Driving Sustainable Agricultural Development in Hilly Areas: Interaction of Productive Services and Industrial Agglomeration
Abstract
1. Introduction
2. Theoretical Analysis: Unpacking the Mechanisms Driving Coupling Coordination
2.1. The Direct Effect of Agricultural Productive Services on Coupling Coordination: A Transaction Cost and Innovation Diffusion Perspective
2.2. The Moderating Effect of Industrial Agglomeration on Coupling Coordination: An Agglomeration Economies and Knowledge Spillover Perspective
3. Methods and Data
3.1. Methods
3.1.1. Construction of an Agricultural Transformation Indicator System
3.1.2. Coupling Coordination Model
3.1.3. Econometric Model
3.2. Variables
3.2.1. Variable Selection
3.2.2. Data Sources
4. Results
4.1. Analysis of Agricultural Transformation and Environmental Systems
4.1.1. Agricultural Transformation Characteristics
4.1.2. Agricultural Environment Analysis
4.1.3. Coupling Coordination Degree Analysis
4.2. Econometric Regression Results
4.2.1. Direct Effect of Agricultural Productive Services (APSs)
4.2.2. Heterogeneity Analysis of APS Impact
4.2.3. Moderating Effect of Industrial Agglomeration
5. Conclusions and Policy Implications
5.1. Key Findings
5.2. Theoretical Contributions
5.3. Policy Implications
5.4. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jayne, T.S.; Chamberlin, J.; Benfica, R. Africa’s unfolding economic transformation. J. Dev. Stud. 2018, 54, 777–787. [Google Scholar] [CrossRef]
- Reardon, T.; Timmer, C.P. Five inter-linked transformations in the Asian agrifood economy: Food security implications. Glob. Food Secur. 2014, 3, 108–117. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Tran, V.T.; Nguyen, T.T.; Grote, U. Farming efficiency, cropland rental market and income effect: Evidence from panel data for rural Central Vietnam. Eur. Rev. Agric. Econ. 2021, 48, 207–248. [Google Scholar] [CrossRef]
- Lombardozzi, D.L.; Wieder, W.R.; Keppel-Aleks, G.; Lai, J.; Luo, Z.; Sun, Y.; Simpson, I.R.; Lawrence, D.M.; Bonan, G.B.; Lin, X.; et al. Agricultural fertilization significantly enhances amplitude of land-atmosphere CO2 exchange. Nat. Commun. 2025, 16, 1742. [Google Scholar] [CrossRef]
- John, D.A.; Babu, G.R. Lessons from the aftermaths of green revolution on food system and health. Front. Sustain. Food Syst. 2021, 5, 644559. [Google Scholar] [CrossRef] [PubMed]
- Samuels, D.; Thomson, H. The Green Revolution is not always bloodless: Agricultural modernization and rural conflict in Brazil. World Dev. 2025, 191, 106951. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A.J.N.F. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Hu, Y.; Su, M.; Jiao, L. Peak and fall of China’s agricultural GHG emissions. J. Clean. Prod. 2023, 389, 136035. [Google Scholar] [CrossRef]
- Wang, D.; Chen, C.; Findlay, C. A review of rural transformation studies: Definition, measurement, and indicators. J. Integr. Agric. 2023, 22, 3568–3581. [Google Scholar] [CrossRef]
- Zahoor, I.; Mushtaq, A. Water pollution from agricultural activities: A critical global review. Int. J. Chem. Biochem. Sci. 2023, 23, 164–176. [Google Scholar]
- Hu, Y.; Liu, Y. Impact of fertilizer and pesticide reductions on land use in China based on crop-land integrated model. Land Use Policy 2024, 141, 107155. [Google Scholar] [CrossRef]
- Rozelle, S.; Swinnen, J.F.M. Success and failure of reform: Insights from the transition of agriculture. J. Econ. Lit. 2004, 42, 404–456. [Google Scholar] [CrossRef]
