Analysis of Spatiotemporal Variability and Drivers of Soil Moisture in the Ziwuling Region
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Pre-Processing
2.3. Research Methodology
2.3.1. Trend Analysis
2.3.2. Mann–Kendall (MK) Significance Test
2.3.3. Stability Analysis
2.3.4. Geographic Detector
2.3.5. MGWR
3. Results
3.1. Characterization of Spatiotemporal Variability of Soil Moisture
3.1.1. Characterization of Temporal Changes in Soil Moisture
3.1.2. Patterns of Spatial Variation in Soil Moisture
3.2. Spatial Driving Force Analysis of Soil Moisture
3.2.1. Factor Detector Analysis
3.2.2. Analysis of Interaction Detector
3.2.3. Risk Detector Analysis
3.3. Multi-Scale Geographically Weighted Analysis
4. Discussion
4.1. Spatiotemporal Analysis of Soil Moisture
4.2. Driving Factor Analysis
4.2.1. Soil Texture and Topography
4.2.2. Potential Evapotranspiration
4.2.3. Temperatures
4.2.4. Precipitation
4.2.5. NDVI
4.2.6. The Interaction Among Various Factors
4.3. Summary
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ran, B.; Xing, Z.G.; Fang, J.; Yang, Y.M.; He, Y.L.; Li, X.J.; Liu, X.Q.; Liu, G. Analysis of Soil Moisture Dynamics and Its Response to Rainfall in the Mu Us Sandy Land. Water 2025, 17, 105. [Google Scholar] [CrossRef]
- Baldwin, D.; Manfreda, S.; Keller, K.; Smithwick, E.A.H. Predicting root zone soil moisture with soil properties and satellite near-surface moisture data across the conterminous United States. J. Hydrol. 2017, 546, 393–404. [Google Scholar] [CrossRef]
- Jian, S.; Zhao, C.; Fang, S.; Yu, K. Effects of different vegetation restoration on soil water storage and water balance in the Chinese Loess Plateau. Agric. For. Meteorol. 2015, 206, 85–96. [Google Scholar] [CrossRef]
- Ding, M.; Lv, J.; Qu, Y.; Jiang, T. Spatio-Temporal Analysis and Contribution of Agricultural Drought in Daling River Basin: A VIC Model-Based Soil Moisture Simulation and SMAPI Evaluation. Water 2023, 15, 3809. [Google Scholar] [CrossRef]
- Zhu, Q.; Lin, H. Influences of soil, terrain, and crop growth on soil moisture variation from transect to farm scales. Geoderma 2011, 163, 45–54. [Google Scholar] [CrossRef]
- Wang, C.; Fu, B.; Zhang, L.; Xu, Z. Soil moisture-plant interactions: An ecohydrological review. J. Soils Sediments 2019, 19, 1–9. [Google Scholar] [CrossRef]
- Liang, H.; Li, Y.; An, X.; Liu, J.; Pan, N.; Li, Z. Soil Moisture Dynamics and Its Temporal Stability under Different-Aged Caragana Korshinskii Shrubs in the Loess Hilly Region of China. Water 2023, 15, 2334. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Skaggs, T.H. Spatio-temporal evolution and time-stable characteristics of soil moisture within remote sensing footprints with varying soil, slope, and vegetation. Adv. Water Resour. 2001, 24, 1051–1067. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Jia, H.; Liu, Y.; Zhao, Y.; Shi, C.; Zhang, F.; Wang, K. Assessing the soil moisture effects of planted vegetation on slope stability in shallow landslide-prone areas. J. Soils Sediments 2021, 21, 2551–2565. [Google Scholar] [CrossRef]
- Yang, L.; Wei, W.; Wang, T.; Li, L. Temporal-spatial variations of vegetation cover and surface soil moisture in the growing season across the mountain-oasis-desert system in Xinjiang, China. Geocarto Int. 2022, 37, 3912–3940. [Google Scholar] [CrossRef]
