Integrated Fuzzy-GIS Approach for Optimal Landfill Site Selection in Tabuk, Saudi Arabia, Supporting Sustainable Development Goals
Abstract
1. Overview
2. Materials and Methods
3. Results and Discussion
3.1. Fuzzy Analysis
3.2. GIS Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AHP | Analytic Hierarchy Process |
An | Fuzzy Number of the nth Parameter |
C1 | Economic Aspects Criteria |
C2 | Environmental Sensitivity Criteria |
C3 | Ecological and Management Considerations Criteria |
C4 | Social Factors Criteria |
C5 | Engineering and Technical Performance Criteria |
Ci | Consistency Index |
CR | Consistency Ratio |
EPSG | European Petroleum Survey Group |
FAHP | Fuzzy Analytic Hierarchy Process |
GIS | Geographic Information System |
KSA | Kingdom of Saudi Arabia |
m | Number of Criteria |
MCDM | Multicriteria Decision-Making |
Mi | Defuzzied Weight |
n | Number of Parameters |
NASA | National Aeronautics and Space Administration |
NEOM | A planned city in northwestern Saudi Arabia |
Ni | Normalized Weight |
OSM | OpenStreetMap |
QGIS | Quantum Geographic Information System |
RI | Random Inconsistency Index |
ri | Fuzzy Geometric Mean Value of the ith parameter |
SDGs | Sustainable Development Goals |
SW | Solid Waste |
SWM | Solid Waste Management |
TFNT | Triangular Fuzzy Numbers |
UTM | Universal Transverse Mercator |
wag | Aggregated Weight |
WGS | World Geodetic System |
xj | Score of the jth Criterion |
λmax | Principal Eigenvalue |
wi | Fuzzy Weight |
References
- Rodić, L.; Wilson, D.C. Resolving governance issues to achieve priority sustainable development goals related to solid waste management in developing countries. Sustainability 2017, 9, 404. [Google Scholar] [CrossRef]
- Elsheekh, K.; Kamel, R.R.; Elsherif, D.M.; Shalaby, A.M. Achieving sustainable development goals from the perspective of solid waste management plans. J. Eng. Appl. Sci. 2021, 68, 9. [Google Scholar] [CrossRef]
- Voukkali, I.; Papamichael, I.; Loizia, P.; Zorpas, A.A. Urbanization and solid waste production: Prospects and challenges. Environ. Sci. Pollut. Res. 2024, 31, 17678–17689. [Google Scholar] [CrossRef]
- Nanda, S.; Berruti, F. Municipal solid waste management and landfilling technologies: A review. Environ. Chem. Lett. 2021, 19, 1433–1456. [Google Scholar] [CrossRef]
- Eskandari, M.; Homaee, M.; Mahmodi, S. An integrated multi criteria approach for landfill siting in a conflicting environmental, economical and socio-cultural area. Waste Manag. 2012, 32, 1528–1538. [Google Scholar] [CrossRef] [PubMed]
- Alao, J.O. The factors influencing the landfill leachate plume contaminants in soils, surface and groundwater and associated health risks: A geophysical and geochemical view. Public Health Environ. 2025, 1, 20–43. [Google Scholar]
- Weber, R.; Watson, A.; Forter, M.; Oliaei, F. Persistent organic pollutants and landfills-a review of past experiences and future challenges. Waste Manag. Res. 2011, 29, 107–121. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mukhopadhyay, S.; Hashim, M.A.; Gupta, B.S. Contemporary environmental issues of landfill leachate: Assessment and remedies. Crit. Rev. Environ. Sci. Technol. 2015, 45, 472–590. [Google Scholar] [CrossRef]