- Schmitt, G. Why collectivization of agriculture in socialist countries has failed: A transaction cost approach. In Agricultural Cooperatives in Transition; Routledge: Oxfordshire, UK, 2021; pp. 143–159. [Google Scholar]
- Liu, Z.; Yang, D.; Wen, T. Agricultural production mode transformation and production efficiency: A labor division and cooperation lens. China Agric. Econ. Rev. 2019, 11, 160–179. [Google Scholar] [CrossRef]
- Mustafa, M.A.; Mabhaudhi, T.; Avvari, M.V.; Massawe, F. Transition toward sustainable food systems: A holistic pathway toward sustainable development. In Food Security and Nutrition; Academic Press: Cambridge, MA, USA, 2021; pp. 33–56. [Google Scholar]
- Ray, A. The darker side of agricultural intensification-disappearance of autumn or aus rice, entry of HYVs, and implications in terms of environmental sustainability in a ‘Green Revolution’ state of eastern India. World Dev. Sustain. 2022, 1, 100028. [Google Scholar] [CrossRef]
- Jayne, T.S.; Snapp, S.; Place, F.; Sitko, N. Sustainable agricultural intensification in an era of rural transformation in Africa. Glob. Food Secur. 2019, 20, 105–113. [Google Scholar] [CrossRef]
- Gosnell, H. Regenerating soil, regenerating soul: An integral approach to understanding agricultural transformation. Sustain. Sci. 2022, 17, 603–620. [Google Scholar]
- Nowack, W.; Schmid, J.C.; Grethe, H. Social dimensions of multifunctional agriculture in Europe-towards an inter-disciplinary framework. Int. J. Agric. Sustain. 2022, 20, 758–773. [Google Scholar]
- Pascual, U.; Balvanera, P.; Anderson, C.B.; Chaplin-Kramer, R.; Christie, M.; González-Jiménez, D.; Martin, A.; Raymond, C.M.; Termansen, M.; Vatn, A.; et al. Diverse values of nature for sustainability. Nature 2023, 620, 813–823. [Google Scholar] [CrossRef]
- Allen, K.E.; Ortiz-Przychodzka, S.; Coelho-Junior, M.G.; Herrmann, T.; Atchley, M.; Benra, F.; Chavez, V.; Darvin, E.; McCabe, J.; Nahuelhual, L.; et al. Grassroots relational approaches to agricultural transformation in Latin America. Ecosyst. People 2024, 20, 2390470. [Google Scholar] [CrossRef]
- Qing, C.; Zhou, W.; Song, J.; Deng, X.; Xu, D. Impact of outsourced machinery services on farmers’ green production behavior: Evidence from Chinese rice farmers. J. Environ. Manag. 2023, 327, 116843. [Google Scholar] [CrossRef]
- Li, R.; Chen, J.; Xu, D. The impact of agricultural socialized service on grain production: Evidence from rural China. Agriculture 2024, 14, 785. [Google Scholar] [CrossRef]
- Xu, K.; Yi, X.; Zhou, L. Impacts of agricultural production services on green grain production efficiency: Factors allocation perspective. J. Environ. Manag. 2025, 380, 125136. [Google Scholar] [CrossRef]
- Kołodziejczak, M. The Use of Agricultural Services in European Union Regions Differing in Selected Agricultural Characteristics. Agriculture 2024, 14, 2346. [Google Scholar] [CrossRef]
- Ingram, J.; Mills, J. Are advisory services “fit for purpose” to support sustainable soil management? An assessment of advice in Europe. Soil Use Manag. 2019, 35, 21–31. [Google Scholar] [CrossRef]
- Asante, B.O.; Prah, S.; Addai, K.N.; Anang, B.; Ng’ombe, J.N. Agricultural services and rural household welfare: Empirical evidence from Ghana. Int. J. Soc. Econ. 2025, 52, 157–176. [Google Scholar] [CrossRef]
- Emeana, E.M.; Trenchard, L.; Dehnen-Schmutz, K. The revolution of mobile phone-enabled services for agricultural development (m-Agri services) in Africa: The challenges for sustainability. Sustainability 2020, 12, 485. [Google Scholar] [CrossRef]
