Digital Transformation Drives Regional Innovation Ecosystem Resilience: A Study Based on the Dynamic QCA Method
Abstract
1. Introduction
2. Literature Review and Research Framework
2.1. Literature Review
2.1.1. The Conceptual on RIER
2.1.2. Research on Measurement Methods of RIER
2.1.3. The Conceptual on Digital Transformation
2.1.4. Research on the Impact of DT on RIER
2.2. Theoretical Framework
2.2.1. Technological and RIER
2.2.2. Organizational and RIER
2.2.3. Environmental and RIER
3. Research Design
3.1. Research Methods
3.2. Sample Selection and Data Sources
3.3. Variable Measurement
3.3.1. Result Variable
3.3.2. Condition Variable
3.4. Calibration
4. Empirical Results
4.1. Necessity Analysis of Individual Conditions
4.1.1. Pooled Consistency Analysis
4.1.2. Between-Group Analysis
4.1.3. Within-Group Analysis
4.2. Adequacy Analysis of Conditional Configuration
4.2.1. Pooled Results
- (1)
- Configurational Analysis of High RIER
- (2)
- Configurational Analysis of Non-High RIER
4.2.2. Between-Group Result
4.2.3. Within-Group Result
4.3. Robustness Test
5. Conclusions and Suggestion
5.1. Conclusions
5.2. Theoretical Contribution
5.3. Policy Implications
5.4. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rong, K.; Lin, Y.; Yu, J.; Zhang, Y.; Radziwon, A. Exploring Regional Innovation Ecosystems: An Empirical Study in China. In Innovation Policies and Practices Within Innovation Ecosystems; Routledge: Abingdon, UK, 2022; pp. 10–34. [Google Scholar]
- Xie, X.; Liu, X.; Blanco, C. Evaluating and forecasting the niche fitness of regional innovation ecosystems: A comparative evaluation of different optimized grey models. Technol. Forecast. Soc. Change 2023, 191, 122473. [Google Scholar] [CrossRef]
- Könnölä, T.; Eloranta, V.; Turunen, T.; Salo, A. Transformative governance of innovation ecosystems. Technol. Forecast. Soc. Change 2021, 173, 121106. [Google Scholar] [CrossRef]
- Bennett, N.; Lemoine, G.J. What a difference a word makes: Understanding threats to performance in a VUCA world. Bus. Horiz. 2014, 57, 311–317. [Google Scholar] [CrossRef]
- Eilers, K.; Peters, C.; Leimeister, J.M. Why the agile mindset matters. Technol. Forecast. Soc. Change 2022, 179, 121650. [Google Scholar] [CrossRef]
- Nambisan, S.; Lyytinen, K.; Majchrzak, A. Digital innovation management: Reinventing innovation management research in a digital world. MIS Q. 2017, 41, 223–238. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Li, Y. The impact of the digital economy on the total factor productivity of manufacturing firms: Empirical evidence from China. Technol. Forecast. Soc. Change 2024, 207, 123604. [Google Scholar] [CrossRef]
- Piccoli, G.; Grover, V.; Rodriguez, J. Digital Transformation Requires Digital Resource Primacy: Clarification and Future Research Directions. J. Strateg. Inf. Syst. 2024, 33, 101835. [Google Scholar] [CrossRef]
- Li, Z.G.; Wang, J. Digital economy development, data factor allocation and manufacturing productivity improvement. Economist 2021, 10, 41–50. [Google Scholar]
- Philipp, G.; Albrecht, F. Data-driven operations management: Organisational implications of the digital transformation in industrial practice. Prod. Plan. Control 2017, 28, 1332–1343. [Google Scholar]
- Yin, X.M.; Lin, Z.Y.; Chen, J.; Zhang, X. Research on the Dynamic Value Creation Process of Data Element. Stud. Sci. Sci. 2022, 40, 220–229. [Google Scholar]
- Brunetti, F.; Matt, D.T.; Bonfanti, A.; De Longhi, A.; Pedrini, G.; Orzes, G. Digital transformation challenges: Strategies emerging from a multi-stakeholder approach. TQM J. 2020, 32, 697–724. [Google Scholar] [CrossRef]