- Ansari, A.A.; Siddiqui, Z.H.; Alatawi, F.A.; Alharbi, B.M.; Alotaibi, A.S. An assessment of biodiversity in Tabuk region of Saudi Arabia: A comprehensive review. Sustainability 2022, 14, 10564. [Google Scholar] [CrossRef]
- Elshaboury, N.; AlMetwaly, W.M.; Ali, E.; Eltoukhy, A.E. Sustainable Landfill Site Selection for Construction and Demolition Waste Using Magnitude-Based Fuzzy AHP and GIS Technologies. J. Geovisualization Spat. Anal. 2025, 9, 27. [Google Scholar] [CrossRef]
- Kumar, V.; Maurya, A.K.; Ahmad, V.; Jaid, M.; Pandey, S.; Kumar, S. Selection of Potential Site for Solid Waste Disposal Using Geospatial Techniques and Analytic Hierarchy Process (AHP). In Contemporary Social Physics: Decoding Social Behaviour with Advanced Geospatial Tools; Springer: Berlin/Heidelberg, Germany, 2025; pp. 457–484. [Google Scholar]
- Arshad, M.; Hasan, M.A.; Al Mesfer, M.K.; Al Alwan, B.A.; Qureshi, M.N.; Eldirderi, M. Sustainable landfill sites selection using geospatial information and AHP-GDM approach: A case study of Abha-Khamis in Saudi Arabia. Heliyon 2023, 9, e16432. [Google Scholar] [CrossRef]
- Hill, M.J.; Braaten, R.; Veitch, S.M.; Lees, B.G.; Sharma, S. Multi-criteria decision analysis in spatial decision support: The ASSESS analytic hierarchy process and the role of quantitative methods and spatially explicit analysis. Environ. Model. Softw. 2005, 20, 955–976. [Google Scholar] [CrossRef]
- Kiker, G.A.; Bridges, T.S.; Varghese, A.; Seager, T.P.; Linkov, I. Application of multicriteria decision analysis in environmental decision making. Integr. Environ. Assess. Manag. 2005, 1, 95–108. [Google Scholar] [CrossRef]
- Kontos, T.D.; Zevgolis, Y.G. A Fuzzy Spatial Multiple Criteria Analysis Methodology for Solid Waste Landfill Siting. J 2024, 7, 502–528. [Google Scholar] [CrossRef]
- Mohsin, M.; Ali, S.A.; Shamim, S.K.; Ahmad, A. A GIS-based Novel Approach for Sustainable Sanitary Landfill Site Selection Using Integrated Fuzzy AHP and Machine Learning Algorithms. Environ. Sci. Pollut. Res. 2022, 29, 31511–31540. [Google Scholar] [CrossRef] [PubMed]
- Mallick, J. Municipal solid waste landfill site selection based on fuzzy-AHP and geoinformation techniques in Asir Region Saudi Arabia. Sustainability 2021, 13, 1538. [Google Scholar] [CrossRef]
- Sadiq, R.; Tesfamariam, S. Environmental decision-making under uncertainty using intuitionistic fuzzy analytic hierarchy process (IF-AHP). Stoch. Environ. Res. Risk Assess. 2009, 23, 75–91. [Google Scholar] [CrossRef]
- Al Awadh, M.; Mallick, J. A decision-making framework for landfill site selection in Saudi Arabia using explainable artificial intelligence and multi-criteria analysis. Environ. Technol. Innov. 2024, 33, 103464. [Google Scholar] [CrossRef]
- Mohamed Salih, Z.Q.; RWKhalid Hamid, Q.I. Decision Support Framework for Regional Landfill Site Selection Under Quintic Fuzzy Sets. In Operations Research Forum; Springer: Berlin/Heidelberg, Germany, 2025. [Google Scholar]
- Alkan, N.; Kahraman, C. Prioritization of Human-Centric and Sustainable City Criteria by Proportional Spherical Fuzzy Analytic Hierarchy Process. Symmetry 2025, 17, 204. [Google Scholar] [CrossRef]
