Low-Carbon and Recycled Mineral Composite Materials for Sustainable Infrastructure: A Comprehensive Review
Abstract
1. Introduction
2. Materials and Methods
3. Low-Carbon and Recycled Mineral Material Resources
3.1. Natural By-Products
3.2. Biomass Waste
3.3. Industrial By-Products
3.4. Municipal Solid Waste
3.5. Construction Waste
3.6. Microstructure
3.7. Trends in Publications
3.8. Co-Occurrence Analysis Result
4. Advanced Composite Materials
4.1. Partially Replaced Portland Cement Concrete
4.2. Engineered Cementitious Composites
4.3. Lightweight and Foam Materials
4.4. Marine Engineering Materials
4.5. Ultra-High-Performance Concrete
4.6. Reused Concrete
4.7. Geopolymer Composites
4.8. Bricks and Tiles
4.9. Three-Dimensional Printed Materials
4.10. Inorganic–Organic Composite Materials
4.11. Alloy Composite Materials
4.12. Materials for Wastewater Treatment
5. Challenges and Solutions
5.1. Feasibility of Long-Term Use of Low-Carbon and Recycled Mineral Composite Materials
5.2. Standards Development and Continuous Innovation to Address the Lack of Trust
5.3. Policy Guidance and Encouragement
5.4. Stability in the Low-Carbon Transition of Infrastructure
5.5. Further Research
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LCA | Life cycle assessment |
CCUS | Carbon capture, utilization, and storage |
VA | Volcanic ash |
RHA | Rice husk ash |
FA | Fly ash |
BFS | Blast furnace slag |
GGBS | Ground granulated blast furnace slag |
ACBFS | Air-cooled blast furnace slag |
SF | Silica fume |
RM | Red mud |
SS | Steel slag |
ITs | Iron tailings |
CTs | Copper tailings |
CG | Coal gangue |
WRD | Waste rock dust |
MSWI | Municipal solid waste incineration |
MSWIBA | Municipal solid waste incineration bottom ash |
MSWIFA | Municipal solid waste incineration fly ash |
SAC | Slag aggregate concrete |
ECCs | Engineered cementitious composites |
SCMs | Supplementary cementitious materials |
C-S-H | Calcium silicate hydrate |
UHPC | Ultra-high-performance concrete |
FRC | Fully recycled concrete |
MK | Metakaolin |
GS | Granulated slag |
RW | Rockwool |
AI | Artificial intelligence |
References
- World Economic Forum. Building the Future: Reducing Carbon Footprints Across the Entire Infrastructure Lifecycle. Available online: https://www.weforum.org/stories/2024/09/building-future-reducing-carbon-footprints-across-infrastructure-lifecycle/ (accessed on 19 August 2025).
- Elbawab, Y.; Elbawab, Y.; El Zoughby, Z.; ElKadi, O.; AbouZeid, M.; Sayed-Ahmed, E. Flexural Testing of Steel-, GFRP-, BFRP-, and Hybrid Reinforced Beams. Polymers 2025, 17, 2027. [Google Scholar] [CrossRef]
- Kim, S.; Choi, W.; Kim, J. Performance Evaluation of Reinforced Concrete Beams with Corroded Rebar Strengthened by Carbon Fiber-Reinforced Polymer. Polymers 2025, 17, 1021. [Google Scholar] [CrossRef]
- Karabulut, M. Machine learning-driven flexural performance prediction and experimental investigation of glass fiber-reinforced polymer bar-reinforced concrete beams. Polymers 2025, 17, 713. [Google Scholar] [CrossRef]
- Gartner, E.; Sui, T. Alternative cement clinkers. Cem. Concr. Res. 2018, 114, 27–39. [Google Scholar] [CrossRef]
- Coffetti, D.; Crotti, E.; Gazzaniga, G.; Carrara, M.; Pastore, T.; Coppola, L. Pathways towards sustainable concrete. Cem. Concr. Res. 2022, 154, 106718. [Google Scholar] [CrossRef]
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Yu, H.; Zahidi, I.; Fai, C.M.; Liang, D.; Madsen, D.Ø. Mineral waste recycling, sustainable chemical engineering, and circular economy. Results Eng. 2024, 21, 101865. [Google Scholar] [CrossRef]
- Orsini, F.; Marrone, P. Approaches for a low-carbon production of building materials: A review. J. Clean. Prod. 2019, 241, 118380. [Google Scholar] [CrossRef]
- Nilimaa, J. Smart materials and technologies for sustainable concrete construction. Dev. Built Environ. 2023, 15, 100177. [Google Scholar] [CrossRef]
- Siddiqui, A.R.; Khan, R.; Akhtar, M.N. Sustainable concrete solutions for green infrastructure development: A review. J. Sustain. Constr. Mater. Technol. 2025, 10, 108–141. [Google Scholar] [CrossRef]
- Kazemifar, F. A review of technologies for carbon capture, sequestration, and utilization: Cost, capacity, and technology readiness. Greenh. Gases Sci. Technol. 2022, 12, 200–230. [Google Scholar] [CrossRef]
- Ahmed, F.; Zapata, O.; Poelzer, G. Sustainability in the arctic: A bibliometric analysis. Discov. Sustain. 2024, 5, 121. [Google Scholar] [CrossRef]
- Luhar, S.; Rajamane, N.P.; Corbu, O.; Luhar, I. Impact of incorporation of volcanic ash on geopolymerization of eco-friendly geopolymer composites: A review. IOP Conf. Ser. Mater. Sci. Eng. 2019, 572, 012001. [Google Scholar] [CrossRef]
- Bondar, D.; Lynsdale, C.J.; Milestone, N.B.; Hassani, N.; Ramezanianpour, A.A. Effect of adding mineral additives to alkali-activated natural pozzolan paste. Constr. Build. Mater. 2011, 25, 2906–2910. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 23 December 2024).