- Du, Z.Y.; Wang, Q. Digital infrastructure and innovation: Digital divide or digital dividend? J. Innov. Knowl. 2024, 9, 100542. [Google Scholar] [CrossRef]
- Du, D.; Jian, X. Enhancing the resilience of regional digital innovation ecosystems: A pathway analysis from the lens of resource orchestration theory. Ann. Reg. Sci. 2024, 73, 1811–1838. [Google Scholar] [CrossRef]
- Tang, K.; Cai, X.; Wang, H. Innovation capacity in urban agglomerations: The role of digital finance. J. Innov. Knowl. 2025, 10, 100697. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Z.; Lin, C. How to enhance regional innovation ecosystem resilience in china? a configuration analysis based on panel data. IEEE Trans. Eng. Manag. 2025, 71, 14401–14414. [Google Scholar] [CrossRef]
- Chen, H.; Cai, S. Research on evaluation and influencing factors of regional digital innovation ecosystem resilience—Empirical research based on panel data of 30 provinces and cities in China. Sustainability 2023, 15, 10477. [Google Scholar] [CrossRef]
- Roundy, P.T.; Brockman, B.K.; Bradshaw, M. The resilience of entrepreneurial ecosystems. J. Bus. Ventur. Insights 2017, 8, 99–104. [Google Scholar] [CrossRef]
- Lv, W.D.; Tian, D.; Wei, Y.; Xi, R.X. Innovation resilience: A new approach for managing uncertainties concerned with sustainable innovation. Sustainability 2018, 10, 3641. [Google Scholar] [CrossRef]
- Liang, L.; Zhao, Y.; Liu, B. Research on monitoring and early warning of the resilience of the innovation ecosystem in the China’s national new districts. China Soft Sci. 2020, 7, 92–111. [Google Scholar]
- Boyer, J. Toward an Evolutionary and Sustainability Perspective of the Innovation Ecosystem: Revisiting the Panarchy Model. Sustainability 2020, 12, 3232. [Google Scholar] [CrossRef]
- Yang, W.; Lao, X.Y.; Zhou, Q.; Chen, X. The Governance Niche Configurations for the Resilience of Regional Digital Innovation Ecosystem. Stud. Sci. Sci. 2022, 40, 534–544. [Google Scholar]
- Sgrò, C.M.; Lowe, A.J.; Hoffmann, A.A. Building evolutionary resilience for conserving biodiversity under climate change. Evol. Appl. 2015, 4, 326–337. [Google Scholar] [CrossRef]
- Mera, A.P.; Balijepalli, C. Towards improving resilience of cities: An optimisation approach to minimising vulnerability to disruption due to natural disasters under budgetary constraints. Transportation 2020, 47, 1809–1842. [Google Scholar] [CrossRef]
- Martin, R. Regional economic resilience, hysteresis and recessionary shocks. J. Econ. Geogr. 2012, 12, 1–32. [Google Scholar] [CrossRef]
- Williams, T.A.; Gruber, D.A.; Sutcliffe, K.M. Organizational response to adversity: Fusing crisis management and resilience research streams. Acad. Manag. Ann. 2017, 11, 733–769. [Google Scholar] [CrossRef]
- Liang, L.; Li, Y. How does government support promote digital economy development in China? The mediating role of regional innovation ecosystem resilience. Technol. Forecast. Soc. Change 2023, 188, 122328. [Google Scholar] [CrossRef]
- Adner, R. Match your innovation strategy to your innovation ecosystem. Harv. Bus. Rev. 2006, 84, 98–107. [Google Scholar] [PubMed]
- Iansiti, M.; Levien, R. Strategy as ecology. Harv. Bus. Rev. 2004, 82, 68–81. [Google Scholar]
- Metcalfe, S.; Ramlogan, R. Innovation systems and the competitive process in developing economies. Q. Rev. Econ. Financ. 2008, 48, 433–446. [Google Scholar] [CrossRef]
- Huang, L.C. Regional Technological Innovation System: An Ecology Perspective. Stud. Sci. Sci. 2003, 21, 215–219. [Google Scholar]
- Jacobides, M.G.; Cennamo, C.; Gawer, A. Towards a theory of ecosystems. Strateg. Manag. J. 2018, 39, 2255–2276. [Google Scholar] [CrossRef]
