Resilience Assessment of Forest Fires Based on a Game-Theoretic Combination Weighting Method
Abstract
1. Introduction
2. Theoretical Framework of FFR
2.1. Concept of FFR
2.2. Capacity Characterization of FFR
2.3. Triggering Mechanism of FFR
3. Evaluation Index System of FFR
3.1. Selection of Evaluation Indicators
3.2. Description of Evaluation Indicators
4. Methods
4.1. AHP Method
4.1.1. Construction of the Judgment Matrix
4.1.2. Consistency Test
4.1.3. Weight Calculation
4.2. CRITIC Method
4.2.1. Indicator Standardization
4.2.2. Weight Calculation
4.3. Game-Theoretic Combination Weighting Method
4.3.1. Weight Integration Modeling
4.3.2. Coefficient Optimization
4.3.3. Composite Weight Output
4.4. Multi-Region Resilience Evaluation Method
5. Results and Analysis
5.1. Weighting Results
5.2. Weights of Level-2 Indicators
5.3. Weights of Level-3 Indicators
5.4. Analysis of Resilience Capacities
6. Strategies for Enhancing FFR
6.1. Strengthen Climate Monitoring
6.2. Improve Forest Fuel Management and Absorption Capabilities
6.3. Enhance Forest Fire Monitoring and Early Warning Systems
6.4. Enhance Emergency Response and Recovery Capabilities
7. Case Study
7.1. Study Area
7.2. Regional Result Analysis
7.2.1. Sensitivity and Robustness Analysis
- (1)
- Weight Perturbation Tests
- (2)
- Indicator Selection Sensitivity
7.2.2. Regional Resilience Analysis
7.2.3. Evaluation Method Comparison
8. Conclusions
- (1)
- Theoretical foundations of FFR were established by examining four resilience capacities: absorption, resistance, recovery, and adaptation. A triggering mechanism model was developed to illustrate dynamic interactions among internal and external factors influencing resilience outcomes.
- (2)
- A three-tier evaluation index system was designed, comprising 25 level-3 indicators across six dimensions: vegetation, topography, climate, infrastructure, management, and social factors. These indicators were further classified by the four resilience capacities, creating a dual framework for structural and functional assessment of FFR.
- (3)
- Using a game-theoretic integration of AHP and CRITIC methods, comprehensive weights were derived. Climate, infrastructure, and vegetation emerged as the most influential level-2 indicators. Among level-3 indicators, monthly minimum relative humidity, fine fuel load per unit area, and smart monitoring systems were identified as critical. Absorption capacity dominated among the resilience functions, highlighting the vital role of proactive risk mitigation.
- (4)
- A case study in Baise City revealed spatial variation in FFR across twelve administrative divisions. Resilience outcomes depended on the interplay between natural conditions and human interventions. Furthermore, sensitivity and robustness analysis demonstrated the framework’s reliability and practical robustness. The comparison of evaluation methods further demonstrated the superior performance of the proposed approach, highlighting its ability to provide a balanced and accurate assessment of FFR.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; González-Olabarria, J.R.; Lyver, P.O.; Meurisse, N.; Oxbrough, A.; Taki, H.; et al. Forest Biodiversity, Ecosystem Functioning and the Provision of Ecosystem Services. Biodivers. Conserv. 2017, 26, 3005–3035. [Google Scholar] [CrossRef]
- Baltzer, J.L.; Day, N.J.; Walker, X.J.; Greene, D.; Mack, M.C.; Alexander, H.D.; Arseneault, D.; Barnes, J.; Bergeron, Y.; Boucher, Y.; et al. Increasing Fire and the Decline of Fire Adapted Black Spruce in the Boreal Forest. Proc. Natl. Acad. Sci. USA 2021, 118, e2024872118. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.W.; Kelley, D.I.; Burton, C.A.; Di Giuseppe, F.; Barbosa, M.L.F.; Brambleby, E.; Hartley, A.J.; Lombardi, A.; Mataveli, G.; McNorton, J.R.; et al. State of Wildfires 2023–2024. Earth Syst. Sci. Data 2024, 16, 3601–3685. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Flannigan, M.D.; Guindon, L.; Swystun, T.; Castellanos-Acuna, D.; Wu, W.; Wang, G. Canadian Forests Are More Conducive to High-Severity Fires in Recent Decades. Science 2025, 387, 91–97. [Google Scholar] [CrossRef]