- Soltani, N.; Bahrami, A.; Pech-Canul, M.I.; Gonzalez, L.A. Review on the physicochemical treatments of rice husk for production of advanced materials. Chem. Eng. J. 2015, 264, 899–935. [Google Scholar] [CrossRef]
- Turmanova, S.; Genieva, S.; Vlaev, L. Obtaining some polymer composites filled with rice husks ash-a review. Int. J. Chem. 2012, 4, 62. [Google Scholar] [CrossRef]
- Zou, Y.; Yang, T. Rice husk, rice husk ash and their applications. In Rice Bran and Rice Bran Oil: Chemistry, Processing and Utilization; Cheong, L.Z., Xu, X., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 207–246. [Google Scholar]
- Giergiczny, Z. Fly ash and slag. Cem. Concr. Res. 2019, 124, 105826. [Google Scholar] [CrossRef]
- Amran, Y.M.; Alyousef, R.; Alabduljabbar, H.; El-Zeadani, M. Clean production and properties of geopolymer concrete: A review. J. Clean. Prod. 2020, 251, 119679. [Google Scholar] [CrossRef]
- Jiang, W.; Li, X.; Lv, Y.; Jiang, D.; Liu, Z.; He, C. Mechanical and hydration properties of low clinker cement containing high volume superfine blast furnace slag and nano silica. Constr. Build. Mater. 2020, 238, 117683. [Google Scholar] [CrossRef]
- Ozbakkaloglu, T.; Gu, L.; Pour, A.F. Normal-and high-strength concretes incorporating air-cooled blast furnace slag coarse aggregates: Effect of slag size and content on the behavior. Constr. Build. Mater. 2016, 126, 138–146. [Google Scholar] [CrossRef]
- Türköz, M.; Umu, S.U.; Öztürk, O. Effect of silica fume as a waste material for sustainable environment on the stabilization and dynamic behavior of dispersive soil. Sustainability 2021, 13, 4321. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, B.; Yan, P. Comparative study of effect of raw and densified silica fume in the paste, mortar and concrete. Constr. Build. Mater. 2016, 105, 82–93. [Google Scholar] [CrossRef]
- Niu, A.; Lin, C. Trends in research on characterization, treatment and valorization of hazardous red mud: A systematic review. J. Environ. Manage. 2024, 351, 119660. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Jia, S.; Yi, H.; Tang, X.; Yu, Q.; Gao, F.; Kang, D.; Zhao, S. Utilization of steel slag in air pollution and greenhouse gas emission reduction-Application, Mechanism and Challenge: A Review. J. Environ. Chem. Eng. 2024, 12, 114090. [Google Scholar] [CrossRef]
- World Steel in Figures 2024. Available online: https://worldsteel.org/data/world-steel-in-figures-2024/ (accessed on 25 December 2024).
- Bulatbekova, D.; Vashistha, P.; Kim, H.K.; Pyo, S. Effects of basic-oxygen furnace, electric-arc furnace, and ladle furnace slags on the hydration and durability properties of construction materials: A review. J. Build. Eng. 2024, 92, 109670. [Google Scholar] [CrossRef]
- Fu, S.; Kwon, E.E.; Lee, J. Upcycling steel slag into construction materials. Constr. Build. Mater. 2024, 444, 137882. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Liu, H.; Zhao, Y. Disposal of mine tailings via geopolymerization. J. Clean. Prod. 2021, 284, 124756. [Google Scholar] [CrossRef]
- Zhao, J.; Ni, K.; Su, Y.; Shi, Y. An evaluation of iron ore tailings characteristics and iron ore tailings concrete properties. Constr. Build. Mater. 2021, 286, 122968. [Google Scholar] [CrossRef]
- He, X.; Yuhua, Z.; Qaidi, S.; Isleem, H.F.; Zaid, O.; Althoey, F.; Ahmad, J. Mine tailings-based geopolymers: A comprehensive review. Ceram Int. 2022, 48, 24192–24212. [Google Scholar] [CrossRef]
- Yang, Y. Energy globalization of China: Trade, investment, and embedded energy flows. J. Geogr. Sci. 2022, 32, 377–400. [Google Scholar] [CrossRef]
- Li, J.; Wang, J. Comprehensive utilization and environmental risks of coal gangue: A review. J. Clean. Prod. 2019, 239, 117946. [Google Scholar] [CrossRef]
- Prakash, K.S.; Rao, C.H. Study on compressive strength of quarry dust as fine aggregate in concrete. Adv. Civ. Eng. 2016, 2016, 1742769. [Google Scholar] [CrossRef]
- Kumar, N.V.S. Crushed rock dust as filler material in concrete. Mater. Today Proc. 2021, 43, 1714–1719. [Google Scholar] [CrossRef]
- Krishnamoorthi, A.; Kumar, G.M. Properties of green concrete mix by concurrent use of fly ash and quarry dust. IOSR J. Eng. 2013, 3, 48–54. [Google Scholar] [CrossRef]
- Nayak, S.K.; Satapathy, A.; Mantry, S. Use of waste marble and granite dust in structural applications: A review. J. Build. Eng. 2022, 46, 103742. [Google Scholar] [CrossRef]
- Joseph, A.M.; Snellings, R.; Van den Heede, P.; Matthys, S.; De Belie, N. The use of municipal solid waste incineration ash in various building materials: A Belgian point of view. Materials 2018, 11, 141. [Google Scholar] [CrossRef]
