Assessing the Value of Ecosystem Services in Decentralized Sanitation Systems: A Case Study in a Vulnerable Mountain Area
Abstract
1. Introduction
- -
- local waste treatment plants: decentralized waste systems use compact and modular technologies, such as small-scale composting plants, anaerobic digestion units and mini-waste-to-energy plants, that are suitable for operation close to the waste source;
- -
- Community-based solutions: these approaches typically encourage the direct involvement of local residents and organizations, who help sort, compost and recover resources from waste streams;
- -
- Source separation and localized treatment: waste is sorted at the point of origin, allowing for more efficient and targeted treatment. Dedicated on-site facilities handle specific waste categories directly within the community;
- -
- Digital tools for resource flow and matching: online platforms help connect waste producers with nearby recyclers or processors, simplifying resource exchange and supporting the development of localized circular economies.
2. Case-Study: AQUANOVA System at the Bosconero Hut
3. Materials and Methods
3.1. Ecosystem Services of AQUANOVA Subsection
3.2. Economic Valuation of Ecosystem Services
3.2.1. Economic Valuation of Ecosystem Services Related to Biogas
3.2.2. Economic Valuation of Ecosystem Services Related to Phytoremediation
3.3. Net Present Values of Ecosystem Services
4. Results
Discounting Future Values
5. Discussion
5.1. Valuation of Ecosystem Services
5.2. Additional Ecosystem Services of AQUANOVA
5.3. Discussion of the Net Present Values
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J. Planetary Boundaries: Exploring the Safe Operating Space for Humanity. 2009, Volume 14. Available online: https://about.jstor.org/terms (accessed on 24 June 2025).
- Naeem, S.; Bunker, D.E.; Hector, A.; Loreau, M.; Perrings, C. (Eds.) Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective; OUP Oxford: Oxford, UK, 2009. [Google Scholar]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Ruokamo, E.; Savolainen, H.; Seppälä, J.; Sironen, S.; Räisänen, M.; Auvinen, A.P. Exploring the potential of circular economy to mitigate pressures on biodiversity. Glob. Environ. Change 2023, 78, 102625. [Google Scholar] [CrossRef]
- Bongaarts, J. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Popul. Dev. Rev. 2019, 45, 680–681. [Google Scholar] [CrossRef]
- Ellen Mac Arthur Foundation. The Nature Imperative: How the Circular Economy Tackles Biodiversity Loss. 2021. Available online: https://www.ellenmacarthurfoundation.org/biodiversity-report (accessed on 19 June 2025).
- Lavagnolo, M.C.; Felici, G.; Lanzavecchia, A. CIRCULAR ECONOMY BETWEEN BUSINESS AND BIODIVERSITY. Detritus 2024, 30, 1–2. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy—A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Singh, J.; Laurenti, R.; Sinha, R.; Frostell, B. Progress and challenges to the global waste management system. Waste Manag. Res. J. A Sustain. Circ. Econ. 2014, 32, 800–812. [Google Scholar] [CrossRef]
- Paes, L.A.B.; Bezerra, B.S.; Deus, R.M.; Jugend, D.; Battistelle, R.A.G. Organic solid waste management in a circular economy perspective—A systematic review and SWOT analysis. J. Clean. Prod. 2019, 239, 118086. [Google Scholar] [CrossRef]
- Schüch, A.; Sprafke, J.; Nelles, M. Role of biogenic waste and residues as an important building block towards a successful energy transition and future bioeconomy—Results of a site analysis. Detritus 2020, 10, 109–117. [Google Scholar] [CrossRef]
- Masi, F.; Rizzo, A.; Regelsberger, M. The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm. J. Environ. Manag. 2018, 216, 275–284. [Google Scholar] [CrossRef]
- Tamburini, E.; Gaglio, M.; Castaldelli, G.; Fano, E.A. Biogas from Agri-Food and Agricultural Waste Can Appreciate Agro-Ecosystem Services: The Case Study of Emilia Romagna Region. Sustainability 2020, 12, 8392. [Google Scholar] [CrossRef]
- Ventura, J.R.S.; Tulipan, J.U.; Banawa, A.; Umali, K.D.C.; Villanueva, J.A.L. Advancements and challenges in decentralized wastewater treatment: A comprehensive review. Desalination Water Treat. 2024, 320, 100830. [Google Scholar] [CrossRef]
- Alarcon-Gerbier, E.; Linß, F.; Buscher, U. Waste recycling through a decentralized network of mobile facilities. J. Clean. Prod. 2023, 415, 137773. [Google Scholar] [CrossRef]
- Haines-Young, R. Common International Classification of Ecosystem Services (CICES) V5.2 and Guidance on the Application of the Revised Structure. 2023. Available online: www.cices.eu (accessed on 9 July 2025).
