Investigating Spatial Extremes of Annual Daily Precipitation Using CMIP6 Multi-Model Ensembles for Sustainable Flood Risk Assessment
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Multi-Model Ensemble Datasets
- (a)
- ssp126: This is a low-emission scenario and is an update of RCP2.6, which assumes a radiative forcing of 2.6 W/m2 by 2100 and represents a sustainable, low-emission pathway that aligns with the Paris Agreement 2 °C target. It is an emission scenario with the narrative of a world that shifts toward sustainability, equity, and international cooperation with CO2 concentrations of around 393 ppm by 2100 [3,31];
- (b)
- ssp245: This is termed the “middle of the road” scenario, with continuation of the current trajectory with any major shift. It assumes a radiative forcing and estimated warming of 4.5 W/m2 and 2.7 °C, respectively, by 2100. In other words, this emission scenario assumes moderate mitigation efforts, mixed energy sources, a medium population, and economic growth leading to CO2 concentrations of approximately 600 ppm by 2100 [3,31];
- (c)
- ssp585: This emission scenario assumes little climate policy, high energy demand and resource consumption, and high emission profiles and is also termed “fossil-fueled development–taking the highway”. It assumes emission rise throughout the century, with radiative forcing of 8.5 W/m2 by 2100. The estimated warming is approximately 4.4 °C with a CO2 concentration up to 1135 ppm by 2100, with associated severe impacts [3,31].
Model | Institution | Country | |
---|---|---|---|
1 | CMCC-ESM2 | Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici | Italy |
2 | GFDL-ESM4 | NOAA Geophysical Fluid Dynamics Laboratory | USA |
3 | BCC-CSM2-MR | Beijing Climate Centre, China Meteorological Administration | China |
4 | INM-CM4-8 | Institute for Numerical Mathematics | Russia |
5 | FGOALS-g3 | Institute of Atmospheric Physics, Chinese Academy of Sciences | China |
6 | TaiESM1 | Research Center for Environmental Changes, Academia Sinica | Taiwan |
7 | NorESM2-MM | Norwegian Climate Centre | Norway |
8 | CanESM5 | Canadian Centre for Climate Modelling and Analysis | Canada |
9 | KIOST-ESM | Korea Institute of Ocean Science and Technology | South Korea |
10 | NorESM2-LM | Norwegian Climate Centre | Norway |
11 | INM-CM5-0 | Institute for Numerical Mathematics | Russia |
2.3. Block Maxima and Generalized Extreme Value Theory: A Link to Max-Stable Process for Modeling Spatial Extremes
2.4. Spatial Dependence Structures of Annual Daily Maximum Precipitation
2.5. Takeuchi’s Information Criterion (TIC) in Spatial Extremes
3. Results and Discussions
3.1. Evaluating the Reliability of GCM Ensembles and Gauge Observations
3.2. Spatial-Temporal Trend of Historical and Future Projections of Extreme Precipitation
3.3. Evaluating the Spatial Dependence Structure of Extreme Precipitation
3.4. Spatial Generalized Extreme Value Theorem Model Selection
3.5. Diagnostic Checking of Spatial Extreme Modeling
3.6. Projected Changes in Extreme Precipitation Under Different Scenarios
3.7. Variability of Return Levels for Historical and Future Projections of Extreme Precipitation
3.8. Implications of Spatial Extremes in Prince Edward Island
4. Conclusions
- (a)
- The spatial trend of extreme daily precipitation shows a west–eastern gradient for the historical and future periods. Also, the temporal trend using the multivariate (Multisite) Mann–Kendall Test indicates there was no statistically significant trend in both historical and future periods;
- (b)
- The fitted extremal-t max-stable model correctly captured the spatial dependency and characteristics of extreme daily precipitation for the reference period and future projections. The predicted return levels are within the 95% confidence levels of the predicted results, meaning that this fitted model can be used to model both historical and future extremes in PEI;
- (c)
- Considering the 25-year return levels extracted from the 134 grid points of the multi-model ensembles, the average return level was 94 mm across PEI for the historical period. For the 2011–2040, 2040–2070, and 2070–2100 periods, there is an increase in the return levels up to 50%, 56%, and 84%, respectively. This shows there would be systematic increases in the intensity of extreme precipitation in the future under all emission scenarios.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Framework Convention on Climate Change. The Paris Agreement. 2024. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 5 December 2024).