- Tang, P.; Florea, M.V.A.; Spiesz, P.; Brouwers, H.J.H. Characteristics and application potential of municipal solid waste incineration (MSWI) bottom ashes from two waste-to-energy plants. Constr. Build. Mater. 2015, 83, 77–94. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, D. Municipal solid waste incineration bottom ash: A competent raw material with new possibilities. Innov. Infrastruct. Solut. 2021, 6, 201. [Google Scholar] [CrossRef]
- Ren, J.; Liu, B.; Guo, J.; Liu, J.; Xing, F.; Zhu, H.; Zhao, L.; Mi, T. Bio-treatment of municipal solid waste incineration fly ash: A sustainable path for recyclability. J. Clean. Prod. 2024, 434, 139869. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Xie, G.; Li, Z.; Fan, X.; Zhang, W.; Xing, F.; Tang, L.; Ren, J. Resource utilization of municipal solid waste incineration fly ash-cement and alkali-activated cementitious materials: A review. Sci. Total Environ. 2022, 852, 158254. [Google Scholar] [CrossRef]
- The European Container Glass Federation. Recycling: Why Glass Always Has a Happy CO2 Ending. Available online: https://feve.org/recycling-glass-always-happy-co2-ending/ (accessed on 12 July 2025).
- Advancing Sustainable Materials Management: Facts and Figures. Available online: https://19january2017snapshot.epa.gov/smm/advancing-sustainable-materials-management-facts-and-figures_.html (accessed on 12 July 2025).
- Çelik, A.İ.; Özkılıç, Y.O.; Zeybek, Ö.; Karalar, M.; Qaidi, S.; Ahmad, J.; Burduhos-Nergis, D.D.; Bejinariu, C. Mechanical behavior of crushed waste glass as replacement of aggregates. Materials 2022, 15, 8093. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, A.; Sarmah, A.K. Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. J. Clean. Prod. 2018, 186, 262–281. [Google Scholar] [CrossRef]
- What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Available online: https://documents.worldbank.org/en/publication/documents-reports/documentdetail/697271544470229584/what-a-waste-2-0-a-global-snapshot-of-solid-waste-management-to-2050 (accessed on 12 July 2025).
- Ma, M.; Tam, V.W.; Le, K.N.; Osei-Kyei, R. Factors affecting the price of recycled concrete: A critical review. J. Build. Eng. 2022, 46, 103743. [Google Scholar] [CrossRef]
- Ahmad, J.; Althoey, F.; Abuhussain, M.A.; Deifalla, A.F.; Özkılıç, Y.O.; Rahmawati, C. Durability and microstructure analysis of concrete made with volcanic ash: A review (Part II). Sci. Eng. Compos. Mater. 2023, 30, 20220211. [Google Scholar] [CrossRef]
- Mohseni, E.; Kazemi, M.J.; Koushkbaghi, M.; Zehtab, B.; Behforouz, B. Evaluation of mechanical and durability properties of fiber-reinforced lightweight geopolymer composites based on rice husk ash and nano-alumina. Constr. Build. Mater. 2019, 209, 532–540. [Google Scholar] [CrossRef]
- Du, W.; Ni, L.; Lv, Y.; Zheng, D.; Tang, W.; Cui, H. Role of silica fume in the hydration evolution of fly ash-slag-based geopolymers. Constr. Build. Mater. 2024, 451, 138879. [Google Scholar] [CrossRef]
- Zhu, J.; Yue, H.; Ma, L.; Li, Z.; Bai, R. Study on hydration mechanism and environmental safety of thermal activated red mud-based cementitious materials. Environ. Sci. Pollut. Res. 2023, 30, 55905–55921. [Google Scholar] [CrossRef]
- Han, X.; Feng, J.; Shao, Y.; Hong, R. Influence of a steel slag powder-ground fly ash composite supplementary cementitious material on the chloride and sulphate resistance of mass concrete. Powder Technol. 2020, 370, 176–183. [Google Scholar] [CrossRef]
- Guerreiro, G.G.; de Andrade, F.V.; de Freitas, M.R. Carbon nanostructures based-adsorbent obtained from iron ore tailings. Ceram. Int. 2020, 46, 29271–29281. [Google Scholar] [CrossRef]
- Jin, H.; Lin, L.; Meng, X.; Wang, L.; Huang, Z.; Liu, M.; Dong, L.; Hu, Y.; Crittenden, J.C. A novel lanthanum-modified copper tailings adsorbent for phosphate removal from water. Chemosphere 2021, 281, 130779. [Google Scholar] [CrossRef]
- Prakash, K.S.; Gopal, P.M.; Karthik, S. Multi-objective optimization using Taguchi based grey relational analysis in turning of Rock dust reinforced Aluminum MMC. Measurement 2020, 157, 107664. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, X.; Zhang, K. Coal gangue in asphalt pavement: A review of applications and performance influence. Case Stud. Constr. Mater. 2024, 20, e03282. [Google Scholar]
- Hamada, H.; Alattar, A.; Tayeh, B.; Yahaya, F.; Thomas, B. Effect of recycled waste glass on the properties of high-performance concrete: A critical review. Case Stud. Constr. Mater. 2022, 17, e01149. [Google Scholar] [CrossRef]
- Fernando, A.; Selvaranjan, K.; Srikanth, G.; Gamage, J.C.P.H. Development of high strength recycled aggregate concrete-composite effects of fly ash, silica fume and rice husk ash as pozzolans. Mater. Struct. 2022, 55, 185. [Google Scholar] [CrossRef]
- Leading Countries Based on the Production of Alumina Worldwide in 2024. Statista. Available online: https://www.statista.com/statistics/264963/global-alumina-production-by-country/ (accessed on 21 August 2025).