- Gómez-Plaza, A.; Alvarez-Rogel, J.; Albaladejo, J.; Castillo, V.M. Spatial patterns and temporal stability of soil moisture across a range of scales in a semi-arid environment. Hydrol. Process. 2000, 14, 1261–1277. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Liu, Y.X.Y. Global Soil Moisture Retrievals Fusion Dataset (2015–2019). J. Glob. Change Data Discov. 2020, 4, 315–324.10. [Google Scholar] [CrossRef]
- Zhang, W.; Koch, J.; Wei, F.; Zeng, Z.; Fang, Z.; Fensholt, R. Soil Moisture and Atmospheric Aridity Impact Spatio-Temporal Changes in Evapotranspiration at a Global Scale. J. Geophys. Res. Atmos. 2023, 128, e2022JD038046. [Google Scholar] [CrossRef]
- Luo, M.; Meng, F.; Sa, C.; Duan, Y.; Bao, Y.; Liu, T.; De Maeyer, P. Response of Vegetation Phenology to Soil Moisture Dynamics in the Mongolian Plateau. Catena 2021, 206, 105505. [Google Scholar] [CrossRef]
- Zhao, X.; Xia, H.; Liu, B.; Jiao, W. Spatiotemporal Comparison of Drought in Shaanxi-Gansu-Ningxia from 2003 to 2020 Using Various Drought Indices in Google Earth Engine. Remote Sens. 2022, 14, 1570. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Q.; Chao, L.; Ye, J.; Li, Z.; Yu, Z.; Yang, T.; Ju, Q. Ground Observation-Based Analysis of Soil Moisture Spatiotemporal Variability Across a Humid to Semi-Humid Transitional Zone in China. J. Hydrol. 2019, 574, 903–914. [Google Scholar] [CrossRef]
- Ma, H.; Zeng, J.; Chen, N.; Zhang, X.; Cosh, M.H.; Wang, W. Satellite Surface Soil Moisture from SMAP, SMOS, AMSR2 and ESA CCI: A Comprehensive Assessment Using Global Ground-Based Observations. Remote Sens. Environ. 2019, 231, 111215. [Google Scholar] [CrossRef]
- Al-Yaari, A.; Wigneron, J.P.; Dorigo, W.; Colliander, A.; Pellarin, T.; Hahn, S.; Mialon, A.; Richaume, P.; Fernandez-Moran, R.; Fan, L.; et al. Assessment and Inter-Comparison of Recently Developed/Reprocessed Microwave Satellite Soil Moisture Products Using ISMN Ground-Based Measurements. Remote Sens. Environ. 2019, 224, 289–303. [Google Scholar] [CrossRef]
- Jackson, T.J.; Schmugge, J.; Engman, E.T. Remote Sensing Applications to Hydrology: Soil Moisture. Hydrol. Sci. J. 1996, 41, 517–530. [Google Scholar] [CrossRef]
- Gu, Q.; Geng, G.P.; Zheng, R.L.; Zhang, B.; He, Z.X. Analysis on Spatiotemporal Variation of Soil Moisture and Its Influencing Factors in Weihe River Basin. Res. Soil Water Conserv. 2024, 31, 199–211. [Google Scholar] [CrossRef]
- Yu, K.X.; Yan, Z.Y.; Li, M.N.; Li, Z.B.; Li, P.; Zhao, Y.; Jia, L. Simulation of Soil Water Storage and Analysis of Influencing Factors in the Weihe River Basin under Changing Environment. J. Soil Water Conserv. 2024, 38, 150–158. [Google Scholar] [CrossRef]
- Dong, J.Y.; Luo, M.; Meng, F.H.; Sa, C.L.; Bao, Y.H. Characteristics of Spatiotemporal Pattern Evolution of Soil Moisture in the Mongolian Plateau. Res. Soil Water Conserv. 2024, 31, 110–121. [Google Scholar] [CrossRef]
- Peng, C.; Zeng, J.; Chen, K.S.; Li, Z.; Ma, H.; Zhang, X.; Shi, P.; Wang, T.; Yi, L.; Bi, H. Global Spatiotemporal Trend of Satellite-Based Soil Moisture and Its Influencing Factors in the Early 21st Century. Remote Sens. Environ. 2023, 291, 113569. [Google Scholar] [CrossRef]