- Arabeyyat, O.S.; Shatnawi, N.; Shbool, M.A.; Al Shraah, A. Landfill site selection for sustainable solid waste management using multiple-criteria decision-making. Case study: Al-Balqa governorate in Jordan. MethodsX 2024, 12, 102591. [Google Scholar] [CrossRef]
- Yap, J.Y.L.; CCHo Ting, C.-Y. A systematic review of the applications of multi-criteria decision-making methods in site selection problems. Built Environ. Proj. Asset Manag. 2019, 9, 548–563. [Google Scholar] [CrossRef]
- Ali, A.; Hadeed, M.Z.; Safavi, S.; Ahmad, M. Leveraging gis for environmental planning and management. In Global Challenges for the Environment and Climate Change; IGI Global: Hershey, PA, USA, 2024; pp. 308–331. [Google Scholar]
- Maurya, A.; Kumar, A. The Role of GIS in the Study of Sustainable Development and Environmental Management. Int. J. Multidiscip. Res. 2024, 6, 1–13. [Google Scholar]
- Musa, M.; Gasmalla, O.; Elmahal, A.; Ganawa, E. Distributed Geospatial Information Systems Challenges and Opportunities. In Exploring Remote Sensing-Methods and Applications; IntechOpen: London, UK, 2024. [Google Scholar]
- Wu, T.-H.; Chen, C.-Y.; Huang, S.-W.; Yu, T.-T. An integrated decision framework for landfill mining site selection using GIS, multi-criteria analysis, and optimization models. Socio-Econ. Plan. Sci. 2025, 99, 102220. [Google Scholar] [CrossRef]
- Singh, A. Remote sensing and GIS applications for municipal waste management. J. Environ. Manag. 2019, 243, 22–29. [Google Scholar] [CrossRef]
- Sumathi, V.; Natesan, U.; Sarkar, C. GIS-based approach for optimized siting of municipal solid waste landfill. Waste Manag. 2008, 28, 2146–2160. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.A.; Ahmad, A. Suitability analysis for municipal landfill site selection using fuzzy analytic hierarchy process and geospatial technique. Environ. Earth Sci. 2020, 79, 227. [Google Scholar] [CrossRef]
- Santisteban, J.A.Z.; López, R.S.; Rojas-Briceño, N.B.; Fernández, D.G.; Medina, A.J.M.; Trauco, K.M.T.; Fernandez, A.S.R.; Crisóstomo, J.L.; Oliva-Cruz, M.; Silva-López, J.O. Optimizing landfill site selection using fuzzy-AHP and GIS for sustainable urban planning. Civ. Eng. J. 2024, 10, 1698–1719. [Google Scholar] [CrossRef]
- Şimşek, K.; Alp, S. Evaluation of Landfill Site Selection by Combining Fuzzy Tools in GIS-Based Multi-Criteria Decision Analysis: A Case Study in Diyarbakır, Turkey. Sustainability 2022, 14, 9810. [Google Scholar] [CrossRef]
- Donevska, K.R.; Gorsevski, P.V.; Jovanovski, M.; Peševski, I. Regional non-hazardous landfill site selection by integrating fuzzy logic, AHP and geographic information systems. Environ. Earth Sci. 2012, 67, 121–131. [Google Scholar] [CrossRef]
- Armanuos, A.M.; Elgaafary, K.A.; Gado, T.A. Landfill site selection using MCDM methods and GIS in the central part of the Nile Delta, Egypt. Environ. Monit. Assess. 2023, 195, 1407. [Google Scholar] [CrossRef]
- Pasalari, H.; Nodehi, R.N.; Mahvi, A.H.; Yaghmaeian, K.; Charrahi, Z. Landfill site selection using a hybrid system of AHP-Fuzzy in GIS environment: A case study in Shiraz city, Iran. MethodsX 2019, 6, 1454–1466. [Google Scholar] [CrossRef]
- Abdulhasan, M.; Hanafiah, M.M.; Satchet, M.S.; Abdulaali, H.S.; Toriman, M.E.; Al-Raad, A.A. Combining GIS, Fuzzy logic, and AHP models for solid waste disposal site selection in Nasiriyah, Iraq. Appl. Ecol. Environ. Res. 2019, 17, 6701–6722. [Google Scholar] [CrossRef]