- Ministry of Finance of the People’s Republic of China. Notice of the Ministry of Finance and the State Taxation Administration on the VAT Policy for New-Type Building Materials. Available online: http://www.mof.gov.cn/gkml/caizhengwengao/wg2015/wg201508/201601/t20160107_1645703.htm (accessed on 21 August 2025).
- Li, Z.; Delsaute, B.; Lu, T.; Kostiuchenko, A.; Staquet, S.; Ye, G. A comparative study on the mechanical properties, autogenous shrinkage and cracking proneness of alkali-activated concrete and ordinary Portland cement concrete. Constr. Build. Mater. 2021, 292, 123418. [Google Scholar] [CrossRef]
- Dobiszewska, M.; Bagcal, O.; Beycioğlu, A.; Goulias, D.; Köksal, F.; Niedostatkiewicz, M.; Ürünveren, H. Influence of rock dust additives as fine aggregate replacement on properties of cement composites—A review. Materials 2022, 15, 2947. [Google Scholar] [CrossRef]
- Silva, L.S.; Amario, M.; Stolz, C.M.; Figueiredo, K.V.; Haddad, A.N. A comprehensive review of stone dust in concrete: Mechanical behavior, durability, and environmental performance. Buildings 2023, 13, 1856. [Google Scholar] [CrossRef]
- Woo, B.H.; Jeon, I.K.; Yoo, D.H.; Kim, S.S.; Lee, J.B.; Kim, H.G. Utilization of municipal solid waste incineration bottom ash as fine aggregate of cement mortars. Sustainability 2021, 13, 8832. [Google Scholar] [CrossRef]
- Bijalwan, P.; Senthil, K. Influence of steel slag as partial replacement of coarse aggregate in the fibre reinforced concrete curved beam under static and impact load. Structures 2024, 67, 106926. [Google Scholar] [CrossRef]
- Ahmad, J.; Kontoleon, K.J.; Majdi, A.; Naqash, M.T.; Deifalla, A.F.; Ben Kahla, N.; Isleem, H.F.; Qaidi, S.M. A comprehensive review on the ground granulated blast furnace slag (GGBS) in concrete production. Sustainability 2022, 14, 8783. [Google Scholar] [CrossRef]
- Li, L.; Sun, W.; Feng, Z.; Li, Y.; Feng, T.; Liu, Z. Hydration kinetics and apparent activation energy of cement pastes containing high silica fume content at lower curing temperature. Constr. Build. Mater. 2024, 435, 136881. [Google Scholar] [CrossRef]
- Presa, L.; Rosado, S.; Peña, C.; Martín, D.A.; Costafreda, J.L.; Astudillo, B.; Parra, J.L. Volcanic Ash from the Island of La Palma, Spain: An Experimental Study to Establish Their Properties as Pozzolans. Processes 2023, 11, 657. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, S.; Zhou, Y.; Zhang, C.; Meng, T.; Jiang, S.; Liu, L.; Hu, G. Effect of incorporation of rice husk ash and iron ore tailings on properties of concrete. Constr. Build. Mater. 2022, 338, 127584. [Google Scholar] [CrossRef]
- Wu, C.R.; Tang, W.; Zhan, B.J.; Kou, S.C. Feasibility study on using red mud as a viscosity-modifying agent for self-compacting concrete. Constr. Build. Mater. 2024, 445, 137871. [Google Scholar] [CrossRef]
- Zhu, H.; Hu, W.H.; Mehthel, M.; Villette, T.; Vidal, O.S.; Nasser, W.N.; Li, V.C. Engineered cementitious composites (ECC) with a high volume of volcanic ash: Rheological, mechanical, and micro performance. Cem. Concr. Compos. 2023, 139, 105051. [Google Scholar] [CrossRef]
- Yu, J.; Lin, J.; Zhang, Z.; Li, V.C. Mechanical performance of ECC with high-volume fly ash after sub-elevated temperatures. Constr. Build. Mater. 2015, 99, 82–89. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, F.; Liu, J.C.; Wang, S. Eco-friendly high strength, high ductility engineered cementitious composites (ECC) with substitution of fly ash by rice husk ash. Cem. Concr. Res. 2020, 137, 106200. [Google Scholar] [CrossRef]
- Kaplan, G.; Salem Elmekahal, M.A. Microstructure and durability properties of lightweight and high-performance sustainable cement-based composites with rice husk ash. Environ. Sci. Pollut. Res. 2021, 28, 52936–52962. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Y.; Liu, J.; Wang, X.; Chu, P.K.; Chu, B.; Zhang, N. Fly ash based lightweight wall materials incorporating expanded perlite/SiO2 aerogel composite: Towards low thermal conductivity. Constr. Build. Mater. 2020, 249, 118728. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, Z.; Huo, B.; Zhang, C.; Liu, C.; Zhang, Y. Uncovering the influence of red mud on foam stability and pore features in hybrid alkali-activated foamed concrete. Constr. Build. Mater. 2024, 416, 135309. [Google Scholar] [CrossRef]