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Change 2014, 122, 387–400. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 5 December 2024).
- Inter-American Development Bank. Assessment of the Effects and Impacts of Hurricane Dorian in the Bahamas; Inter-American Development Bank: Washington, DC, USA, 2019; Available online: https://www.iadb.org/en/news/damages-and-other-impacts-bahamas-hurricane-dorian-estimated-34-billion-report (accessed on 5 December 2024).
- Insurance Bureau of Canada. Hurricane Fiona Causes $660 Million in Insured Damage. 19 October 2022. Available online: https://www.ibc.ca/news-insights/news/hurricane-fiona-causes-660-million-in-insured-damage (accessed on 5 December 2024).
- Huang, X.; Wang, Y.; Ma, X. Simulation of extreme precipitation changes in Central Asia using CMIP6 under different climate scenarios. Theor. Appl. Climatol. 2024, 155, 3203–3219. [Google Scholar] [CrossRef]
- Zhang, B.; Song, S.; Wang, H.; Duan, Y.; Liu, J.; Tang, G. Evaluation of the performance of CMIP6 models in simulating extreme precipitation and its projected changes in global climate regions. Nat. Hazards 2024, 121, 1737–1763. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Min, S.-K.; Zhang, X.; Sillmann, J.; Sandstad, M. Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather Clim. Extrem. 2020, 29, 100269. [Google Scholar] [CrossRef]
- Pierce, D.W.; Cayan, D.R.; Feldman, D.R.; Risser, M.D. Future increases in North American extreme precipitation in CMIP6 downscaled with LOCA. J. Hydrometeorol. 2023, 24, 951–965. [Google Scholar] [CrossRef]
- Abdelmoaty, H.M.; Papalexiou, S.M. Change of extreme precipitation in CMIP6 projections: Should we use stationary or nonstationary models? J. Clim. 2023, 36, 2999–3014. [Google Scholar] [CrossRef]
- Sobie, S.R.; Ouali, D.; Curry, C.L.; Zwiers, F.W. Multivariate Canadian downscaled climate scenarios for CMIP6 (CanDCS-M6). Geosci. Data J. 2024, 11, 806–824. [Google Scholar] [CrossRef]
- Mousavi, R.; Johnson, D.L.; Byrne, J.M.; Kroebel, R. Projected 21st Century Drought Condition in the South Saskatchewan River Watershed: A Case Study in the Canadian Prairies. Atmosphere 2024, 15, 1292. [Google Scholar] [CrossRef]
- Hember, R.A.; Werner, A.T.; Huang, J. Projecting future drought risk for Canadian agriculture using downscaled CMIP6 climate data. Agric. For. Meteorol. 2023, 321, 109091. [Google Scholar] [CrossRef]
- Bonsal, B.R.; Cannon, A.J.; Anslow, F.S. Projected changes to climate extremes over Canada using downscaled CMIP6 scenarios. Clim. Change 2022, 172, 23. [Google Scholar]
- de Haan, L. A spectral representation for max-stable processes. Ann. Probab. 1984, 12, 1194–1204. [Google Scholar] [CrossRef]