- Guo, L.; Zhu, B.; Jin, H.; Zhang, Y.; Min, Y.; He, Y.; Shi, H. Spatial-Temporal Variation Characteristics and Influencing Factors of Soil Moisture in the Yellow River Basin Using ESA CCI SM Products. Atmosphere 2022, 13, 962. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, Z.; Zhao, F.; Guo, X.; Zhao, J.; Xu, Y.; Liu, X. Assessment of Eco-Environmental Quality Changes and Spatial Heterogeneity in the Yellow River Delta Based on the Remote Sensing Ecological Index and Geo-Detector Model. Ecol. Inform. 2023, 77, 102203. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, L.; Kang, S.; Ao, Y.; Han, L.; Ma, C. Quantitative Analysis of Factors Influencing Spatial Distribution of Soil Erosion Based on Geo-Detector Model under Diverse Geomorphological Types. Land 2021, 10, 604. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, J.; Li, Y. Exploring the Spatial and Temporal Driving Mechanisms of Landscape Patterns on Habitat Quality in a City Undergoing Rapid Urbanization Based on GTWR and MGWR: The Case of Nanjing, China. Ecol. Indic. 2022, 143, 109333. [Google Scholar] [CrossRef]
- Gu, F.; Xu, G.; Wang, B.; Jia, L.; Xu, M. Vegetation Cover Change and Restoration Potential in the Ziwuling Forest Region, China. Ecol. Eng. 2023, 187, 106877. [Google Scholar] [CrossRef]
- Li, X.; Yu, K.; Zhang, X.; Zhang, G.; Li, Z.; Li, P.; Zhang, X.; Zhao, Y.; Ma, W. Spatial and Temporal Evolutionary Characteristics of Vegetation in Different Geomorphic Zones of Loess Plateau and Its Driving Factor Analysis. Sustainability 2023, 15, 12200. [Google Scholar] [CrossRef]
- Li, P.; Wang, J.; Liu, M.; Xue, Z.; Bagherzadeh, A.; Liu, M. Spatio-Temporal Variation Characteristics of NDVI and Its Response to Climate on the Loess Plateau from 1985 to 2015. Catena 2021, 203, 105331. [Google Scholar] [CrossRef]
- Xin, Z.B.; Xu, J.X.; Zheng, W. Spatiotemporal Variations of Vegetation Cover on the Chinese Loess Plateau (1981–2006): Impacts of Climate Changes and Human Activities. Sci. China Ser. D Earth Sci. 2008, 51, 67–78. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Wan, S.S.; Wang, J.; Wei, Y.Y.; Qu, Y.T.; Liu, S.P.; Chang, H.F.; Wang, Y.; Shangguan, Z.P. Soil Water Deficit During Vegetation Succession on the Loess Plateau. Res. Soil Water Conserv. 2020, 27, 120–125. [Google Scholar] [CrossRef]
- Ines, A.V.M.; Das, N.N.; Hansen, J.W.; Njoku, E.G. Assimilation of Remotely Sensed Soil Moisture and Vegetation with a Crop Simulation Model for Maize Yield Prediction. Remote Sens. Environ. 2013, 138, 149–164. [Google Scholar] [CrossRef]
- You, W.Z.; Zeng, D.H.; Liu, M.G.; Yun, L.L.; Ye, Y.H.; Zhang, Y. Spatial and Temporal Variations of Soil Moisture in Three Types of Agroforestry Boundaries in the Loess Plateau, China. J. For. Res. 2010, 21, 415–422. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, Y.; Qiu, K.; López-Vicente, M.; Shen, W.; Wu, G.L. Soil-Water Deficit in Deep Soil Layers Results from the Planted Forest in a Semi-Arid Sandy Land: Implications for Sustainable Agroforestry Water Management. Agric. Water Manag. 2021, 254, 106985. [Google Scholar] [CrossRef]
- Liang, H.; Xue, Y.; Li, Z.; Wang, S.; Wu, X.; Gao, G.; Liu, G.; Fu, B. Soil Moisture Decline Following the Plantation of Robinia pseudoacacia Forests: Evidence from the Loess Plateau. For. Ecol. Manag. 2018, 412, 62–69. [Google Scholar] [CrossRef]
- Wang, B.T.; Yang, X.S. Study on Befitting Soil Moisture of Chinese Pine and Chinese Arborvitae. J. Soil Water Conserv. 2002, 1, 80–83. [Google Scholar] [CrossRef]
- Li, H.; Yan, F.C.; Jiao, J.Y.; Tang, B.Z.; Zhang, Y.F. Soil Water Availability and Holding Capacity of Different Vegetation Types in Hilly-Gullied Region of the Loess Plateau. Acta Ecol. Sin. 2018, 38, 3889–3898. [Google Scholar] [CrossRef]