- Tang, C.L.; Song, G.D.; Zhou, G.H.; He, Y.H. The Connotation and Measurement of the Resilience of Innovation Ecosystem in High-Tech Industrial Development Zones: A Case Study of Hunan Province. Trop. Geogr. 2023, 43, 1903–1916. [Google Scholar]
- Granstrand, O.; Holgersson, M. Innovation ecosystems: A conceptual review and a new definition. Technovation 2020, 90–91, 102098. [Google Scholar] [CrossRef]
- Martin, R.; Sunley, P.; Gardiner, B.; Tyler, P. How regions react to recessions: Resilience and the role of economic structure. Reg. Stud. 2016, 50, 561–585. [Google Scholar] [CrossRef]
- Wang, W.J.; Liu, Y.W.; Zhao, Z.X. Research on the Impact of Community Evolution on the Resilience of Regional Innovation Ecosystems. Sci. Res. Manag. 2023, 44, 114. [Google Scholar]
- Briguglio, L.; Cordina, G.; Farrugia, N. Economic vulnerability and resilience: Concepts and measurements. In Measuring Vulnerability in Developing Countries; Routledge: London, UK, 2014; pp. 47–65. [Google Scholar]
- Martin, R.; Sunley, P. On the notion of regional economic resilience: Conceptualization and explanation. J. Econ. Geogr. 2015, 15, 1–42. [Google Scholar] [CrossRef]
- Ying, C.; Li, J.L.; Liu, Y.C.; Tian, P.; Zhang, H.T.; Gong, H. The Spatiotemporal Evolution and Influencing Factors of Resilience of County-Level Cities in the East China Sea Coastal Zone Based on “Background-Operation-Efficiency”. Acta Geogr. Sin. 2024, 79, 462–483. [Google Scholar]
- Shen, X.; Guo, H.X.; Cheng, J.H. The Resilience of Nodes in Critical Mineral Resources Supply Chain Networks under Emergent Risk: Take Nickel Products as an Example. Resour. Sci. 2022, 44, 85–96. [Google Scholar] [CrossRef]
- Tobias, K.; Pooyan, K. Digital Transformation and Organization Design: An Integrated Approach. Calif. Manag. Rev. 2020, 62, 86–104. [Google Scholar] [CrossRef]
- Majchrzak, A.; Markus, M.L.; Wareham, J. Designing for digital transformation: Lessons for information systems research from the study of ICT and societal challenges. MIS Q. 2016, 40, 267–277. [Google Scholar] [CrossRef]
- Gray, J.; Rumpe, B. Models for the digital transformation. Softw. Syst. Model. 2017, 16, 307–308. [Google Scholar] [CrossRef]
- Westerman, G.; Calméjane, C.; Bonnet, D. Digital transformation: A roadmap for billion-dollar organizations. MIT Cent. Digit. Bus. Capgemini Consult. 2011, 1, 1–68. [Google Scholar]
- Berman, S.J. Digital transformation: Opportunities to create new business models. Strategy Leadersh. 2012, 40, 16–24. [Google Scholar] [CrossRef]
- Karimi, J.; Walter, Z. The role of dynamic capabilities in responding to digital disruption: A factor-based study of the newspaper industry. J. Manag. Inf. Syst. 2015, 32, 39–81. [Google Scholar] [CrossRef]
- Hess, T.; Matt, C.; Benlian, A. Options for formulating a digital transformation strategy. MIS Q. Exec. 2016, 15, 123–139. [Google Scholar]
- Saeedikiya, M.; Salunke, S.; Kowalkiewicz, M. The nexus of digital transformation and innovation: A multilevel framework and research agenda. J. Innov. Knowl. 2025, 10, 100640. [Google Scholar] [CrossRef]
- Hinings, B.; Gegenhuber, T.; Greenwood, R. Digital innovation and transformation: An institutional perspective. Inf. Organ. 2018, 28, 52–61. [Google Scholar] [CrossRef]
- Demin, S.; Mikhaylova, A.; Pyankova, S. Digitalization and its impact on regional economy transformation mechanisms. Int. J. Syst. Assur. Eng. Manag. 2023, 14, 377–390. [Google Scholar] [CrossRef]