- Padoan, S.A.; Ribatet, M.; Sisson, S.A. Likelihood-based inference for max-stable processes. J. Am. Stat. Assoc. 2010, 105, 263–277. [Google Scholar] [CrossRef]
- Takeuchi, K. Distribution of information statistics and the criteria for adequacy of models. Math. Sci. 1976, 153, 12–18. [Google Scholar]
- Konishi, S.; Kitagawa, G. Information Criteria and Statistical Modeling; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Blanchet, J.; Davison, A.C. Spatial modeling of extreme snow depth. Ann. Appl. Stat. 2011, 5, 1699–1725. [Google Scholar] [CrossRef]
- Davison, A.C.; Padoan, S.A.; Ribatet, M. Statistical modeling of spatial extremes. Stat. Sci. 2012, 27, 161–186. [Google Scholar] [CrossRef]
- Koch, T.; Naveau, P.; Ribatet, M. Spatial extremes: Modeling rainfall in France. J. De La Société Française De Stat. 2013, 154, 128–144. [Google Scholar]
- Opitz, T. Extremal-t processes: Elliptical domain of attraction and a spectral representation. J. Multivar. Anal. 2013, 122, 409–413. [Google Scholar]
- Boluwade, A. Stochastic modeling of spatial dependency structures of extreme precipitation in the Northern Great Plains using max-stable processes. J. Water Clim. Change 2024, 14, 3131–3149. [Google Scholar] [CrossRef]
- Boluwade, A.; Sheridan, A.P.; Farooque, A.A. Spatial modeling of extreme temperature in the Canadian Prairies using max-stable processes. Results Eng. 2024, 21, 101879. [Google Scholar] [CrossRef]
- de Haan, L.; Pereira, T.T. Spatial extremes: Models for the stationary case. Ann. Stat. 2006, 34, 146–168. [Google Scholar] [CrossRef]
- Coles, S.G.; Tawn, J.A. Modelling extremes of the areal rainfall process. J. R. Stat. Soc. Ser. B 1996, 58, 329–347. [Google Scholar] [CrossRef]
- Ribatet, M. Modelling spatial extremes using max-stable processes. In Nonlinear and Stochastic Climate Dynamics; Hannachi, A., Battisti, D.S., Schultz, D.M., Eds.; Cambridge University Press: Cambridge, UK, 2017; pp. 369–391. [Google Scholar] [CrossRef]
- Government of Prince Edward Island. PEI Climate and Weather. 2022. Available online: https://www.princeedwardisland.ca/en/information/environment-energy-and-climate-action/pei-climate-and-weather (accessed on 5 December 2024).
- Bhatti, A.; Farooque, A.; Krouglicof, N.; Peters, W.; Acharya, B.; Li, Q.; Ahsan, M.S. Climate change impacts on precipitation and temperature in Prince Edward Island, Canada. World Water Policy 2021, 7, e12046. [Google Scholar] [CrossRef]
- Weather Spark. Average Weather in Charlottetown, Prince Edward Island, Canada Year Round. 2025. Available online: https://weatherspark.com/y/28438/Average-Weather-in-Charlottetown-Prince-Edward-Island-Canada-Year-Round (accessed on 5 December 2024).