- Dasgupta, P. The Economics of Biodiversity: The Dasgupta Review; HM Treasury: London, UK, 2021. [Google Scholar]
- Cossu, R.; Lavagnolo, M.C.; Gandini, M.; Hirata, O. Source separation of domestic sewage components and integrated management with organic fraction from MSW. In Proceedings of the Second International Symposium on Ecological Sanitation-Proceedings, Lübeck, Germany, 7–11 April 2003. [Google Scholar]
- Cossu, R.; Borin, M.; Lavagnolo, M.C. Integrated Sewage and MSW Management in a Mountain Hut. In Proceedings of the Sardinia 2003, Ninth International Waste Management and Landfill Symposium, Cagliari, Italy, 6–10 October 2003. [Google Scholar]
- Agaton, C.B.; Guila, P.M.C. Ecosystem Services Valuation of Constructed Wetland as a Nature-Based Solution to Wastewater Treatment. Earth 2023, 4, 6. [Google Scholar] [CrossRef]
- Müller, F.; Fohrer, N.; Chicharo, L. The basic ideas of the ecosystem service concept. In Ecosystem Services and River Basin Ecohydrology; Springer: Dordrecht, The Netherlands, 2015; pp. 7–33. [Google Scholar]
- van Midden, C.; Harris, J.; Shaw, L.; Sizmur, T.; Pawlett, M. The impact of anaerobic digestate on soil life: A review. Appl. Soil Ecol. 2023, 191, 105066. [Google Scholar] [CrossRef]
- Pizer, W.; Adler, M.; Aldy, J.; Anthoff, D.; Cropper, M.; Gillingham, K.; Greenstone, M.; Murray, B.; Newell, R.; Richels, R.; et al. Using and improving the social cost of carbon. Science 2014, 346, 1189–1190. [Google Scholar] [CrossRef]
- Yang, L.; Jin, X.; Hu, Y.; Zhang, M.; Wang, H.; Jia, Q.; Yang, Y. Technical structure and influencing factors of nitrogen and phosphorus removal in constructed wetlands. Water Sci. Technol. 2024, 89, 271–289. [Google Scholar] [CrossRef]
- Kumar, P. The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations; Routledge: London, UK, 2012. [Google Scholar]
- Lask, J.; Martínez Guajardo, A.; Weik, J.; von Cossel, M.; Lewandowski, I.; Wagner, M. Comparative environmental and economic life cycle assessment of biogas production from perennial wild plant mixtures and maize (Zea mays L.) in southwest Germany. GCB Bioenergy 2020, 12, 571–585. [Google Scholar] [CrossRef]
- Amato, A.; Tsigkou, K.; Becci, A.; Beolchini, F.; Ippolito, N.M.; Ferella, F. Life Cycle Assessment of Biomethane vs. Fossil Methane Production and Supply. Energies 2023, 16, 4555. [Google Scholar] [CrossRef]
- Ricke, K.; Drouet, L.; Caldeira, K.; Tavoni, M. Country-level social cost of carbon. Nat. Clim. Change 2018, 8, 895–900. [Google Scholar] [CrossRef]
- Jurgutis, L.; Šlepetienė, A.; Šlepetys, J.; Cesevičienė, J. Towards a Full Circular Economy in Biogas Plants: Sustainable Management of Digestate for Growing Biomass Feedstocks and Use as Biofertilizer. Energies 2021, 14, 4272. [Google Scholar] [CrossRef]
- Chen, Z.M.; Chen, G.Q.; Chen, B.; Zhou, J.B.; Yang, Z.F.; Zhou, Y. Net ecosystem services value of wetland: Environmental economic account. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 2837–2843. [Google Scholar] [CrossRef]
- De Klein, J.J.M.; Van der Werf, A.K. Balancing carbon sequestration and GHG emissions in a constructed wetland. Ecol. Eng. 2014, 66, 36–42. [Google Scholar] [CrossRef]
- NCAVES and MAIA. Monetary Valuation of Ecosystem Services and Ecosystem Assets for Ecosystem Accounting. New York. 2022. Available online: https://seea.un.org/content/monetary-valuation-ecosystem-services-and-assets-ecosystem-accounting-interim-version-first (accessed on 27 June 2025).