- Hao, W.; Zhang, J. The reality, risk and governance of regional innovation ecosystems under digital transformation background. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Virtual Conference, 15–17 June 2021; Volume 769, p. 22052. [Google Scholar]
- Wu, J.; Guo, D. Measuring E-Government Performance of Provincial Government Website in China with Slacks-Based Efficiency Measurement. Technol. Forecast. Soc. Change 2015, 96, 25–31. [Google Scholar] [CrossRef]
- Huong, T.T.L.; Thanh, T.T. Is digitalization a driver to enhance environmental performance? An empirical investigation of European countries. Sustain. Prod. Consum. 2022, 32, 230–247. [Google Scholar] [CrossRef]
- Ha, L.T. Effects of digitalization on financialization: Empirical evidence from European countries. Technol. Soc. 2022, 68, 101878. [Google Scholar] [CrossRef]
- Qi, Y.; Chu, X. Development of the digital economy, transformation of the economic structure and leaping of the middle-income trap. China Polit. Econ. 2022, 5, 14–39. [Google Scholar] [CrossRef]
- Chen, X.H.; Li, Y.Y.; Song, L.J. Theoretical Framework and Research Prospect of Digital Economy. J. Manag. World 2022, 38, 208–224. [Google Scholar]
- Varian, H.R. Computer mediated transactions. Am. Econ. Rev. 2010, 100, 1–10. [Google Scholar] [CrossRef]
- Luo, Y.; Lu, Z.; Wu, C. Can internet development accelerate the green innovation efficiency convergence: Evidence from China. Technol. Forecast. Soc. Change 2023, 189, 122352. [Google Scholar] [CrossRef]
- Yang, X.; Ran, R.; Chen, Y. Does digital government transformation drive regional green innovation? Evidence from cities in China. Energy Policy 2024, 187, 114017. [Google Scholar] [CrossRef]
- Tian, Z.; Li, Y.; Niu, X. The impact of digital economy on regional technological innovation capability: An analysis based on China’s provincial panel data. PLoS ONE 2023, 18, e0288065. [Google Scholar] [CrossRef]
- Wen, J.; Yan, Z.J.; Cheng, Y. Research on the Effect of Digital Economy on Upgrading Innovation Capacity—Based on Provincial-Level Panel Data. Reform. Econ. Syst. 2020, 3, 31–38. [Google Scholar]
- Zhou, Q.; Wang, Y.L.; Yang, W. An Empirical Study of the Impact of Digital Level on Innovation Performance: A Study Based on the Panel Data of 73 Counties of Zhejiang Province. Sci. Res. Manag. 2020, 41, 120–129. [Google Scholar]
- Drazin, R.; Tornatzky, G.; Fleischer, M. The Process of Technological Innovation. J. Technol. Transf. 1991, 16, 45–46. [Google Scholar] [CrossRef]
- Tan, H.B.; Fan, Z.T.; Du, Y.Z. Technical management capability, attention allocation and local government website construction. Manag. World 2019, 35, 81–94. [Google Scholar]
- Wong, D.T.; Ngai, E.W. Impact of artificial intelligence (AI) on operational performance: The role of dynamic capabilities. Inf. Manag. 2025, 62, 104162. [Google Scholar] [CrossRef]
- Xing, X.; Chen, T.; Yang, X.; Liu, T. Digital transformation and innovation performance of China’s manufacturers? A configurational approach. Technol. Soc. 2023, 75, 102356. [Google Scholar] [CrossRef]
- Ferreira, J.J.; Fernandes, C.I.; Ferreira, F.A. Technology transfer, climate change mitigation, and environmental patent impact on sustainability and economic growth: A comparison of European countries. Technol. Forecast. Soc. Change 2020, 150, 119770. [Google Scholar] [CrossRef]
- Wang, S.; Gao, Y.; Zhou, H. Research on green total factor productivity enhancement path from the configurational perspective—Based on the TOE theoretical framework. Sustainability 2022, 14, 14082. [Google Scholar] [CrossRef]
- Cui, T.; Ye, H.; Teo, H. Information technology and open innovation. Inf. Manag. 2015, 52, 348–358. [Google Scholar] [CrossRef]