- Liu, Y.; Wan, W.; Yang, F.; Hu, C.; Liu, Z.; Wang, F. Performance of glass-ceramic-based lightweight aggregates manufactured from waste glass and muck. Ceram. Int. 2022, 48, 23468–23480. [Google Scholar] [CrossRef]
- Zhu, P.; Liu, M. Non-uniform corrosion mechanism and residual life forecast of marine engineering concrete reinforcement. J. Eng. Res. 2023, 11, 100053. [Google Scholar] [CrossRef]
- Zhang, X.; Meng, L.; Li, D.; Ye, Y.; Wei, K. Investigating correlations between microstructural characteristics and mechanical properties of coral sand mortar with different silica fume contents. Constr. Build. Mater. 2024, 438, 137180. [Google Scholar] [CrossRef]
- Iqbal, M.; Zhang, D.; Khan, K.; Amin, M.N.; Ibrahim, M.; Salami, B.A. Evaluating mechanical, microstructural and durability performance of seawater sea sand concrete modified with silica fume. J. Build. Eng. 2023, 72, 106583. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, N.; Li, C.; Zhang, Y. Strength development mechanism of a marine binding material with red mud and seawater. Constr. Build. Mater. 2021, 303, 124428. [Google Scholar] [CrossRef]
- Fan, D.; Zhu, J.; Fan, M.; Lu, J.X.; Chu, S.H.; Dong, E.; Yu, R. Intelligent design and manufacturing of ultra-high performance concrete (UHPC)–A review. Constr. Build. Mater. 2023, 385, 131495. [Google Scholar] [CrossRef]
- Zheng, Q.; Li, C.; Song, F.; He, B.; Li, W.; Jiang, Z. Autogenous self-healing of ultra-high-performance fiber-reinforced concrete with varying silica fume dosages: Secondary hydration and structural regeneration. Cem. Concr. Compos. 2023, 137, 104905. [Google Scholar] [CrossRef]
- Bahmani, H.; Mostafaei, H.; Santos, P.; Fallah Chamasemani, N. Enhancing the mechanical properties of Ultra-High-Performance Concrete (UHPC) through silica sand replacement with steel slag. Buildings 2024, 14, 3520. [Google Scholar] [CrossRef]
- Wu, D.; Chen, T.; Hou, D.; Zhang, X.; Wang, M.; Wang, X. Utilization of coal gangue powder to improve the sustainability of ultra-high performance concrete. Constr. Build. Mater. 2023, 385, 131482. [Google Scholar] [CrossRef]
- Likes, L.; Markandeya, A.; Haider, M.M.; Bollinger, D.; McCloy, J.S.; Nassiri, S. Recycled concrete and brick powders as supplements to Portland cement for more sustainable concrete. J. Clean. Prod. 2022, 364, 132651. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J.; Hu, X.; Ran, B.; Wu, T.; Zhou, X.; Xiong, Y. Physical performance, durability, and carbon emissions of recycled cement concrete and fully recycled concrete. Constr. Build. Mater. 2024, 447, 138128. [Google Scholar] [CrossRef]
- Nana, A.; Epey, N.; Rodrique, K.C.; Deutou, J.G.N.; Djobo, J.N.Y.; Tomé, S.; Alomayri, T.S.; Ngouné, J.; Kamseu, E.; Leonelli, C. Mechanical strength and microstructure of metakaolin/volcanic ash-based geopolymer composites reinforced with reactive silica from rice husk ash (RHA). Materialia 2021, 16, 101083. [Google Scholar] [CrossRef]
- Hossein, H.A.; Hamzawy, E.M.; El-Bassyouni, G.T.; Nabawy, B.S. Mechanical and physical properties of synthetic sustainable geopolymer binders manufactured using rockwool, granulated slag, and silica fume. Constr. Build. Mater. 2023, 367, 130143. [Google Scholar] [CrossRef]
- Arslan, S.; Öz, A.; Benli, A.; Bayrak, B.; Kaplan, G.; Aydın, A.C. Sustainable use of silica fume and metakaolin in slag/fly ash-based self-compacting geopolymer composites: Fresh, physico-mechanical and durability properties. Sustain. Chem. Pharm. 2024, 38, 101512. [Google Scholar] [CrossRef]
- Han, Q.; Zhang, P.; Wu, J.; Jing, Y.; Zhang, D.; Zhang, T. Comprehensive review of the properties of fly ash-based geopolymer with additive of nano-SiO2. Nanotechnol. Rev. 2022, 11, 1478–1498. [Google Scholar] [CrossRef]
- Lee, S.K.; Oh, T.; Kim, G.W.; Bae, S.; Yoo, D.Y. Benefits of CaCO3 nanoparticles for the strain hardening behavior of high-strength alkali-activated composites based on blast furnace slag and liquid crystal display glass powder. Constr. Build. Mater. 2024, 449, 138314. [Google Scholar] [CrossRef]
- Irfan-ul-Hassan, M.; Daud, M.; Rashid, K.; Alqahtani, F.K.; Zafar, I.; Batool, U. Development and sustainability assessment of red mud-based green bricks: Techno-economic and environmental performance. J. Build. Eng. 2024, 95, 110350. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, H.; Jiang, H.; Zhang, W.; Mao, L. Recycling municipal solid waste incineration fly ash in fired bricks: An evaluation of physical-mechanical and environmental properties. Constr. Build. Mater. 2021, 294, 123476. [Google Scholar] [CrossRef]