- Ni, J. Discount Rate in Project Analysis. 2017. Available online: https://www.strategie-plan.gouv.fr/files/2025-01/10_fs_discount_rate_in_project_analysis.pdf (accessed on 27 June 2025).
- United Nations. System of Environmental-Economic Accounting—Ecosystem Accounting. 2021. Available online: https://seea.un.org/ecosystem-accounting (accessed on 27 June 2025).
- US Government. Technical Support Document: Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 12866; US Government: Washington, DC, USA, 2013. [Google Scholar]
- ARERA. ARERA: I Numeri Dei Servizi Pubblici—On Line I Volumi Della Relazione Annuale DELL’AUTORITÀ. I Dati 2023 Per Elettricità, Gas, Acqua, Rifiuti e Telecalore. 2024. Available online: https://www.arera.it/fileadmin/allegati/com_stampa/24/240709_numeriRA24.pdf (accessed on 19 June 2025).
- Paolini, V.; Petracchini, F.; Segreto, M.; Tomassetti, L.; Naja, N.; Cecinato, A. Environmental impact of biogas: A short review of current knowledge. J. Environ. Sci. Health Part A 2018, 53, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Bayer, P.; Aklin, M. The European Union Emissions Trading System reduced CO2 emissions despite low prices. Proc. Natl. Acad. Sci. 2020, 117, 8804–8812. [Google Scholar]
- Rennert, K.; Errickson, F.; Prest, B.C.; Rennels, L.; Newell, R.G.; Pizer, W.; Kingdon, C.; Wingenroth, J.; Cooke, R.; Parthum, B.; et al. Comprehensive evidence implies a higher social cost of CO2. Nature 2022, 610, 687–692. [Google Scholar] [CrossRef]
- Pivato, A.; Vanin, S.; Raga, R.; Lavagnolo, M.C.; Barausse, A.; Rieple, A.; Laurent, A.; Cossu, R. Use of digestate from a decentralized on-farm biogas plant as fertilizer in soils: An ecotoxicological study for future indicators in risk and life cycle assessment. Waste Manag. 2016, 49, 378–389. [Google Scholar] [CrossRef]
- Jónsson, J.Ö.G.; Davíðsdóttir, B. Classification and valuation of soil ecosystem services. Agric. Syst. 2016, 145, 24–38. [Google Scholar] [CrossRef]
- Li, J.; He, Y.; Xie, T.; Song, Z.; Bai, S.; Zhang, X.; Wang, C. Seasonal Variations and Drivers of Total Nitrogen and Phosphorus in China’s Surface Waters. Water 2025, 17, 512. [Google Scholar] [CrossRef]
- Ghermandi, A.; van den Bergh, J.C.J.M.; Brander, L.M.; de Groot, H.L.F.; Nunes, P.A.L.D. Values of natural and human-made wetlands: A meta-analysis. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Kirkland, W.T. Preserving the Whangamarino Wetland: An Application of the Contingent Valuation Method: A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of Master of Agricultural Science at Massey University. Ph.D. Thesis, Massey University, Auckland, New Zealand, 1988. Available online: https://mro.massey.ac.nz/items/c0a5a2bc-3ef1-4751-993c-d425cf1a6ade (accessed on 27 June 2025).