- Lakhouit, A.; Schirmer, W.N.; Johnson, T.R.; Cabana, H.; Cabral, A.R. Evaluation of the efficiency of an experimental biocover to reduce BTEX emissions from landfill biogas. Chemosphere 2014, 97, 98–101. [Google Scholar] [CrossRef]
- Kanade, T.; Savale, T. Solid Waste Management for Environmental Sustainability and Human Health. J. Inform. Educ. Res. 2024, 4. [Google Scholar] [CrossRef]
- Kopecká, R.; Hrad, M.; Huber-Humer, M. The role of the waste sector in the sustainable development goals and the IPCC assessment reportsDie Rolle der Abfallwirtschaft im Rahmen der Nachhaltigkeitsziele und der IPCC-Klimaberichte. Osterr. Wasser-Und Abfallwirtsch. 2024, 76, 300–307. [Google Scholar] [CrossRef]
- Mon, D.-L.; Cheng, C.-H.; Lin, J.-C. Evaluating weapon system using fuzzy analytic hierarchy process based on entropy weight. Fuzzy Sets Syst. 1994, 62, 127–134. [Google Scholar] [CrossRef]
- Mikhailov, L.; Tsvetinov, P. Evaluation of services using a fuzzy analytic hierarchy process. Appl. Soft Comput. 2004, 5, 23–33. [Google Scholar] [CrossRef]
Parameter | Abbreviation | Constraint Value | Mapping of Criteria | Data Type | Data Source |
---|---|---|---|---|---|
Distance to main road network | P1 | 1 km ≤ distance ≤ 3 km | Environmental: Reduce soil pollution and moisture rise. Economic: Accessibility and cost-effectiveness. Social: Employment opportunities. | Vector | OSM (OpenStreetMap) |
Distance from airports | P2 | distance ≥ 5 km | Environmental: Avoid dispersal of air pollutants. Safety regulations near airports. | Vector | OSM |
Distance from urban areas | P3 | 5 km ≤ distance ≤ 10 km | Environmental: Minimize air pollution, odor, and noise. Social: Improve public acceptance, reduce health risk. | Vector | OSM |
Distance from coastline | P4 | distance ≥ 5 km | Technical: Mitigate impact of coastal weather. Environmental: Prevent saltwater intrusion and leachate pollution. Risk management: Coastal disaster response. | Vector | OSM |
Distance from wetlands | P5 | distance ≥ 300 m | Environmental: Prevent eutrophication and leachate pollution. Social: Preserve landscape and public trust. | Vector | OSM |
Distance from waterways (rivers, wadis) | P6 | distance ≥ 300 m | Environmental: Protect groundwater and surface water. Social: Promote equity and water conservation. | Vector | HydroSHEDS |
Distance from protected areas | P7 | distance ≥ 500 m | Environmental: Preserve ecosystems. Legal: Comply with national regulations and obtain necessary permits. | Vector | OSM, Google Earth |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
RI | 0 | 0 | 0.58 | 0.9 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
Parameter | P1 | P2 | P3 | P4 | P5 | P6 | P7 |
---|---|---|---|---|---|---|---|
P1 | 1 | 9 | 1/2 | 9 | 9 | 9 | 8 |
P2 | 1/9 | 1 | 1/9 | 1/2 | 1/3 | 1/3 | 1/9 |
P3 | 2 | 9 | 1 | 9 | 8 | 8 | 5 |
P4 | 1/9 | 2 | 1/9 | 1 | 1/2 | 1/2 | 2 |
P5 | 1/9 | 3 | 1/8 | 2 | 1 | 1 | 1 |
P6 | 1/9 | 3 | 1/8 | 2 | 1 | 1 | 1 |
P7 | 1/8 | 9 | 1/5 | 1/2 | 1 | 1 | 1 |
Consistency | λmax = 7.75, CI = 0.125 CR = 0.095 < 0.1 Reasonably consistent matrix. |
Parameter | P1 | P2 | P3 | P4 | P5 | P6 | P7 |
---|---|---|---|---|---|---|---|