- Forman, C.; Zeebroeck, N.V. Digital technology adoption and knowledge flows within firms: Can the Internet overcome geographic and technological distance? Res. Policy 2018, 48, 103647. [Google Scholar] [CrossRef]
- Hund, A.; Wagner, H.T.; Beimborn, D.; Weitzel, T. Digital innovation: Review and novel perspective. J. Strateg. Inf. Syst. 2021, 30, 101695. [Google Scholar] [CrossRef]
- Romer, P.M. Endogenous technological change. J. Polit. Econ. 1990, 98, S71–S102. [Google Scholar] [CrossRef]
- Xiao, Y.; Duan, Y.; Zhou, H.; Han, X. Has digital technology innovation improved urban total factor energy efficiency?—Evidence from 282 prefecture-level cities in China. J. Environ. Manag. 2025, 378, 124784. [Google Scholar] [CrossRef]
- Huang, Y.; Li, S.; Xiang, X.; Bu, Y.; Guo, Y. How can the combination of entrepreneurship policies activate regional innovation capability? A comparative study of Chinese provinces based on fsQCA. J. Innov. Knowl. 2022, 7, 100227. [Google Scholar] [CrossRef]
- Ciarli, T.; Kenney, M.; Massini, S.; Piscitello, L. Digital technologies, innovation, and skills: Emerging trajectories and challenges. Res. Policy 2021, 50, 104289. [Google Scholar] [CrossRef]
- Jian, X.; Du, D.; Liang, D. Scale or effectiveness? The nonlinear impact of talent agglomeration on high-quality economic development in China. Heliyon 2024, 10, e29554. [Google Scholar] [CrossRef]
- Janssen, M.; Rana, N.P.; Slade, E.L.; Dwivedi, Y.K. Trustworthiness of digital government services: Deriving a comprehensive theory through interpretive structural modelling. In Digital Government and Public Management; Routledge: New York, NY, USA, 2021; pp. 15–39. [Google Scholar]
- Zhang, L.; Zhang, X. Impact of digital government construction on the intelligent transformation of enterprises: Evidence from China. Technol. Forecast. Soc. Change 2025, 210, 123787. [Google Scholar] [CrossRef]
- Hao, X.; Miao, E.; Sun, Q.; Li, K.; Wen, S.; Xue, Y. The impact of digital government on corporate green innovation: Evidence from China. Technol. Forecast. Soc. Change 2024, 206, 123570. [Google Scholar] [CrossRef]
- Zhao, S.; Teng, L.; Arkorful, V.E.; Hu, H. Impacts of digital government on regional eco-innovation: Moderating role of dual environmental regulations. Technol. Forecast. Soc. Change 2023, 196, 122842. [Google Scholar] [CrossRef]
- Li, X.; Yue, S. Does the government digital attention improve China’s digital economy output efficiency: Accelerator or inhibitor. Econ. Anal. Policy 2025, 85, 607–625. [Google Scholar] [CrossRef]
- Zhang, K.; Cao, B.; Guo, Z.; Li, R.; Li, L. Research on the impact of government attention on the digital economy of Chinese provinces. Innov. Green Dev. 2024, 3, 100118. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, C.; Yan, G.; Irfan, M.; Chang, C.P. Identifying the nexus among environmental performance, digital finance, and green innovation: New evidence from prefecture-level cities in China. J. Environ. Manag. 2023, 335, 117554. [Google Scholar] [CrossRef]
- Cao, S.; Nie, L.; Sun, H.; Sun, W.; Taghizadeh-Hesary, F. Digital finance, green technological innovation and energy-environmental performance: Evidence from China’s regional economies. J. Clean. Prod. 2021, 327, 129458. [Google Scholar] [CrossRef]
- Xu, J.; Yin, J. Digital transformation and ESG performance: The chain mediating role of technological innovation and financing constraints. Financ. Res. Lett. 2025, 71, 106387. [Google Scholar] [CrossRef]
- Park, Y.; Mithas, S. Organized complexity of digital business strategy: A configurational perspective. MIS Q. 2020, 44, 1–24. [Google Scholar] [CrossRef]