- Birol, E.; Karousakis, K.; Koundouri, P. Using a choice experiment to account for preference heterogeneity in wetland attributes: The case of Cheimaditida wetland in Greece. Ecol. Econ. 2006, 60, 145–156. [Google Scholar] [CrossRef]
- Mace, G.M.; Norris, K.; Fitter, A.H. Biodiversity and ecosystem services: A multilayered relationship. Trends Ecol. Evol. 2012, 27, 19–26. [Google Scholar] [CrossRef]
- Préau, C.; Tournebize, J.; Lenormand, M.; Alleaume, S.; Boussada, V.G.; Luque, S. Habitat connectivity in agricultural landscapes improving multi-functionality of constructed wetlands as nature-based solutions. Ecol. Eng. 2022, 182, 106725. [Google Scholar] [CrossRef]
- Agaton, C.B.; Collera, A.A. Now or later? Optimal timing of mangrove rehabilitation under climate change uncertainty. For. Ecol. Manag. 2022, 503, 119739. [Google Scholar] [CrossRef]
- Schievano, A.; D’Imporzano, G.; Salati, S.; Adani, F. On-field study of anaerobic digestion full-scale plants (Part I): An on-field methodology to determine mass, carbon and nutrients balance. Bioresour Technol. 2011, 102, 7737–7744. [Google Scholar] [CrossRef]
- Czekała, W.; Lewicki, A.; Pochwatka, P.; Czekała, A.; Wojcieszak, D.; Jóźwiakowski, K. Digestate management in polish farms as an element of the nutrient cycle. J. Clean Prod. 2020, 242, 118454. [Google Scholar] [CrossRef]
- Guan, D.; Zhao, J.; Wang, Y.; Fu, Z.; Zhang, D.; Zhang, H. A critical review on sustainable management and resource utilization of digestate. Process Saf. Environ. Prot. 2024, 183, 339–354. [Google Scholar] [CrossRef]
CICES Code | Section | Division | Group | Description | Valuation Method |
---|---|---|---|---|---|
1.1.3.3 | Provisioning | Biomass | Reared animals for nutrition, materials or energy | Animal materials used as a source of energy or for traction | Market-based method |
2.1.1.1 | Regulation and Maintenance | Transformation of biochemical or physical inputs to ecosystems | Reduction in nutrient loads and mediation of waste or toxic substances of anthropogenic origin by living processes | Decomposing waste or polluting substances | Market-based method |
2.3.4.2 | Regulation and Maintenance | Regulation of physical, chemical, biological conditions | Regulation of soil quality | Ensuring the organic matter in our soils is maintained | Replacement cost method |
2.3.6.1 | Regulation and Maintenance | Regulation of physical, chemical, biological conditions | Atmospheric composition and conditions | Regulating our global climate | Avoided cost method |
CICES Code | Section | Division | Group | Description | Valuation Method |
---|---|---|---|---|---|
2.1.1.2 | Regulation and Maintenance | Transformation of biochemical or physical inputs to ecosystems | Reduction in nutrient loads and mediation of wastes or toxic substances of anthropogenic origin by living processes | Filtering wastes or sequestering pollutants | Replacement cost method |
2.3.6.1 | Regulation and Maintenance | Regulation of physical, chemical, biological conditions | Atmospheric composition and conditions | Regulating our global climate | Benefit transfer |
Ecosystem Service | Method | Formula | Result |
---|---|---|---|
Energy production | Market-based method | (Electric energy produced × electric energy market price EUR at 2023) (1). | 0.065 EUR/kg of waste. (1). |
Mediation of wastes of anthropogenic origin | Avoided cost method | Avoided cost of treating 1 kg of organic waste (2). | 0.11 EUR/kg (2). |
Climate regulation from biogas production | Avoided cost method | (CO2 emissions from fossil-fuel energy per kWh − CO2 emissions from biogas production per kWh) × SCC. (3) + (Quantity of Carbon from digestate per kg × SCC) (4). | 0.014 EUR/kg of waste. (3) + 0.027 EUR/kg of waste (4) = 0.041 EUR/kg of waste (3) + (4). |