P1 | 1 | 1/2 | 1/9 | 1/9 | 1/8 | 1/8 | 1/9 |
P2 | 2 | 1 | 1/9 | 1/9 | 1/9 | 1/9 | 1/9 |
P3 | 9 | 9 | 1 | 2 | 1/2 | 1/2 | 1/2 |
P4 | 9 | 9 | 1/2 | 1 | 1/2 | 1/2 | 1 |
P5 | 8 | 9 | 2 | 2 | 1 | 1 | 1 |
P6 | 8 | 9 | 2 | 2 | 1 | 1 | 1 |
P7 | 9 | 9 | 2 | 1 | 1 | 1 | 1 |
Consistency | λmax = 7.28, CI = 0.046 CR = 0.035 < 0.1 Reasonably consistent matrix. |
Parameter | P1 | P2 | P3 | P4 | P5 | P6 | P7 |
---|---|---|---|---|---|---|---|
P1 | 1 | 2 | 1/5 | 1/7 | 1/6 | 1/6 | 1/2 |
P2 | 1/2 | 1 | 1/9 | 1/7 | 1/8 | 1/8 | 1/7 |
P3 | 5 | 9 | 1 | 7 | 2 | 2 | 2 |
P4 | 7 | 7 | 1/7 | 1 | 1/4 | 1/4 | 2 |
P5 | 6 | 8 | 1/2 | 4 | 1 | 1 | 2 |
P6 | 6 | 8 | 1/2 | 4 | 1 | 1 | 2 |
P7 | 2 | 7 | 1/2 | 1/2 | 1/2 | 1/2 | 1 |
Consistency | λmax = 7.69, CI = 0.115 CR = 0.087 < 0.1 Reasonably consistent matrix. |
Parameter | P1 | P2 | P3 | P4 | P5 | P6 | P7 |
---|---|---|---|---|---|---|---|
P1 | 1 | 2 | 1/7 | 1/8 | 1/3 | 1/3 | 1/5 |
P2 | 1/2 | 1 | 1/9 | 1/9 | 1/7 | 1/7 | 1/5 |
P3 | 7 | 9 | 1 | 2 | 3 | 3 | 2 |
P4 | 8 | 9 | 1/2 | 1 | 7 | 7 | 2 |
P5 | 3 | 7 | 1/3 | 1/7 | 1 | 5 | 1/2 |
P6 | 3 | 7 | 1/3 | 1/7 | 1/5 | 1 | 1/2 |
P7 | 5 | 5 | 1/2 | 1/2 | 2 | 2 | 1 |
Consistency | λmax = 7.76, CI = 0.127 CR = 0.096 < 0.1 Reasonably consistent matrix. |
Parameter | P1 | P2 | P3 | P4 | P5 | P6 | P7 |
---|---|---|---|---|---|---|---|
P1 | 1 | 9 | 1/2 | 7 | 7 | 7 | 9 |
P2 | 1/9 | 1 | 1/9 | 1/7 | 1/7 | 1/5 | 1/2 |
P3 | 2 | 9 | 1 | 7 | 7 | 7 | 9 |
P4 | 1/7 | 7 | 1/7 | 1 | 2 | 2 | 5 |
P5 | 1/7 | 7 | 1/7 | 1/2 | 1 | 2 | 5 |
P6 | 1/7 | 5 | 1/7 | 1/2 | 1/2 | 1 | 5 |
P7 | 1/9 | 2 | 1/9 | 1/5 | 1/5 | 1/5 | 1 |
Consistency | λmax = 7.79, CI = 0.132 CR = 0.099 < 0.1 Reasonably consistent matrix. |
Parameter | C1 Economic | C2 Environment | C3 Ecological | C4 Social | C5 Engineering |
---|---|---|---|---|---|
P1 | (3.704, 4.278, 4.804) | (0.178, 0.195, 0.235) | (0.282, 0.361, 0.469) | (0.283, 0.361, 0.462) | (3.337, 3.907, 4.568) |
P2 | (0.224, 0.258, 0.336) | (0.208, 0.23, 0.265) | (0.184, 0.21, 0.255) | (0.195, 0.22, 0.271) | (0.195, 0.22, 0.271) |
P3 | (3.85, 4.715, 5.304) | (1.131, 1.537, 2.192) | (2.119, 3.061, 3.81) | (2.119, 3.016, 3.747) | (3.904, 4.762, 5.344) |
P4 | (0.39, 0.534, 0.756) | (1.131, 1.392, 1.873) | (0.783, 0.981, 1.199) | (2.535, 3.212, 3.97) | (0.869, 1.162, 1.426) |
P5 | (0.589, 0.701, 0.802) | (1.777, 2.246, 2.564) | (1.662, 2.119, 2.661) | (0.906, 1.14, 1.486) | (0.743, 0.953, 1.219) |
P6 | (0.589, 0.701, 0.802) | (1.777, 2.246, 2.564) | (1.662, 2.119, 2.661) | (0.575, 0.72, 0.944) | (0.599, 0.745, 1) |
P7 | (0.651, 0.732, 0.85) | (1.811, 2.068, 2.192) | (0.689, 0.981, 1.575) | (1.086, 1.584, 2.284) | (0.248, 0.296, 0.357) |
Parameter | C1 Economic | C2 Environment | C3 Ecological | C4 Social | C5 Engineering |
---|---|---|---|---|---|
P1 | (0.271, 0.359, 0.481) | (0.015, 0.02, 0.029) | (0.022, 0.037, 0.064) | (0.021, 0.035, 0.06) | (0.235, 0.324, 0.462) |
P2 | (0.016, 0.022, 0.034) | (0.018, 0.023, 0.033) | (0.015, 0.021, 0.035) | (0.015, 0.021, 0.035) | (0.014, 0.018, 0.027) |
P3 | (0.282, 0.396, 0.531) | (0.095, 0.155, 0.273) | (0.168, 0.311, 0.516) | (0.161, 0.294, 0.487) | (0.275, 0.395, 0.54) |
P4 | (0.029, 0.045, 0.076) | (0.095, 0.14, 0.234) | (0.062, 0.1, 0.162) | (0.193, 0.313, 0.516) | (0.061, 0.096, 0.144) |
