thomas, R.; Thiombiano, B.A.; Hermassi, T.; Bonaiuti, E.; Zervas, P. Toward an operational tool to integrate land degradation neutrality into land use planning: LUP4LDN. Land Degrad. Dev. 2024, 35, 2489–2507. [Google Scholar] [CrossRef]
- Montanarella, L. The global soil partnership. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2015; Volume 25, p. 012001. [Google Scholar]
- Makhamreh, Z.; Kakish, S.; Khaled, H.B. An Investigation of Soil Spectral Characteristics under Different Conditions in Jordan. Int. J. Geoinf. 2024, 20, 57–68. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Dotto, A.C.; Bedin, L.G.; Sayao, V.M.; e Souza, A.B. Soil analytical quality control by traditional and spectroscopy techniques: Constructing the future of a hybrid laboratory for low environmental impact. Geoderma 2019, 337, 111–121. [Google Scholar] [CrossRef]
- Alon, S.; DiPrete, T.A. Gender Differences in the Formation of a Field of Study Choice Set. Sociol. Sci. 2015, 2, 50–81. [Google Scholar] [CrossRef]
- Kohira, Y.; Fentie, D.; Lewoyehu, M.; Wutisirirattanachai, T.; Gezahegn, A.; Ahmed, M.; Akizuki, S.; Addisu, S.; Sato, S. The Sustainable Management of Nitrogen Fertilizers for Environmental Impact Mitigation by Biochar Applications to Soils: A Review from the Past Decade. Environments 2025, 12, 182. [Google Scholar] [CrossRef]
- Dayoub, M. Factors Affecting the Soil Analysis Technique Adopted by the Farmers. In Proceedings of the Advances in Time Series Data Methods in Applied Economic Research: International Conference on Applied Economics (ICOAE) 2018, Warsaw, Poland, 5–7 July 2018; pp. 251–262. [Google Scholar]
- Hou, X.; Hu, W.; Li, Q.; Fan, J.; Zhang, F. Evaluating of Four Irrigation Depths on Soil Moisture and Temperature, and Seed Cotton Yield Under Film-Mulched Drip Irrigation in Northwest China. Agronomy 2025, 15, 1674. [Google Scholar] [CrossRef]
- Barker, J.B.; Franz, T.E.; Heeren, D.M.; Neale, C.M.; Luck, J.D. Soil water content monitoring for irrigation management: A geostatistical analysis. Agric. Water Manag. 2017, 188, 36–49. [Google Scholar] [CrossRef]
- Benedetti, F.; Caon, L. Global Soil Laboratory Assessment 2020-Laboratories’ Capacities and Needs; FAO: Rome, Italy, 2021; Available online: https://openknowledge.fao.org/ (accessed on 30 July 2025).
- Langunu, S.; Kilela Mwanasomwe, J.; Nghonda, D.-d.N.; Colinet, G.; Ngoy Shutcha, M. Mineral Condition Changes in Amended Soils and Woody Vegetation Installed on a Polluted Soil with Trace Metals in Lubumbashi (DR Congo): Results of a Four-Year Trial. Environments 2025, 12, 224. [Google Scholar] [CrossRef]
- Debaene, G.; Niedźwiecki, J.; Pecio, A.; Żurek, A. Effect of the number of calibration samples on the prediction of several soil properties at the farm-scale. Geoderma 2014, 214, 114–125. [Google Scholar] [CrossRef]
- Abdullahi, H.O.; Mahmud, M. The effects of perceived usefulness and perceived ease of use on intention to use ICT services among agribusiness practitioners in Somalia. In Proceedings of the International Conference on Computer and Information, Chengdu, China, 28–30 December 2023; pp. 309–323. [Google Scholar] [CrossRef]
- Engström, E.; Stenberg, A.; Baxter, D.C.; Malinovsky, D.; Mäkinen, I.; Pönni, S.; Rodushkin, I. Effects of sample preparation and calibration strategy on accuracy and precision in the multi-elemental analysis of soil by sector-field ICP-MS. J. Anal. At. Spectrom. 2004, 19, 858–866. [Google Scholar] [CrossRef]
- Nouri-Nigjeh, E.; Zhang, M.; Ji, T.; Yu, H.; An, B.; Duan, X.; Balthasar, J.; Johnson, R.W.; Qu, J. Effects of calibration approaches on the accuracy for LC–MS targeted quantification of therapeutic protein. Anal. Chem. 2014, 86, 3575–3584. [Google Scholar] [CrossRef]
- Aparna, C.H.; Gowrisankar, D. A review on calibration of analytical instruments. Int. J. Pharm. Chem. Biol. Sci. 2015, 5, 572–582. [Google Scholar]
- Campenhout, B.V. The role of information in agricultural technology adoption: Experimental evidence from rice farmers in Uganda. Econ. Dev. Cult. Chang. 2021, 69, 1239–1272. [Google Scholar] [CrossRef]
Country | Responding National Lab | Lab ID |
---|---|---|
Greece | Soil Science Laboratory of Athens (ELGO DIMITRA) | GRC1 |
Jordan | Soil and water analysis laboratories of the National Agricultural Research Center | JOR1 |