- Zhao, C.L.; Shao, M.A.; Jia, X.; Zhu, Y. Factors Affecting Soil Desiccation Spatial Variability in the Loess Plateau of China. Soil Sci. Soc. Am. J. 2019, 83, 266–275. [Google Scholar] [CrossRef]
- Zhao, C.L.; Jia, X.; Shao, M.A.; Zhang, X.B. Using PTFs to Estimate Dry Soil Layers Along an 860-km Long Transect on China’s Loess Plateau. Geoderma 2020, 369, 114320. [Google Scholar] [CrossRef]
- Cao, R.X.; Jia, X.; Huang, L.M.; Zhu, Y.J.; Wu, L.H.; Shao, M.A. Deep Soil Water Storage Varies with Vegetation Type and Rainfall Amount in the Loess Plateau of China. Sci. Rep. 2018, 8, 12346. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qiang, F.; Liu, G.; Liu, C.; Gao, J.; Ai, N. Evaluation of Soil Quality and Analysis of Drivers of Different Vegetation Patterns in the Loess Region of Northern Shaanxi. Sci. Rep. 2025, 15, 30496. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Bowker, M.A.; Xiao, B. Biocrust Impacts on Dryland Soil Water Balance: A Path Toward the Whole Picture. Glob. Change Biol. 2022, 28, 6462–6481. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Huang, Y.; Zhang, Y.; Yang, Q.; Jiao, P.; Yang, M. Analysis of the Spatial–Temporal Characteristics of Vegetation Cover Changes in the Loess Plateau from 1995 to 2020. Land 2025, 14, 303. [Google Scholar] [CrossRef]
- Nie, T.; Dong, G.; Jiang, X.; Lei, Y. Spatio-Temporal Changes and Driving Forces of Vegetation Coverage on the Loess Plateau of Northern Shaanxi. Remote Sens. 2021, 13, 613. [Google Scholar] [CrossRef]
- Su, B.; Shangguan, Z. Decline in Soil Moisture Due to Vegetation Restoration on the Loess Plateau of China. Land Degrad. Dev. 2019, 30, 290–299. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, W.; Sun, H.; Zhao, Y.; Zhang, P.; Li, Z.; Zhou, Z.; Tong, Y.; Liu, S.; Zhou, J.; et al. Soil Moisture Decline in China’s Monsoon Loess Critical Zone: More a Result of Land-Use Conversion than Climate Change. Proc. Natl. Acad. Sci. USA 2024, 121, e2322127121. [Google Scholar] [CrossRef]
- Li, Y.; Huang, M. Pasture Yield and Soil Water Depletion of Continuous Growing Alfalfa in the Loess Plateau of China. Agric. Ecosyst. Environ. 2008, 124, 24–32. [Google Scholar] [CrossRef]
- Zhao, J.; Li, G.; Lin, H.; Wang, Y.; Yu, Y.; Chu, G.; Zhang, J. Soil Moisture Response to Rainfall on the Chinese Loess Plateau after a Long-Term Vegetation Rehabilitation. Hydrol. Process. 2018, 32, 1738–1754. [Google Scholar] [CrossRef]
- Qiu, L.; Wu, Y.; Shi, Z.; Chen, Y.; Zhao, F. Quantifying the Responses of Evapotranspiration and Its Components to Vegetation Restoration and Climate Change on the Loess Plateau of China. Remote Sens. 2021, 13, 2358. [Google Scholar] [CrossRef]
- Chen, H.; Shao, M.; Li, Y. Soil Desiccation in the Loess Plateau of China. Geoderma 2008, 143, 91–100. [Google Scholar] [CrossRef]
- Kalhoro, S.A.; Ding, K.; Zhang, B.; Chen, W.; Hua, R.; Shar, A.H.; Xu, X. Soil Infiltration Rate of Forestland and Grassland over Different Vegetation Restoration Periods at Loess Plateau in Northern Hilly Areas of China. Landsc. Ecol. Eng. 2019, 15, 91–99. [Google Scholar] [CrossRef]
- Jiao, Q.; Li, R.; Wang, F.; Mu, X.; Li, P.; An, C. Impacts of Re-Vegetation on Surface Soil Moisture over the Chinese Loess Plateau Based on Remote Sensing Datasets. Remote Sens. 2016, 8, 156. [Google Scholar] [CrossRef]