- Brasier, K.J.; Goetz, S.; Smith, L.A.; Ames, M.; Green, J.; Kelsey, T.; Rangarajan, A.; Whitmer, W. Small farm clusters and pathways to rural community sustainability. Community Dev. 2007, 38, 8–22. [Google Scholar] [CrossRef]
- Sæther, B. Socio-economic unity in the evolution of an agricultural cluster. Eur. Plan. Stud. 2014, 22, 2605–2619. [Google Scholar] [CrossRef]
- Galvez-Nogales, E. Agro-based clusters in developing countries: Staying competitive in a globalized economy. In Agricultural Management, Marketing and Finance; Occasional Paper; FAO: Rome, Italy, 2010. [Google Scholar]
- Shao, Y.; Xiao, Y.; Kou, X.; Sang, W. Sustainable land use scenarios generated by optimizing ecosystem distribution based on temporal and spatial patterns of ecosystem services in the southern China hilly region. Ecol. Inform. 2023, 78, 102275. [Google Scholar] [CrossRef]
- Chen, G.Q.; Han, M.Y. Virtual land use change in China 2002–2010: Internal transition and trade imbalance. Land Use Policy 2015, 47, 55–65. [Google Scholar] [CrossRef]
- Song, Y.; Qi, G.; Zhang, Y.; Vernooy, R. Farmer cooperatives in China: Diverse pathways to sustainable rural development. Int. J. Agric. Sustain. 2014, 12, 95–108. [Google Scholar] [CrossRef]
- Forrest Zhang, Q.; Donaldson, J.A. From peasants to farmers: Peasant differentiation, labor regimes, and land-rights institutions in China’s agrarian transition. Politics Soc. 2010, 38, 458–489. [Google Scholar] [CrossRef]
- Oseni, G.; Winters, P. Rural nonfarm activities and agricultural crop production in Nigeria. Agric. Econ. 2009, 40, 189–201. [Google Scholar] [CrossRef]
- Li, F.; Feng, S.; Lu, H.; Qu, F.; D’Haese, M. How do non-farm employment and agricultural mechanization impact on large-scale farming? A spatial panel data analysis from Jiangsu Province, China. Land Use Policy 2021, 107, 105517. [Google Scholar] [CrossRef]
- Ji, X.; Chen, J.; Zhang, H. Agricultural specialization activates the industry chain: Implications for rural entrepreneurship in China. Agribusiness 2024, 40, 950–974. [Google Scholar] [CrossRef]
- Abate, G.T.; Francesconi, G.N.; Getnet, K. Impact of agricultural cooperatives on smallholders’ technical efficiency: Empirical evidence from Ethiopia. Ann. Public Coop. Econ. 2014, 85, 257–286. [Google Scholar] [CrossRef]
- Xu, Y.; Lyu, J.; Xue, Y.; Liu, H. Does the agricultural productive service embedded affect farmers’ family economic welfare enhancement? An empirical analysis in black soil region in China. Agriculture 2022, 12, 1880. [Google Scholar] [CrossRef]
- Hellin, J.; Lundy, M.; Meijer, M. Farmer organization, collective action and market access in Meso-America. Food Policy 2009, 34, 16–22. [Google Scholar] [CrossRef]
- Shiferaw, B.; Hellin, J.; Muricho, G. Improving market access and agricultural productivity growth in Africa: What role for producer organizations and collective action institutions? Food Secur. 2011, 3, 475–489. [Google Scholar] [CrossRef]
- Wang, P.; Ma, W.; Diao, M. Can outsourcing pest and disease control help reduce pesticide expenditure? Evidence from rice farmers. Agribusiness 2024. [Google Scholar] [CrossRef]
- Ding, J.; Mugera, A.; Zhao, X. Outsourcing Fertilizer Mechanization Services to Different Types of Service Providers: Assessing the Impact on Fertilizer Application for Wheat Producers in China. Agribusiness 2025. [Google Scholar] [CrossRef]
- Bhunia, S.; Singh, P.K. Producer organizations in the last 25 years: A bibliometric analysis and meta-review of the literature. Humanit. Soc. Sci. Commun. 2025, 12, 200. [Google Scholar] [CrossRef]