Lebanon | Lebanese Agricultural Research Institute | LBN1 |
Libya | Soil and Water Laboratory—Sidi Al-Masry—Agriculture Research Center—Ministry of Agriculture—Tripoli, Libya | LBY1 |
Libya | The main laboratory of the Agricultural Research Center | LBY2 |
Libya | Soil laboratory of Misurata Agricultural Research Station | LBY3 |
Palestine | The Soil Analysis Lab of The Ministry of Agriculture | PSE1 |
Palestine | Soil Research Laboratory of The Ministry of Agriculture | PSE2 |
Palestine | Testing Laboratories Center—Birzeity University | PSE3 |
Palestine | Nablus Central Laboratory | PSE4 |
Syria | Lab of the General Commission for Scientific Agricultural Research | SYR1 |
Tunisia | Central Laboratory of Soil Analysis | TUN1 |
Soil Property | Method | Laboratories Using the Method | Uniformity Index ** |
---|---|---|---|
Organic Carbon | Walkley and Black method | JOR1, LBN1, LBY1, LBY3, SYR1, TUN1 | 86% |
Photometric method | GRC1 | ||
pH | Soil-water suspensions | LBN1, LBY3, PSE1, PSE2, PSE3, TUN1 | 60% |
Saturated paste extract (SPE) | GRC1, JOR1, PSE4, SYR1 | ||
Electrical Conductivity (EC) | Soil-water suspensions | GRC1, LBY3, PSE1, PSE2, PSE3, | 60% |
Saturated paste extract (SPE) | JOR1, LBN1, LBY3, PSE4, SYR1, TUN1 | ||
Total Nitrogen | Kjeldahl method | GRC1, JOR1, LBN1, LBY1, LBY2, LBY3, PSE1, PSE2, PSE3, SYR1, TUN1 | 100% |
Available Phosphorus | Olsen method | GRC1, JOR1, LBY1, LBY3, PSE3, SYR1, TUN1 | 88% |
Spectrophotometer | PSE4 | ||
Cation Exchange Capacity (CEC) | Ammonium Acetate | JOR1, LBN1, LBY3, PSE3, PSE4, SYR1, TUN1 | 88% |
Barium Chloride (BaCl2) method | GRC1 | ||
Exchangeable Cations (Ca, Mg, K, Na) | Ammonium Acetate | JOR1, LBN1, LBY3, PSE3, SYR1, TUN1 | 55% |
Atomic absorption spectroscopy | GRC1 | ||
Flame photometry | LBY2, PSE1, PSE2, PSE4 | ||
ICP Inductively Coupled Plasma | PSE3 | ||
Heavy Metals | Aqua Regia | SYR1 | 20% |
Atomic absorption | JOR1 | ||
DTPA | GRC1 | ||
ICP | PSE3 | ||
Soil digestion | JOR1 | ||
Spectrophotometer | TUN1 | ||
Pesticides | GC-MS and LC-MS | PSE3 | NA |
Soil Moisture | Gravimetric | GRC1, JOR1, LBY2, LBY3, PSE3, SYR1 | 86% |
Pressure plate | LBY1 | ||
Soil Texture * | Hydrometer | GRC1, JOR1, LBN1, LBY1, LBY2, LBY3, PSE1, PSE2, PSE4, SYR1 | 83% |
Pipette | TUN1 | ||
Sieve analysis | PSE3 | ||
Clay percentage * | Hydrometer | GRC1, JOR1, LBN1, LBY2, LBY3, PSE1, PSE2, PSE4, SYR1 | 90% |
Pipette | TUN1 | ||
Sieve analysis | LBY1, PSE3 | ||
Sand percentage * | Hydrometer | LBN1, PSE4 | 50% |
Gravimetric | JOR1 | ||
Sedimentation | GRC1, LBY2, PSE1, PSE2, TUN1 | ||
Sieve analysis | LBY1, LBY3, PSE3, SYR1 | ||
Silt percentage * | Hydrometer | JOR1, LBN1, LBY2, LBY3, PSE1, PSE2, PSE4, SYR1 | 71% |
Sedimentation | GRC1 | ||
Sieve analysis | LBY1, PSE3, TUN1 | ||
Aggregate stability | Aggregate stability test | SYR1, TUN1 | NA |
Wet sieving | JOR1 | ||
Bulk density | Core sampling | GRC1, JOR1, LBY1, LBY2, LBY3, SYR1 | 100% |
Gravel percentage | Sieve analysis | JOR1, LBY1, PSE3, SYR1, TUN1 | 63% |
Sedimentation | JOR1, LBY2 | ||
Visual estimation | GRC1, LBY3 | ||
Soil Microbiology Analysis | Standard method | JOR1, PSE3 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Khreisat, A.; Al-Bakri, J.; Atiyat, M.; Al-Kilani, M.R.; Farhan, I.; Zucca, C.; Khudairat, W. Soil Analytical Capabilities for Sustainable Land Management Across National Soil Services in the Mediterranean. Sustainability 2025, 17, 8228. https://doi.org/10.3390/su17188228
Al-Khreisat A, Al-Bakri J, Atiyat M, Al-Kilani MR, Farhan I, Zucca C, Khudairat W. Soil Analytical Capabilities for Sustainable Land Management Across National Soil Services in the Mediterranean. Sustainability. 2025; 17(18):8228. https://doi.org/10.3390/su17188228
Chicago/Turabian StyleAl-Khreisat, Areej, Jawad Al-Bakri, Mais Atiyat, Muhammad Rasool Al-Kilani, Ibrahim Farhan, Claudio Zucca, and Wala Khudairat. 2025. "Soil Analytical Capabilities for Sustainable Land Management Across National Soil Services in the Mediterranean" Sustainability 17, no. 18: 8228. https://doi.org/10.3390/su17188228
APA StyleAl-Khreisat, A., Al-Bakri, J., Atiyat, M., Al-Kilani, M. R., Farhan, I., Zucca, C., & Khudairat, W. (2025). Soil Analytical Capabilities for Sustainable Land Management Across National Soil Services in the Mediterranean. Sustainability, 17(18), 8228. https://doi.org/10.3390/su17188228