- Shao, M.; Wang, Y.; Xia, Y.; Jia, X. Soil Drought and Water Carrying Capacity for Vegetation in the Critical Zone of the Loess Plateau: A Review. Vadose Zone J. 2018, 17, 1–8. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, M.A.; Shao, H. A Preliminary Investigation of the Dynamic Characteristics of Dried Soil Layers on the Loess Plateau of China. J. Hydrol. 2010, 381, 9–17. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, M.A.; Liu, Z. Vertical Distribution and Influencing Factors of Soil Water Content within 21-m Profile on the Chinese Loess Plateau. Geoderma 2013, 193, 300–310. [Google Scholar] [CrossRef]
- Zastrow, M. China’s Tree-Planting Drive Could Falter in a Warming World. Nature 2019, 573, 474–475. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Li, W.; Gao, X.; Wu, P.; Li, H.; Ling, Q.; Zhang, C. Land Use Affects the Response of Soil Moisture and Soil Temperature to Environmental Factors in the Loess Hilly Region of China. PeerJ 2022, 10, e13736. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ge, Y.; Yuan, G.; Song, Z. Consideration of High-Quality Development Strategies for Soil and Water Conservation on the Loess Plateau. Sci. Rep. 2022, 12, 8336. [Google Scholar] [CrossRef]
- Singh, J.S.; Milchunas, D.G.; Lauenroth, W.K. Soil Water Dynamics and Vegetation Patterns in a Semiarid Grassland. Plant Ecol. 1998, 134, 77–89. [Google Scholar] [CrossRef]
- Zhao, Q.; Lei, X.; Cui, M.; Wang, L.; Feng, Y.; Cao, X. Optimization of Forest and Grass Vegetation Distribution in the Aksu River Basin by Water Resources Carrying Capacity. Water 2024, 16, 389. [Google Scholar] [CrossRef]
- Ahmad, B.; Wang, Y.; Hao, J.; Liu, Y.; Bohnett, E.; Zhang, K. Optimizing Stand Structure for Tradeoffs Between Overstory and Understory Vegetation Biomass in a Larch Plantation of Liupan Mountains, Northwest China. For. Ecol. Manag. 2019, 443, 43–50. [Google Scholar] [CrossRef]
- Sarkar, S.; Paramanick, M.; Goswami, S.B. Soil temperature, water use and yield of yellow sarson (Brassica napus L. var. glauca) in relation to tillage intensity and mulch management under rainfed lowland ecosystem in eastern India. Soil Tillage Res. 2007, 93, 94–101. [Google Scholar] [CrossRef]
- Sypka, P.; Kucza, J.; Starzak, R. Assumptions for Fourier-Based Modelling of Diurnal Temperature Variations in the Top Soil Layer under Istebna Spruce Stands. Agric. For. Meteorol. 2016, 222, 71–86. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Song, X.N.; Leng, P.; Gao, L.; Yin, D.W. Temporal and spatial variation of summer soil moisture and its driving factors in Yellow River basin during the last 20 years. J. Univ. Chin. Acad. Sci. 2024, 41, 477–489. [Google Scholar] [CrossRef]
- Gao, X.; Sun, M.; Luan, Q.; Zhao, X.; Wang, J.; He, G.; Zhao, Y. The Spatial and Temporal Evolution of the Actual Evapotranspiration Based on the Remote Sensing Method in the Loess Plateau. Sci. Total Environ. 2020, 708, 135111. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Mo, S.H.; Mo, X.G.; Xing, D.X.; Li, X.H.; Feng, J.M.; Guo, L.X.; Xu, X.T. Spatio-temporal Variation of Evapotranspiration and Its Attribution over the Loess Plateau since the Implementation of the Grain for Green Project. Acta Ecol. Sin. 2023, 43, 8344–8358. [Google Scholar] [CrossRef]