- Sultana, M.S.; Ahmed, A.N.; Zaman, M.N.; Rahman, M.A.; Biswas, P.K.; Nandy, P.K. Utilization of hard rock dust with red clay to produce roof tiles. J. Asian Ceram. Soc. 2015, 3, 22–26. [Google Scholar] [CrossRef]
- Lucen, H.; Long, L.; Shipeng, Z.; Huanghua, Z.; Jianzhuang, X.; Sun, P.C. The synergistic effect of greenhouse gas CO2 and silica fume on the properties of 3D printed mortar. Compos. B Eng. 2024, 271, 111188. [Google Scholar] [CrossRef]
- Wu, M.; Wang, Z.; Chen, Y.; Zhu, M.; Yu, Q. Effect of steel slag on rheological and mechanical properties of sulfoaluminate cement-based sustainable 3D printing concrete. J. Build. Eng. 2024, 98, 111345. [Google Scholar] [CrossRef]
- Li, X.; Zhang, N.; Yuan, J.; Wang, X.; Zhang, Y.; Chen, F.; Zhang, Y. Preparation and microstructural characterization of a novel 3D printable building material composed of copper tailings and iron tailings. Constr. Build. Mater. 2020, 249, 118779. [Google Scholar] [CrossRef]
- Avcu, E.; Coban, O.; Özgür Bora, M.; Fidan, S.; Sınmazçelik, T.; Ersoy, O. Possible use of volcanic ash as a filler in polyphenylene sulfide composites: Thermal, mechanical, and erosive wear properties. Polym. Compos. 2014, 35, 1826–1833. [Google Scholar] [CrossRef]
- Çimen, Ö.; Günaydın, H.İ. Preparation and characterization of red mud/polysulfone composite geosynthetic barrier. Eng. Sci. Technol. Int. J. 2024, 54, 101720. [Google Scholar] [CrossRef]
- Udoye, N.E.; Nnamba, O.J.; Fayomi, O.S.I.; Inegbenebor, A.O.; Jolayemi, K.J. Analysis on mechanical properties of AA6061/Rice husk ash composites produced through stir casting technique. Mater. Today Proc. 2021, 43, 1415–1420. [Google Scholar] [CrossRef]
- Desai, A.M.; Paul, T.R.; Mallik, M. Mechanical properties and wear behavior of fly ash particle reinforced Al matrix composites. Mater. Res. Express. 2020, 7, 016595. [Google Scholar] [CrossRef]
- Kumar, N.; Patnaik, P.K.; Mishra, S.K.; Mohanta, G.K.; Panda, M.R. Mechanical and tribological properties of Al7075 based metal matrix composite reinforced with boron carbide and blast furnace slag. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Chen, H.; Long, Q.; Zhang, Y.; Yang, H.; Shu, J. Using red mud to prepare the iron-bearing catalyst for the efficient degradation of phenol in the Fenton-like process. Arab. J. Chem. 2024, 17, 105797. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Cao, Z. Preparation of a novel MnO2/red mud composites to enhance arsenic removal. Colloids Surf. A Physicochem. Eng. Asp. 2024, 702, 134978. [Google Scholar] [CrossRef]
- Han, Y.; Guo, M.; Shi, T.; Wang, Z.; Wang, Y.; Xu, Z.; Wang, D.; Gao, H.; Peng, Z.; Hou, H. Red mud/steel slag three-dimensional electrochemical system for the removal of organic pollutant with Na2S2O3 as electrolyte: Contribution of •OHads. Sep. Purif. Technol. 2025, 354, 128774. [Google Scholar] [CrossRef]
- Darmansyah, D.; You, S.J.; Wang, Y.F. Advancements of coal fly ash and its prospective implications for sustainable materials in Southeast Asian countries: A review. Renew. Sustain. Energy Rev. 2023, 188, 113895. [Google Scholar] [CrossRef]
- Liu, S.; Jin, J.; Yu, H.; Qian, G.; Zhang, B.; Shi, J.; Gao, Y. Promotional effect of shaped coal gangue composite phase change agents doping in asphalt on pavement properties. Constr. Build. Mater. 2024, 411, 134447. [Google Scholar] [CrossRef]
- Liu, W.; Liu, X.; Zhang, L.; Wan, Y.; Li, H.; Jiao, X. Rheology, mechanics, microstructure and durability of low-carbon cementitious materials based on circulating fluidized bed fly ash: A comprehensive review. Constr. Build. Mater. 2024, 411, 134688. [Google Scholar] [CrossRef]
- Nikravan, M.; Firdous, R.; Stephan, D. Life cycle assessment of alkali-activated materials: A systematic literature review. Low-Carbon Mater. Green Constr. 2023, 1, 13. [Google Scholar] [CrossRef]
- Zheng, Y.; Rao, F.; Yang, L.; Zhong, S. Comparison of ternary and dual combined waste-derived alkali activators on the durability of volcanic ash-based geopolymers. Cem. Concr. Compos. 2023, 136, 104886. [Google Scholar] [CrossRef]
- Office Order IPC-II/TPP/CP-11/76/20022. Available online: https://cpcb.nic.in/uploads/flyash/CPCB-order-25052022-3.pdf (accessed on 26 February 2025).