- Zhou, Z.; Zina, A.; Qu, L.; Cao, Z.; Zhang, Y.; Zhao, D. Enhancing agricultural production and environmental benefits through full mechanization: Experimental evidence from China. Habitat Int. 2025, 157, 103332. [Google Scholar] [CrossRef]
- Gruber, S.; Soci, A. Agglomeration, agriculture, and the perspective of the periphery. Spat. Econ. Anal. 2010, 5, 43–72. [Google Scholar] [CrossRef]
- Guo, Y.; Tong, L.; Mei, L. The effect of industrial agglomeration on green development efficiency in Northeast China since the revitalization. J. Clean. Prod. 2020, 258, 120584. [Google Scholar] [CrossRef]
- Zhong, C.; Hu, R.; Wang, M.; Xue, W.; He, L. The impact of urbanization on urban agriculture: Evidence from China. J. Clean. Prod. 2020, 276, 122686. [Google Scholar] [CrossRef]
- Almstedt, Å.; Brouder, P.; Karlsson, S.; Lundmark, L. Beyond post-productivism: From rural policy discourse to rural diversity. Eur. Countrys. 2014, 6, 297–306. [Google Scholar] [CrossRef]
- Kanter, D.R.; Musumba, M.; Wood, S.L.R.; Palm, C.; Antle, J.; Balvanera, P.; Dale, V.H.; Havlik, P.; Kline, K.L.; Scholes, R.J.; et al. Evaluating agricultural trade-offs in the age of sustainable development. Agric. Syst. 2018, 163, 73–88. [Google Scholar] [CrossRef]
- Huttunen, S. Revisiting agricultural modernisation: Interconnected farming practices driving rural development at the farm level. J. Rural Stud. 2019, 71, 36–45. [Google Scholar]
- Long, H.; Tu, S.; Ge, D.; Li, T.; Liu, Y. The allocation and management of critical resources in rural China under restructuring: Problems and prospects. J. Rural Stud. 2016, 47, 392–412. [Google Scholar]
- HJ 192-2015; Technical Criterion for Ecosystem Status Evaluation. China Ministry of Ecology and Environment: Beijing, China, 2015.
- Zhu, R.; Chen, S. Spatial relationship between landscape ecological risk and ecosystem service value in Fujian Province, China during 1980–2020. Chin. J. Appl. Ecol. 2022, 33, 1599–1607. [Google Scholar]
- Wu, S.; Ma, S.; Wang, H.; Wang, L.; Jiang, J. Spatiotemporal variations of ecosystem service value in the hill and mountain belt of southern China across different altitude gradients. Chin. J. Ecol. 2023, 42, 966–974. [Google Scholar]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a coupling model of coordination between urbanization and the environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef]
- Wang, S.; Kong, W.; Ren, L.; Zhi, D.; Dai, B. Research on misuses and modification of coupling coordination degree model in China. J. Nat. Resour. 2021, 36, 793–810. [Google Scholar] [CrossRef]
- Xing, G.X. N2O emission from cropland in China. Nutr. Cycl. Agroecosyst. 1998, 52, 249–254. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Choi, D.; Gao, Z.; Jiang, W. Attention to global warming. Rev. Financ. Stud. 2020, 33, 1112–1145. [Google Scholar] [CrossRef]
Framework | Indicator | Unit | Calculation Method | |
---|---|---|---|---|
Elements | Input | Fertilizer application per mu | kg | Fertilizer application amount (in pure active ingredients) per sown crop area |
Pesticide application per mu | kg | Pesticide application amount per sown crop area | ||
Agricultural film usage per mu | kg | Agricultural film usage per sown crop area | ||
Total agricultural machinery power per mu | kw | (Total agricultural machinery power (arable land area/(arable land area + forest land area)))/sown crop area | ||
Structure | Production structure | Specialization index | — | where Sij represents the proportion of the sown area of crop j in county I; n denotes the number of crop types. |