Regulation of soil quality (carbon sink) | Replacement cost method | ∑ (N value × N quantity + P value × P quantity + K value × K quantity) (5). | 0.0005 EUR/kg of waste (5). |
Mediation of wastewater of anthropogenic origin | Replacement cost method | (Treatment cost of 1 cubic metre of water × treatment capacity of the plant) (6). | 0.528 EUR/m3 of wastewater (6). |
CO2 emissions savings | Benefit transfer | (Quantity of CO2 captured by the plants × SCC) (7). | 37.08 EUR per year (7). |
Ecosystem Service | Discount Rate | |||
---|---|---|---|---|
Private benefits: 4% | Collective benefits: 1% | Private benefits: 4% | Collective benefits: 3% | |
Energy production | EUR 10,797.84 | - | EUR 10,797.84 | - |
Mediation of wastes of anthropogenic origin | EUR 18,273.36 | - | EUR 18,273.36 | - |
Climate regulation from biogas production | - | EUR 391.58 | - | EUR 297.40 |
Regulation of soil quality | - | EUR 123.88 | - | EUR 94.08 |
Mediation of wastewater of anthropogenic origin | - | EUR 4992.50 | - | EUR 3791.71 |
Climate regulation from phytoremediation | - | EUR 36.92 | - | EUR 28.04 |
Total | EUR 34,616.07 | EUR 33,282.41 |
Ecosystem Service | Discount Rate | |||
---|---|---|---|---|
Private benefits: 4% | Collective benefits: 1% | Private benefits: 4% | Collective benefits: 3% | |
Energy production | EUR 10,797.84 | - | EUR 10,797.84 | - |
Mediation of wastes of anthropogenic origin | EUR 18,273.36 | - | EUR 18,273.36 | - |
Climate regulation from biogas production | - | EUR 1241.49 | - | EUR 942.89 |
Regulation of soil quality | - | EUR 123.88 | - | EUR 94.08 |
Mediation of wastewater of anthropogenic origin | - | EUR 4992.50 | - | EUR 3791.71 |
Climate regulation from phytoremediation | - | EUR 117.04 | - | EUR 88.89 |
Total | EUR 35,546.10 | EUR 33,988.76 |
Ecosystem Service | Discount Rate | |||
---|---|---|---|---|
Private benefits: 4% | Collective benefits: 1% | Private benefits: 4% | Collective benefits: 3% | |
Energy production | EUR 10,797.84 | - | EUR 10,797.84 | - |
Mediation of wastes of anthropogenic origin | EUR 18,273.36 | - | EUR 18,273.36 | - |
Climate regulation from biogas production | - | EUR 10,151.64 | - | EUR 7709.97 |
Regulation of soil quality | - | EUR 123.88 | - | EUR 94.08 |
Mediation of wastewater of anthropogenic origin | - | EUR 4992.50 | - | EUR 3791.71 |
Climate regulation from phytoremediation | - | EUR 2045.63 | - | EUR 1447.31 |
Total | EUR 46,384.84 | EUR 42,114.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Felici, G.; Corsi, G.; Fabbri, S.; Niero, M.; Lavagnolo, M.C. Assessing the Value of Ecosystem Services in Decentralized Sanitation Systems: A Case Study in a Vulnerable Mountain Area. Sustainability 2025, 17, 8186. https://doi.org/10.3390/su17188186
Felici G, Corsi G, Fabbri S, Niero M, Lavagnolo MC. Assessing the Value of Ecosystem Services in Decentralized Sanitation Systems: A Case Study in a Vulnerable Mountain Area. Sustainability. 2025; 17(18):8186. https://doi.org/10.3390/su17188186
Chicago/Turabian StyleFelici, Giovanni, Giulio Corsi, Serena Fabbri, Monia Niero, and Maria Cristina Lavagnolo. 2025. "Assessing the Value of Ecosystem Services in Decentralized Sanitation Systems: A Case Study in a Vulnerable Mountain Area" Sustainability 17, no. 18: 8186. https://doi.org/10.3390/su17188186
APA StyleFelici, G., Corsi, G., Fabbri, S., Niero, M., & Lavagnolo, M. C. (2025). Assessing the Value of Ecosystem Services in Decentralized Sanitation Systems: A Case Study in a Vulnerable Mountain Area. Sustainability, 17(18), 8186. https://doi.org/10.3390/su17188186