- Annual Report. Available online: https://cpcb.nic.in/annual-report/ (accessed on 26 February 2025).
- FLY ASH UNIT—FLY ASH MISSION. Available online: https://dst.gov.in/fly-ash-unit-0 (accessed on 23 January 2025).
- Svobodova-Sedlackova, A.; Calderón, A.; Fernandez, A.I.; Chimenos, J.M.; Berlanga, C.; Yücel, O.; Barreneche, C.; Rodriguez, R. Mapping the research landscape of bauxite by-products (red mud): An evolutionary perspective from 1995 to 2022. Heliyon 2024, 10, e24943. [Google Scholar] [CrossRef]
- Amin, M.N.; Javed, M.F.; Khan, K.; Shalabi, F.I.; Qadir, M.G. Modeling Compressive Strength of Eco-Friendly Volcanic Ash Mortar Using Artificial Neural Networking. Symmetry 2021, 13, 2009. [Google Scholar] [CrossRef]
- Datta, S.D.; Sarkar, M.M.; Rakhe, A.S.; Aditto, F.S.; Sobuz, M.H.R.; Shaurdho, N.M.N.; Nijum, N.J.; Das, S. Analysis of the characteristics and environmental benefits of rice husk ash as a supplementary cementitious material through experimental and machine learning approaches. Innov. Infrastruct. Solut. 2024, 9, 121. [Google Scholar] [CrossRef]
- Ansari, S.S.; Ansari, M.A.; Saqib, M.; Ghazi, M.S.; Ibrahim, S.M. Impact of thermal loads on silica fume-modified lightweight concrete: Machine learning approach to assess compressive strength evolution. Mater. Today Proc. 2024. [Google Scholar] [CrossRef]
- Grabias-Blicharz, E.; Franus, W. A critical review on mechanochemical processing of fly ash and fly ash-derived materials. Sci. Total Environ. 2023, 860, 160529. [Google Scholar] [CrossRef]
- Liljenström, C.; Björklund, A.; Toller, S. Including maintenance in life cycle assessment of road and rail infrastructure—A literature review. Int. J. Life Cycle Assess. 2022, 27, 316–341. [Google Scholar] [CrossRef]
Resource | Type | Functions | Applications | |
---|---|---|---|---|
Natural by-products | Volcanic ash | Pumice and scoria | Cement replacement, aggregate, reinforcer, adsorbent, and composite filler | Mortar, concrete, bricks, tiles, polymer composites, and wastewater treatment |
Biomass waste | Rice husk ash | White and black | Cement replacement, reinforcer, adsorbent, and composite filler | Mortar, concrete, bricks, tiles, coating, alloys, polymer composites, and wastewater treatment |
Industrial by-products | Fly ash | Siliceous, calcareous, and fluidized bed combustion | Cement replacement, additive, fine aggregate, reinforcer, catalyst, adsorbent, and composite filler | Mortar, concrete, blocks, bricks, tiles, coating, alloys, polymer composites, and wastewater treatment |
Blast furnace slag | Air cooled and water cooled | Cement replacement, additive, aggregate, reinforcer, adsorbent, and composite filler | Mortar, concrete, bricks, tiles, coating, alloys, polymer composites, and wastewater treatment | |
Silica fume | High-silicon | Cement replacement, additive, reinforcer, adsorbent, and composite filler | Mortar, concrete, bricks, tiles, coating, polymer composites, and wastewater treatment | |
Red mud | Sinter and Bayer | Cement replacement, aggregate, reinforcer, catalyst, adsorbent, and composite filler | Mortar, concrete, bricks, tiles, coating, alloys, polymer composites, and wastewater treatment | |
Steel slag | Basic oxygen furnace, electric-arc furnace, and ladle furnace | Cement replacement, aggregate, reinforcer, catalyst, and composite filler | Mortar, concrete, bricks, tiles coating, polymer composites, and wastewater treatment | |
Iron tailings | Depending on iron ore resources | Cement replacement, additive, aggregate, reinforcer, adsorbent, and composite filler | Mortar, concrete, bricks, tiles coating, polymer composites, and wastewater treatment | |
Copper tailings | Wet and dry | Cement replacement, additive, aggregate, reinforcer, adsorbent, and composite filler | Mortar, concrete, bricks, tiles coating, polymer composites, and wastewater treatment | |
Coal gangue | High-carbon and low-carbon | Cement replacement, additive, aggregate, reinforcer, adsorbent, and composite filler | Mortar, concrete, bricks, tiles, polymer composites, and wastewater treatment | |
Waste rock dust | Granite and marble | Cement replacement, additive, fine aggregate, reinforcer, and composite filler | Mortar, concrete, blocks, bricks, tiles, alloys, and polymer composites | |
Municipal solid waste | Waste incineration ash | Bottom ash and fly ash | Cement replacement, additive, aggregate, reinforcer, and composite filler | Mortar, concrete, bricks, tiles, and polymer composites |
Waste glass | Depending on different resources | Cement replacement, additive, aggregate, reinforcer, and composite filler | Mortar, concrete, bricks, tiles, alloys, and polymer composites | |
Construction waste | Recycled concrete | Aggregate and cement | Cement replacement, additive, aggregate | Concrete |
Country | Year | Issuing Authority | Guideline and Policy | Content | Website |
---|---|---|---|---|---|
China | 2015 | Ministry of Finance of the People’s Republic of China | Notice of the State Administration of Taxation of the Ministry of Finance on the VAT policy of new wall materials | New wall materials produced with fly ash, coal gangue, construction waste, and other raw materials can enjoy a VAT rebate of 50%. | http://www.mof.gov.cn/gkml/caizhengwengao/wg2015/wg201508/201601/t20160107_1645703.htm (accessed on 24 January 2025) |