Proportion of grain crop sown area | % | Proportion of grain crop sowing area to total crop sowing area | ||
Functions | Production function | Cultivated land area per laborer | ha | Cultivated land area per agricultural, forestry, animal husbandry, and fishery workforce |
Cropping intensity index | — | Crop sowing area per unit of cultivated land area | ||
Social function | Income equity index | % | Per capita disposable income of rural residents compared to that of urban residents | |
Ecological function | Biomass index | — | Calculated according to the technical specification for ecological environment status evaluation | |
Total ecosystem service value | CNY/hm | Accounted according to land use type classification | ||
Net primary productivity (NPP) | g C/m | Data product | ||
Urban–rural transformation function | Urbanization rate of population | % | Urban population as a proportion of total population |
Variable | Cc | Cc | Cc | Cc |
---|---|---|---|---|
Aps | 0.002 ** | 0.003 ** | 0.005 *** | 0.004 *** |
(0.001) | (0.002) | (0.002) | (0.002) | |
Ecd | 0.011 *** | 0.009 *** | 0.011 *** | |
(0.003) | (0.003) | (0.003) | ||
Nfe | 0.148 *** | 0.143 *** | 0.130 *** | |
(0.017) | (0.017) | (0.017) | ||
Agf | 0.467 *** | 0.470 *** | 0.459 *** | |
(0.060) | (0.065) | (0.065) | ||
Clpt | 0.007 | 0.003 | ||
(0.006) | (0.006) | |||
Flc | −0.043 *** | −0.050 *** | ||
(0.014) | (0.014) | |||
Temp | 0.001 | |||
(0.001) | ||||
Perc | −0.009 *** | |||
(0.002) | ||||
_cons | 0.362 *** | 0.236 *** | 0.197 *** | 0.252 *** |
(0.007) | (0.015) | (0.053) | (0.058) | |
N | 1037 | 1037 | 1037 | 1037 |
Variable | Cc.L | Cc | |
---|---|---|---|
First-Stage Regression | Second-Stage Regression | ||
Asp | 0.003 * | 0.008 ** | |
(0.002) | (0.012) | ||
Mpper | 0.835 *** | ||
(0.000) | |||
_cons | 0.259 *** | 0.360 *** | 0.481 *** |
(0.062) | (0.000) | (0.003) | |
Control variable | Yes | Yes | Yes |
Variable | Cc | Cc | Cc | Cc |
---|---|---|---|---|
Aps | 0.006 ** | 0.003 *** | 0.002 ** | 0.002 ** |
(0.003) | (0.001) | (0.001) | (0.001) | |
Controls | Yes | Yes | Yes | Yes |
_cons | −0.012 | 0.390 *** | 0.162 *** | −1.023 *** |
(0.134) | (0.105) | (0.011) | (0.321) | |
N | 204 | 204 | 442 | 187 |
Variable | Cc | Cc |
---|---|---|
Aps | 0.004 ** | 0.006 *** |
(0.002) | (0.002) | |
Lq | −0.020 *** | −0.015 *** |
(0.004) | (0.005) | |
Aps × Lq | 0.002 ** | |
(0.001) | ||
_cons | 0.254 *** | 0.245 *** |
(0.056) | (0.057) | |
N | 1037 | 1037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Luo, S.; Chen, X.-L. Driving Sustainable Agricultural Development in Hilly Areas: Interaction of Productive Services and Industrial Agglomeration. Sustainability 2025, 17, 8097. https://doi.org/10.3390/su17188097
Xu B, Luo S, Chen X-L. Driving Sustainable Agricultural Development in Hilly Areas: Interaction of Productive Services and Industrial Agglomeration. Sustainability. 2025; 17(18):8097. https://doi.org/10.3390/su17188097
Chicago/Turabian StyleXu, Biaowen, Shasha Luo, and Xue-Li Chen. 2025. "Driving Sustainable Agricultural Development in Hilly Areas: Interaction of Productive Services and Industrial Agglomeration" Sustainability 17, no. 18: 8097. https://doi.org/10.3390/su17188097
APA StyleXu, B., Luo, S., & Chen, X.-L. (2025). Driving Sustainable Agricultural Development in Hilly Areas: Interaction of Productive Services and Industrial Agglomeration. Sustainability, 17(18), 8097. https://doi.org/10.3390/su17188097