P5 | (0.043, 0.059, 0.08) | (0.15, 0.227, 0.32) | (0.132, 0.216, 0.361) | (0.069, 0.111, 0.193) | (0.052, 0.079, 0.123) |
P6 | (0.043, 0.059, 0.08) | (0.15, 0.227, 0.32) | (0.132, 0.216, 0.361) | (0.044, 0.07, 0.123) | (0.042, 0.062, 0.101) |
P7 | (0.048, 0.061, 0.085) | (0.152, 0.209, 0.273) | (0.055, 0.1, 0.213) | (0.082, 0.154, 0.297) | (0.017, 0.025, 0.036) |
Weights | ||||||
---|---|---|---|---|---|---|
Parameter | Economic | Environmental | Ecological and Management | Social | Engineering and Technical | Aggregated Results |
Global Criteria | 8% | 3% | 33% | 16% | 40% | |
Roads | 35.85% | 2.03% | 3.72% | 3.54% | 32.61% | 18% |
Airports | 2.32% | 2.34% | 2.14% | 2.17% | 1.90% | 2% |
Urban areas | 39.00% | 16.59% | 30.20% | 28.59% | 38.67% | 34% |
Coast | 4.81% | 14.87% | 9.84% | 31.01% | 9.64% | 13% |
Wetlands | 5.88% | 22.04% | 21.47% | 11.32% | 8.13% | 13% |
Waterways | 5.88% | 22.04% | 21.47% | 7.18% | 6.55% | 12% |
Protected areas | 6.27% | 20.10% | 11.16% | 16.20% | 2.49% | 8% |
Parameter | Poor (1) | Moderately Preferred (2) | Strongly Preferred (3) | Very Strongly Preferred (4) | Extremely Preferred (5) |
---|---|---|---|---|---|
Distance to main road network | 0–500 m | >5000 m | 4000–5000 m | 3000–4000 m | >3000 m |
Distance from airports | 0–1250 m | 1250–2500 m | 2500–3750 m | 3750–5000 m | >5000 m |
Distance from urban areas | 0–1000 m | 1000–3000 m | 3000–5000 m | 5000–10,000 m | >10,000 m |
Distance from coastline | 0–1250 m | 1250–2500 m | 2500–3750 m | 3750–5000 m | >5000 m |
Distance from wetlands | 0–75 m | 75–150 m | 150–225 m | 225–300 m | >300 m |
Distance from waterways | 0–75 m | 75–150 m | 150–225 m | 225–300 m | >300 m |
Distance from protected areas | 0–125 m | 125–250 m | 250–375 m | 375–500 m | >500 m |
Suitability | Percentage of Area |
---|---|
Poor | 0% |
Moderately preferred | 0.01% |
Strongly preferred | 2.74% |
Very strongly preferred | 66.44% |
Extremely preferred | 30.82% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsadig, E.H.O.; Mohammed Abdel-Magid, I.; Lakhouit, A.; Abdalla, G.M.T.; Yaseen, A.H.A. Integrated Fuzzy-GIS Approach for Optimal Landfill Site Selection in Tabuk, Saudi Arabia, Supporting Sustainable Development Goals. Sustainability 2025, 17, 7935. https://doi.org/10.3390/su17177935
Elsadig EHO, Mohammed Abdel-Magid I, Lakhouit A, Abdalla GMT, Yaseen AHA. Integrated Fuzzy-GIS Approach for Optimal Landfill Site Selection in Tabuk, Saudi Arabia, Supporting Sustainable Development Goals. Sustainability. 2025; 17(17):7935. https://doi.org/10.3390/su17177935
Chicago/Turabian StyleElsadig, Eltayeb H. Onsa, Isam Mohammed Abdel-Magid, Abderrahim Lakhouit, Ghassan M. T. Abdalla, and Ahmed Hassan A. Yaseen. 2025. "Integrated Fuzzy-GIS Approach for Optimal Landfill Site Selection in Tabuk, Saudi Arabia, Supporting Sustainable Development Goals" Sustainability 17, no. 17: 7935. https://doi.org/10.3390/su17177935
APA StyleElsadig, E. H. O., Mohammed Abdel-Magid, I., Lakhouit, A., Abdalla, G. M. T., & Yaseen, A. H. A. (2025). Integrated Fuzzy-GIS Approach for Optimal Landfill Site Selection in Tabuk, Saudi Arabia, Supporting Sustainable Development Goals. Sustainability, 17(17), 7935. https://doi.org/10.3390/su17177935