- Meinshausen, M.; Nicholls, Z.R.J.; Lewis, J.; Gidden, M.J.; Vogel, E.; Freund, M.; Beyerle, U.; Menne, B. The shared socio-economic pathway (SSPSSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 2020, 13, 3571–3605. [Google Scholar] [CrossRef]
- Coles, S. An Introduction to Statistical Modeling of Extreme Values; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- de Haan, L.; Ferreira, A. Extreme Value Theory: An Introduction; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Schlather, M. Models for stationary max-stable random fields. Extremes 2002, 5, 33–44. [Google Scholar] [CrossRef]
- Brown, B.M.; Resnick, S.I. Extreme values of independent stochastic processes. J. Appl. Probab. 1977, 14, 732–739. [Google Scholar] [CrossRef]
- Cooley, D.; Naveau, P.; Poncet, P. Variograms for spatial max-stable random fields. In Dependence in Probability and Statistics; Bertail, P., Soulier, P., Doukhan, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 187, pp. 373–390. [Google Scholar]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory; Petrov, B.N., Csáki, F., Eds.; Akadémiai Kiadó: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Varin, C.; Vidoni, P. A note on composite likelihood inference and model selection. Biometrika 2005, 92, 519–528. [Google Scholar] [CrossRef]
Emission Scenarios | Z | p-Value | ||
---|---|---|---|---|
historical | 1971–2000 | −0.78 | 0.43 | |
ssp126 | 1.30 | 0.19 | ||
2011–2040 | ssp245 | −1.22 | 0.22 | |
ssp585 | 1.25 | 0.21 | ||
ssp126 | −1.69 | 0.09 | ||
Future period | 2041–2070 | ssp245 | 0.82 | 0.41 |
ssp585 | 2.095 | 0.03 | ||
ssp126 | −0.53 | 0.59 | ||
2071–2100 | ssp245 | 0.14 | 0.88 | |
ssp585 | −0.89 | 0.37 |
Emission Scenario | Future Projection | Location | Scale | Shape |
---|---|---|---|---|
ssp126 | 2011–2040 | |||
2041–2070 | ||||
2070–2100 | ||||
ssp245 | 2011–2040 | |||
2041–2070 | ||||
2070–2100 | ||||
ssp585 | 2011–2040 | |||
2041–2070 | ||||
2070–2100 |
Historical | ssp126 | ssp245 | ssp585 | ||
Mean (mm) | 93.76 | 137.93 | 143.53 | 140.68 | |
Standard Deviation | 4.43 | 8.26 | 6.24 | 10.36 | |
2011–2040 | Coefficient of Variation (%) | 4.73 | 5.99 | 4.35 | 7.36 |
Minimum (mm) | 85.64 | 122.99 | 132.19 | 121.89 | |
Maximum (mm) | 103.70 | 152.61 | 154.71 | 160.39 | |
Historical | ssp126 | ssp245 | ssp585 | ||
Mean | 93.76 | 133.71 | 148.99 | 146.06 | |
Standard Deviation | 4.43 | 12.98 | 6.72 | 14.34 | |
2041–2070 | Coefficient of Variation (%) | 4.73 | 9.71 | 4.51 | 9.82 |
Minimum | 85.64 | 110.32 | 137.25 | 120.20 | |
Maximum | 103.70 | 157.33 | 160.80 | 171.43 | |
Historical | ssp126 | ssp245 | ssp585 | ||
Mean | 93.76 | 140.19 | 139.46 | 172.10 | |
Standard Deviation | 4.43 | 5.96 | 4.38 | 15.06 | |
2071–2100 | Coefficient of Variability (%) | 19.64 | 35.54 | 19.18 | 226.88 |
Minimum | 85.64 | 129.41 | 131.51 | 145.38 | |
Maximum | 103.70 | 150.69 | 146.19 | 200.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boluwade, A.; Sheridan, P.; Rathnayake, U. Investigating Spatial Extremes of Annual Daily Precipitation Using CMIP6 Multi-Model Ensembles for Sustainable Flood Risk Assessment. Sustainability 2025, 17, 8198. https://doi.org/10.3390/su17188198
Boluwade A, Sheridan P, Rathnayake U. Investigating Spatial Extremes of Annual Daily Precipitation Using CMIP6 Multi-Model Ensembles for Sustainable Flood Risk Assessment. Sustainability. 2025; 17(18):8198. https://doi.org/10.3390/su17188198
Chicago/Turabian StyleBoluwade, Alaba, Paul Sheridan, and Upaka Rathnayake. 2025. "Investigating Spatial Extremes of Annual Daily Precipitation Using CMIP6 Multi-Model Ensembles for Sustainable Flood Risk Assessment" Sustainability 17, no. 18: 8198. https://doi.org/10.3390/su17188198
APA StyleBoluwade, A., Sheridan, P., & Rathnayake, U. (2025). Investigating Spatial Extremes of Annual Daily Precipitation Using CMIP6 Multi-Model Ensembles for Sustainable Flood Risk Assessment. Sustainability, 17(18), 8198. https://doi.org/10.3390/su17188198