- Du, Y.Z.; Li, J.X.; Liu, Q.C.; Zhao, S.T.; Chen, K.W. Configurational Theory and QCA Method from a Complex Dynamic Perspective: Research Progress and Future Directions. Manag. World 2021, 37, 180–197. [Google Scholar]
- Garcia-Castro, R.; Ariño, M.A. A General Approach to Panel Data Set-Theoretic Research. Int. J. Manag. Decis. Mak. 2016, 1, 11–41. [Google Scholar] [CrossRef]
- Huang, Q.H.; Yu, Y.Z.; Zhang, S.L. Internet development and manufacturing productivity improvement: Internal mechanism and Chinese experience. China Ind. Econ. 2019, 8, 5–23. [Google Scholar]
- Deng, H.; Bai, G.; Shen, Z.; Xia, L. Digital economy and its spatial effect on green productivity gains in manufacturing: Evidence from China. J. Clean. Prod. 2022, 378, 134539. [Google Scholar] [CrossRef]
- Zeng, F.J.; Chen, Y.Z. What kind of digital governance ecosystem can improve the development level of digital government?—Dynamic QCA analysis based on ecological perspective. E-Gov. 2024, 4, 27–41. [Google Scholar]
- Zhao, Y.; Tan, H.B.; He, M.S. Factors and Configurations Influencing Local Government Internet Service Supply Capacity: A Qualitative Comparative Analysis Based on 27 Provinces. Electron. Gov. 2021, 4, 68–78. [Google Scholar] [CrossRef]
- Bi, M.; Wang, C.; Fu, D.; Tan, X.; Yu, S.; Pan, J.; Lv, K. Chinese-style fiscal decentralization, ecological attention of Government, and regional energy intensity. Energies 2022, 15, 8408. [Google Scholar] [CrossRef]
- Guo, F.; Wang, J.Y.; Wang, F. Measuring China’s digital financial inclusion development: Index compilation and spatial characteristics. China Econ. Q. 2020, 19, 1401–1418. [Google Scholar]
- Fiss, P.C. A Fuzzy Set Approach to Typologies in Organization Research. Acad. Manag. J. 2011, 54, 393–420. [Google Scholar] [CrossRef]
- Fan, X.; Ren, S.; Liu, Y. The driving factors of green technology innovation efficiency—A study based on the dynamic QCA method. Sustainability 2023, 15, 9845. [Google Scholar] [CrossRef]
- Zhang, M.; Du, Y.Z. Application of QCA method in organization and management research: Positioning, strategy and direction. Chin. J. Manag. 2019, 16, 1312–1323. [Google Scholar]
- Schneider, C.Q.; Wagemann, C. Set-Theoretic Methods for the Social Sciences: A Guide to Qualitative Comparative Analysis; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Schlaile, M.P.; Friedrich, J.; Zscheischler, J. Rethinking regional embeddedness and innovation systems for transitions towards just, responsible, and circular bioeconomies. J. Circ. Econ. 2024, 2, 19420. [Google Scholar] [CrossRef]
- Teece, D.J.; Pisano, G.; Shuen, A. Dynamic capabilities and strategic management. Strateg. Manag. J. 1997, 18, 509–533. [Google Scholar] [CrossRef]
- Scott, W.R. Institutions and Organizations: Ideas, Interests, and Identities; Sage publications: Thousand Oaks, CA, USA, 2013. [Google Scholar]
- Fang, F.; Zhang, L.J.; Zhao, J. Multiple Paths of Agricultural Green Total Factor ProductivityImprovement from the Perspective of Institutional Grouping: A Panel DataAnalysis Based on Dynamic QCA. Chin. Rural Econ. 2024, 2, 44–66. [Google Scholar]
- Hervas-Oliver, J.L.; Gonzalez-Alcaide, G.; Rojas-Alvarado, R.; Monto-Mompo, S. Emerging regional innovation policies for Industry 4.0: Analyzing the Digital Innovation Hub program in European regions. Compet. Rev. 2021, 31, 106–129. [Google Scholar] [CrossRef]
Tier l Indicators | Tier 2 Indicators | Tier 3 Indicators | Indicator Properties |
---|---|---|---|
Diversity | Diversity of talents | The proportion of employees with tertiary education or above | + |
Diversity of enterprises | Number of above-designated-size industrial enterprises | + | |