2024 | Ministry of Ecology and Environment of the People’s Republic of China | Opinions on promoting the implementation of ultra-low emission in the cement industry | Promote raw material substitution to increase the proportion of waste slag replacing limestone, enhance the incorporation rate of industrial by-products such as slag and fly ash, reduce the clinker factor, and strengthen economic policy support. | https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202401/W020240119512650483366.pdf (accessed on 24 January 2025) | |
2024 | Central Government of the People’s Republic of China | Opinions of the General Office of the State Council on accelerating the construction of a waste recycling system | Promote the fine management and recycling of waste, improve the level of resource utilization and reuse, foster and expand the resource recycling industry, and improve policy mechanisms. | https://www.gov.cn/zhengce/zhengceku/202402/content_6931080.htm (accessed on 24 January 2025) | |
2025 | Ministry of Industry and Information Technology of the People’s Republic of China | Action plan for comprehensive utilization of red mud | Reduce the yield of red mud, enhance its availability, develop new products, and aim to increase its comprehensive utilization rate to 25% by 2030. Provide tax incentives and credit financing support and encourage international cooperation. | https://www.miit.gov.cn/xwfb/gxdt/sjdt/art/2025/art_87cc14976a6c4275b37587d885ef156b.html (accessed on 24 January 2025) | |
India | 2011 | Central Pollution Control Board | Establish a Fly Ash Committee for Thermal Power Plants | Monitor the utilization of fly ash and consult with stakeholders. Ensure 100% utilization of fly ash in thermal power plants within three to five years. | https://cpcb.nic.in/uploads/flyash/CPCB-order-25052022-3.pdf (accessed on 24 January 2025) |
2023 | Central Pollution Control Board | Guidelines for Handling and Management of Red Mud Generated from Alumina Plants | Classify red mud as ‘high-volume, low-effect waste,’ implement harmless environmental management for red mud, and conduct environmental assessments, risk assessments, and disaster management planning for the Bauxite Residue Disposal Area. Facilities should have detailed operational manuals, with both internal and third-party audits. | https://cpcb.nic.in/uploads/hwmd/Guidelines_HW_6.pdf (accessed on 24 January 2025) | |
Australia | 2014 | International Aluminium Institute | Bauxite Residue Management: Best Practice | Conduct environmental assessments and risk monitoring of bauxite residue storage areas and develop reasonable exit strategies to ensure that waste does not cause long-term environmental impacts. Refer to examples from other countries that utilize tailings and apply on-site remediation. | https://aluminium.org.au/wp-content/uploads/2017/10/Bauxite_Residue_Management_-_Best_Practice_(IAI).pdf (accessed on 24 January 2025) |
2022 | International Aluminium Institute | Sustainable Bauxite Mining Guidelines | Tailing management is the responsibility of mining companies; provide examples of other countries using tailings. | https://aluminium.org.au/wp-content/uploads/2022/02/SBMG-Second-Edition-Feb-2022.pdf (accessed on 24 January 2025) | |
UK | 2016 | Environment Agency | Quality protocol: aggregate from waste steel slag | Waste steel slag products that meet standards and pass testing will be considered fully recycled and no longer subject to waste controls, with specific management standards and operational requirements. | https://www.gov.uk/government/publications/aggregate-from-waste-steel-slag-quality-protocol/aggregate-from-waste-steel-slag-quality-protocol (accessed on 1 September 2025) |
Japan | 2022 | e-GOV | Act on Recycling of Materials Related to Construction Work | Legislation for the classification, recycling, and resource recovery of construction and demolition waste materials. | https://laws.e-gov.go.jp/law/412AC0000000104 (accessed on 1 September 2025) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Zhang, Y.; Sun, G.; Wei, H. Low-Carbon and Recycled Mineral Composite Materials for Sustainable Infrastructure: A Comprehensive Review. Sustainability 2025, 17, 7908. https://doi.org/10.3390/su17177908
Zhang R, Zhang Y, Sun G, Wei H. Low-Carbon and Recycled Mineral Composite Materials for Sustainable Infrastructure: A Comprehensive Review. Sustainability. 2025; 17(17):7908. https://doi.org/10.3390/su17177908
Chicago/Turabian StyleZhang, Rong, Yihe Zhang, Guoxing Sun, and Hongqiang Wei. 2025. "Low-Carbon and Recycled Mineral Composite Materials for Sustainable Infrastructure: A Comprehensive Review" Sustainability 17, no. 17: 7908. https://doi.org/10.3390/su17177908
APA StyleZhang, R., Zhang, Y., Sun, G., & Wei, H. (2025). Low-Carbon and Recycled Mineral Composite Materials for Sustainable Infrastructure: A Comprehensive Review. Sustainability, 17(17), 7908. https://doi.org/10.3390/su17177908