- Shangguan, Z.P. Soil Desiccation Occurrence and Its Impact on Forest Vegetation in the Loess Plateau of China. Int. J. Sustain. Dev. World Ecol. 2007, 14, 299–306. [Google Scholar] [CrossRef]
- Zhao, W.; Yu, X.; Xu, C.; Li, S.; Wu, G.; Yuan, W. Dynamic Traceability Effects of Soil Moisture on the Precipitation—Vegetation Association in Drylands. J. Hydrol. 2022, 615, 128645. [Google Scholar] [CrossRef]
- Na, X.; Yu, H.; Wang, P.; Zhu, W.; Niu, Y.; Huang, J. Vegetation Biomass and Soil Moisture Coregulate Bacterial Community Succession under Altered Precipitation Regimes in a Desert Steppe in Northwestern China. Soil Biol. Biochem. 2019, 136, 107520. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Chen, Y.; Jin, L.; Li, F.; Wang, X.; Long, Y.; Liu, C.; Kayumba, P.M. Global Greening Drives Significant Soil Moisture Loss. Commun. Earth Environ. 2025, 6, 600. [Google Scholar] [CrossRef]
- Li, T.; Wang, M.; Yu, Z.; Cui, J.; Chen, Q.; Jian, S.; Wang, W.; Chen, Q. Beyond Soil Moisture: The Multidimensional Influences of Soil Properties on Leaf Physiological and Biochemical Attributes of Plant Communities Along a Typical Arid Coast of Hainan, China. J. Soil Sci. Plant Nutr. 2025, 25, 3725–3740. [Google Scholar] [CrossRef]
- Ma, Y.J.; Li, X.Y.; Liu, L.; Yang, X.F.; Wu, X.C.; Wang, P.; Lin, H.; Zhang, G.H.; Miao, C.Y. Evapotranspiration and Its Dominant Controls Along an Elevation Gradient in the Qinghai Lake Watershed, Northeast Qinghai-Tibet Plateau. J. Hydrol. 2019, 575, 257–268. [Google Scholar] [CrossRef]
- Fu, Z.; Behzad, H.M.; Yu, H.; Wang, S.; Yu, J.; Fang, R.; Zhao, J.; Chen, H. Harnessing Subsurface Flow at the Soil-Bedrock Interface as a Hidden Water Resource for Rainwater Harvesting: Insights from Long-Term Hydrological Monitoring on a Humid Karst Hillslope. Water Resour. Res. 2025, 61, e2024WR039293. [Google Scholar] [CrossRef]
- Jian, S.; Wei, Y.; Wang, P.; Niu, Y.; Yu, X. Soil Moisture Driven by Vegetation Restoration on the Chinese Loess Plateau: A Synthesis and Meta-Analysis. Acta Geophys. 2025, 73, 1819–1832. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Z.; Gong, J.; Fu, B.; Huang, Y. The Effect of Land Cover/Vegetation on Soil Water Dynamic in the Hilly Area of the Loess Plateau, China. Catena 2007, 70, 200–208. [Google Scholar] [CrossRef]
Data Name | Source | URL | Spatial Resolution | Temporal Resolution | Processing |
---|---|---|---|---|---|
Soil Moisture | National Tibetan Plateau Data Center | http://data.tpdc.ac.cn | 1 km | Monthly | Monthly values were averaged to attain annual mean values. |
Soil Texture | Resource and Environment Science Data Center | https://www.resdc.cn/ | 1 km | - | Reclassification is used to analyze the influence of soil characteristics on soil moisture. |
Land Use and Land Cover Change | Wuhan University CLCD | https://zenodo.org/records/12779975 | 30 m | Annual | Resample to a resolution of 1 km and reclassify. |
Potential Evapotranspiration | National Earth System Science Data Center | http://www.geodata.cn/main/ | 1 km | Monthly | Average the monthly values to obtain the annual average evapotranspiration. |
Temperature | National Tibetan Plateau Data Center | http://data.tpdc.ac.cn | 1 km | Monthly | Monthly values were averaged to obtain annual mean temperature. |
Precipitation | National Tibetan Plateau Data Center | http://data.tpdc.ac.cn | 1 km | Monthly | Monthly values were averaged to obtain annual mean precipitation. |