Diversity of colleges and universities | Number of regular higher education institutions | + | |
Evolvability | Innovation input | R&D personnel full-time equivalent | + |
New product development expenses | + | ||
Innovation output | Number of domestic patent applications | + | |
Sales revenue of new products | + | ||
Fluidity | Capital flow | Fixed-asset investment | + |
Utilization of foreign direct investment | + | ||
Technical flow | Value of contract exportation from domestic technical markets | + | |
Value of contract inflows to domestic technical markets | + | ||
Information flow | Number of broadband subscribers’ port of internet | + | |
Business volume of telecommunication services | + | ||
Freight flow | Freight traffic | + | |
Cushioning | Economic resources | Per capita GDP | + |
Knowledge resources | Invention patent ownership per 10,000 people+ | + | |
Natural environment resources | Per capita water resources | + | |
Industrial sulfur dioxide emissions per 10,000 people | - | ||
Social environment resources | Number of books in public libraries per 10,000 people | + | |
Number of beds in medical and health institutions per 10,000 people | + |
Result Variables | Completely Affiliated | Crossing Point | Completely Unaffiliated | Standard Deviation | Mean | Maximum | Minimum |
---|---|---|---|---|---|---|---|
RIER | 0.1450525 | 0.07057 | 0.0417475 | 0.151892426 | 0.128777583 | 0.71536 | 0.01553 |
Digital Infrastructure | 66.7092775 | 48.206605 | 34.576895 | 23.1600587 | 52.8748215 | 171.59 | 16.44612 |
Digital Technological Innovation | 1688.75 | 484 | 154.5 | 6958.072609 | 2871.8 | 49,454 | 7 |
Digital Human Capital | 0.022361175 | 0.012060014 | 0.008659018 | 0.023724741 | 0.021693669 | 0.114770116 | 0.003589792 |
Digital Government Governance | 81.94 | 74.635 | 68.155 | 10.18759505 | 73.835 | 91.83 | 41.13 |
Digital Attention | 6711.25 | 5941 | 5161 | 1301.10722 | 5869.804167 | 9862 | 66 |
Digital Finance | 312.3025 | 287.34 | 264.3375 | 33.08275946 | 286.5985417 | 361.07 | 214.77 |
Condition Variables | Y | ~Y | ||||||
---|---|---|---|---|---|---|---|---|
Aggregate Consistency | Aggregate Coverage | BECONS Adjusted Distance | WICONS Adjusted Distance | Aggregate Consistency | Aggregate Coverage | BECONS Adjusted Distance | WICONS Adjusted Distance | |
X1 | 0.787 | 0.793 | 0.098541362 | 0.364361599 | 0.338 | 0.344 | 0.197082724 | 0.707290163 |
~X1 | 0.349 | 0.343 | 0.159405144 | 0.714434508 | 0.797 | 0.791 | 0.057965507 | 0.414372015 |
X2 | 0.872 | 0.904 | 0.08115171 | 0.285773803 | 0.285 | 0.299 | 0.266641332 | 0.750156234 |
~X2 | 0.323 | 0.31 | 0.185489622 | 0.707290163 | 0.908 | 0.878 | 0.066660333 | 0.357217254 |
X3 | 0.622 | 0.672 | 0.057965507 | 0.585836297 | 0.406 | 0.443 | 0.092744811 | 0.728723198 |
~X3 | 0.485 | 0.447 | 0.046372406 | 0.607269332 | 0.7 | 0.651 | 0.03767758 | 0.492959811 |
X4 | 0.672 | 0.657 | 0.423148201 | 0.342928564 | 0.461 | 0.455 | 0.608637823 | 0.528681536 |
~X4 | 0.442 | 0.448 | 0.591248171 | 0.528681536 | 0.653 | 0.667 | 0.388368897 | 0.357217254 |
X5 | 0.644 | 0.645 | 0.199980999 | 0.428660705 | 0.456 | 0.46 | 0.191286173 | 0.550114571 |
~X5 | 0.461 | 0.456 | 0.266641332 | 0.500104156 | 0.648 | 0.648 | 0.147812043 | 0.364361599 |
X6 | 0.707 | 0.718 | 0.504299911 | 0.278629458 | 0.389 | 0.399 | 0.866584329 | 0.571547607 |
~X6 | 0.408 | 0.399 | 0.878177431 | 0.528681536 | 0.725 | 0.714 | 0.507198186 | 0.264340768 |
Situations | Causal Combination Situations | Years | |||||
---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2021 | 2022 | |||
1 | X4/Y | Inter-group consistency | 0.363 | 0.478 | 0.711 | 0.923 | 0.881 |
Inter-group coverage | 0.951 | 0.657 | 0.619 | 0.63 | 0.635 | ||
2 | ~X4/Y | Inter-group consistency | 0.71 | 0.628 | 0.435 | 0.206 | 0.237 |
Inter-group coverage | 0.441 | 0.478 | 0.493 | 0.384 | 0.397 | ||
3 | ~X5/Y | Inter-group consistency | 0.404 | 0.507 | 0.626 | 0.412 | 0.359 |
Inter-group coverage | 0.443 | 0.43 | 0.504 | 0.473 | 0.421 | ||
4 | X6/Y | Inter-group consistency | 0.24 | 0.574 | 0.787 | 0.96 | 0.972 |
Inter-group coverage | 0.998 | 0.967 | 0.855 | 0.619 | 0.605 | ||
5 | ~X6/~Y | Inter-group consistency | 0.827 | 0.589 | 0.408 | 0.123 | 0.099 |
Inter-group coverage | 0.473 | 0.407 | 0.367 | 0.273 | 0.263 | ||
6 | X2/~Y | Inter-group consistency | 0.238 | 0.227 | 0.258 | 0.323 | 0.383 |
Inter-group coverage | 0.275 | 0.274 | 0.282 | 0.31 | 0.339 | ||
7 | X6/~Y | Inter-group consistency | 0.956 | 0.948 | 0.927 | 0.877 | 0.832 |
Inter-group coverage | 0.835 | 0.839 | 0.882 | 0.916 | 0.937 | ||
8 | ~X6/~Y | Inter-group consistency | 1 | 0.981 | 0.87 | 0.409 | 0.354 |
Inter-group coverage | 0.566 | 0.706 | 0.808 | 0.911 | 0.925 |
Variable | Mean | SD | Chi-Square | p-Value |
---|---|---|---|---|
High Digital Infrastructure | 0.75 | 0.27 | 4.2337 | 0.1204 |
High Digital Technological Innovation | 0.84 | 0.24 | 1.2439 | 0.5369 |
High Digital Human Capital | 0.69 | 0.39 | 3.3219 | 0.19 |
High Digital Government Governance | 0.69 | 0.23 | 8.3349 | 0.01549 ** |
High Digital Attention | 0.69 | 0.29 | 3.7612 | 0.1525 |
High Digital Finance | 0.68 | 0.19 | 17.576 | 0.0001525 *** |
Condition Variables | High RIER | Non-High RIER | ||||||
---|---|---|---|---|---|---|---|---|
H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | |
X1 | ⬤ | ⬤ | • | ⬤ | ⊗ | U | U | ⊗ |
X2 | ⬤ | • | ⬤ | • | • | ⊗ | ⊗ | ⊗ |
X3 | ⬤ | ⬤ | U | U | U | |||
X4 | U | ⬤ | U | • | U | U | ||
X5 | ⬤ | ⬤ | ⊗ | ⊗ | ⊗ | • | ||
X6 | • | • | • | ⊗ | U | • | ||
Consistency | 0.95 | 0.941 | 0.969 | 0.946 | 0.956 | 0.955 | 0.958 | 0.951 |
PRI | 0.939 | 0.927 | 0.949 | 0.927 | 0.910 | 0.907 | 0.913 | 0.903 |
Coverage | 0.368 | 0.419 | 0.202 | 0.518 | 0.404 | 0.223 | 0.410 | 0.455 |
Unique coverage | 0.02 | 0.021 | 0.041 | 0.144 | 0.015 | 0.031 | 0.029 | 0.043 |
BECONs adjusted distance | 0.046 | 0.064 | 0.032 | 0.041 | 0.067 | 0.090 | 0.064 | 0.058 |
WICONS adjusted distance | 0.243 | 0.286 | 0.229 | 0.279 | 0.134 | 0.158 | 0.179 | 0.152 |
Aggregate consistency | 0.938 | 0.945 | ||||||
Aggregate coverage | 0.671 | 0.722 |
Region | H1 | H2 | H3 | H4 |
---|---|---|---|---|
Beijing–Tianjin–Hebei | 0.411 | 0.376 | 0.375 | 0.327 |
Yangtze River Delta | 0.420 | 0.467 | 0.332 | 0.544 |
Pearl River Delta | 0.358 | 0.327 | 0.336 | 0.547 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xiao, J.; Xu, Z. Digital Transformation Drives Regional Innovation Ecosystem Resilience: A Study Based on the Dynamic QCA Method. Sustainability 2025, 17, 8148. https://doi.org/10.3390/su17188148
Wang Y, Xiao J, Xu Z. Digital Transformation Drives Regional Innovation Ecosystem Resilience: A Study Based on the Dynamic QCA Method. Sustainability. 2025; 17(18):8148. https://doi.org/10.3390/su17188148
Chicago/Turabian StyleWang, Yunan, Jing Xiao, and Zhi Xu. 2025. "Digital Transformation Drives Regional Innovation Ecosystem Resilience: A Study Based on the Dynamic QCA Method" Sustainability 17, no. 18: 8148. https://doi.org/10.3390/su17188148
APA StyleWang, Y., Xiao, J., & Xu, Z. (2025). Digital Transformation Drives Regional Innovation Ecosystem Resilience: A Study Based on the Dynamic QCA Method. Sustainability, 17(18), 8148. https://doi.org/10.3390/su17188148