Normalized Difference Vegetation Index | NASA MOD13A3 Dataset | https://www.earthdata.nasa.gov | 1 km | Monthly | Average the monthly values to achieve the annual average normalized difference vegetation index. |
Digital Elevation Model | Geospatial Data Cloud | http://www.gscloud.cn | 30 m | - | Mosaicked and clipped to extract topographic factors (slope, aspect) for the study area. |
Symbol | Factor | Factor |
---|---|---|
X1 | Silt | Silt |
X2 | Sand | Sand |
X3 | Clay | Clay |
X4 | Land Use and Land Cover Change | LUCC |
X5 | Potential Evapotranspiration | PET |
X6 | Temperature | TEMP |
X7 | Precipitation | PREP |
X8 | Normalized Difference Vegetation Index | NDVI |
X9 | Aspect | Aspect |
X10 | Slope | Slope |
X11 | Digital Elevation Model | DEM |
β | Z | Trend Properties |
---|---|---|
β > 0 | 2.58 < Z | Extremely notable growth |
1.96 < Z ≤ 2.58 | Significant growth | |
1.65 < Z ≤ 1.96 | Slightly significant growth | |
Z ≤ 1.65 | Unremarkable growth | |
β = 0 | 0 | No variation |
β < 0 | Z ≤ 1.65 | Insignificant drop |
1.65 < Z ≤ 1.96 | Slightly significant drop | |
1.96 < Z ≤ 2.58 | Significant drop | |
2.58 < Z | Extremely significant drop |
Interactions | Basis of Judgment |
---|---|
Nonlinear damping | q(X1 ∩ X2) < Min [q(X1),q(X2)] |
Single-factor nonlinear damping | Min [q(X1),q(X1)] < q(X1 ∩ X2) < Max [q(X1),q(X2)] |
Dual-factor intensification | q(X1 ∩ X2) > Max [q(X1),q(X2)] |
Independent | q(X1 ∩ X2) = q(X1) + q(X2) |
Nonlinear amplification | q(X1 ∩ X2) > q(X1) + q(X2) |
Factor | q-Value | Sort |
---|---|---|
X8 | 0.455 | 1 |
X5 | 0.325 | 2 |
X7 | 0.267 | 3 |
X2 | 0.250 | 4 |
X3 | 0.236 | 5 |
X1 | 0.225 | 6 |
X4 | 0.137 | 7 |
X11 | 0.119 | 8 |
X6 | 0.098 | 9 |
X9 | 0.006 | 10 |
X10 | 0.001 | 11 |
Symbol | Factor | VIF |
---|---|---|
X1 | 0.455 | 2.578 |
X2 | 0.325 | 2.850 |
X4 | 0.267 | 1.128 |
X6 | 0.250 | 6.951 |
X7 | 0.236 | 1.703 |
X8 | 0.225 | 1.813 |
X9 | 0.137 | 1.006 |
X10 | 0.119 | 1.015 |
X11 | 0.098 | 6.027 |
Factor | Mean | Standard Deviation | Minimum | Median | Maximum |
---|---|---|---|---|---|
X1 | 0.000 | 0.002 | −0.006 | 0.001 | 0.004 |
X2 | −0.030 | 0.206 | −0.727 | −0.029 | 0.545 |
X4 | −0.003 | 0.002 | −0.006 | −0.004 | 0.002 |
X6 | −0.017 | 0.328 | −1.517 | 0.028 | 0.892 |
X7 | −0.177 | 0.418 | −1.166 | −0.127 | 0.515 |
X8 | 0.661 | 0.218 | −0.157 | 0.664 | 1.244 |
X9 | 0.000 | 0.010 | −0.018 | −0.001 | 0.021 |
X10 | −0.007 | 0.004 | −0.015 | −0.007 | −0.000 |
X11 | −0.015 | 0.003 | −0.022 | −0.015 | −0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Luo, Y.; Li, Z.; Xu, G.; Guo, M.; Gu, F. Analysis of Spatiotemporal Variability and Drivers of Soil Moisture in the Ziwuling Region. Sustainability 2025, 17, 8025. https://doi.org/10.3390/su17178025
Li J, Luo Y, Li Z, Xu G, Guo M, Gu F. Analysis of Spatiotemporal Variability and Drivers of Soil Moisture in the Ziwuling Region. Sustainability. 2025; 17(17):8025. https://doi.org/10.3390/su17178025
Chicago/Turabian StyleLi, Jing, Yinxue Luo, Zhanbin Li, Guoce Xu, Mengjing Guo, and Fengyou Gu. 2025. "Analysis of Spatiotemporal Variability and Drivers of Soil Moisture in the Ziwuling Region" Sustainability 17, no. 17: 8025. https://doi.org/10.3390/su17178025
APA StyleLi, J., Luo, Y., Li, Z., Xu, G., Guo, M., & Gu, F. (2025). Analysis of Spatiotemporal Variability and Drivers of Soil Moisture in the Ziwuling Region. Sustainability, 17(17), 8025. https://doi.org/10.3390/su17178025