- Boychenko, S.; Kuchma, T.; Karamushka, V.; Maidanovych, N.; Kozak, O. Wildfires and Climate Change in the Ukrainian Polissia During 2001–2023. Sustainability 2025, 17, 2223. [Google Scholar] [CrossRef]
- Davey, S.M.; Sarre, A. Editorial: The 2019/20 Black Summer Bushfires. Aust. For. 2020, 83, 47–51. [Google Scholar] [CrossRef]
- Van Oldenborgh, G.J.; Krikken, F.; Lewis, S.; Leach, N.J.; Lehner, F.; Saunders, K.R.; Van Weele, M.; Haustein, K.; Li, S.; Wallom, D.; et al. Attribution of the Australian Bushfire Risk to Anthropogenic Climate Change. Nat. Hazards Earth Syst. Sci. 2021, 21, 941–960. [Google Scholar] [CrossRef]
- Özcan, Z.; Caglayan, İ.; Kabak, Ö. A Comprehensive Taxonomy for Forest Fire Risk Assessment: Bridging Methodological Gaps and Proposing Future Directions. Environ. Monit. Assess. 2024, 196, 825. [Google Scholar] [CrossRef]
- Daşdemir, İ.; Aydın, F.; Ertuğrul, M. Factors Affecting the Behavior of Large Forest Fires in Turkey. Environ. Manag. 2021, 67, 162–175. [Google Scholar] [CrossRef]
- Parisien, M.-A.; Peters, V.S.; Wang, Y.; Little, J.M.; Bosch, E.M.; Stocks, B.J. Spatial Patterns of Forest Fires in Canada, 1980–1999. Int. J. Wildland Fire 2006, 15, 361. [Google Scholar] [CrossRef]
- Catry, F.X.; Rego, F.C.; Bação, F.L.; Moreira, F. Modeling and Mapping Wildfire Ignition Risk in Portugal. Int. J. Wildland Fire 2009, 18, 921. [Google Scholar] [CrossRef]
- Ma, W.; Feng, Z.; Cheng, Z.; Chen, S.; Wang, F. Identifying Forest Fire Driving Factors and Related Impacts in China Using Random Forest Algorithm. Forests 2020, 11, 507. [Google Scholar] [CrossRef]
- Eskandari, S.; Pourghasemi, H.R.; Tiefenbacher, J.P. Fire-Susceptibility Mapping in the Natural Areas of Iran Using New and Ensemble Data-Mining Models. Environ. Sci. Pollut. Res. 2021, 28, 47395–47406. [Google Scholar] [CrossRef] [PubMed]
- Kantarcioglu, O.; Kocaman, S.; Schindler, K. Artificial Neural Networks for Assessing Forest Fire Susceptibility in Türkiye. Ecol. Inform. 2023, 75, 102034. [Google Scholar] [CrossRef]
- Gao, K.; Feng, Z.; Wang, S. Using Multilayer Perceptron to Predict Forest Fires in Jiangxi Province, Southeast China. Discret. Dyn. Nat. Soc. 2022, 2022, 6930812. [Google Scholar] [CrossRef]
- Gigović, L.; Jakovljević, G.; Sekulović, D.; Regodić, M. GIS Multi-Criteria Analysis for Identifying and Mapping Forest Fire Hazard: Nevesinje, Bosnia and Herzegovina. Teh. Vjesn. 2018, 25, 891–897. [Google Scholar]
- Arca, D.; Hacısalihoğlu, M.; Kutoğlu, Ş.H. Producing Forest Fire Susceptibility Map via Multi-Criteria Decision Analysis and Frequency Ratio Methods. Nat. Hazards 2020, 104, 73–89. [Google Scholar] [CrossRef]
- Nuthammachot, N.; Stratoulias, D. Multi-Criteria Decision Analysis for Forest Fire Risk Assessment by Coupling AHP and GIS: Method and Case Study. Environ. Dev. Sustain. 2021, 23, 17443–17458. [Google Scholar] [CrossRef]
- Uçar, Z.; Güney, C.O.; Akay, A.E.; Bilici, E.; Erkan, N. Mapping the Probability of Forest Fire in the Mediterranean Region of Türkiye Using the GIS-Based Fuzzy-AHP Method. Hum. Ecol. Risk Assess. Int. J. 2025, 31, 234–259. [Google Scholar] [CrossRef]
- Hartung, M.; Carreño-Rocabado, G.; Peña-Claros, M.; Van Der Sande, M.T. Tropical Dry Forest Resilience to Fire Depends on Fire Frequency and Climate. Front. For. Glob. Change 2021, 4, 755104. [Google Scholar] [CrossRef]
- Koontz, M.J.; North, M.P.; Werner, C.M.; Fick, S.E.; Latimer, A.M. Local Forest Structure Variability Increases Resilience to Wildfire in Dry Western U.S. Coniferous Forests. Ecol. Lett. 2020, 23, 483–494. [Google Scholar] [CrossRef]
- Hayes, J.P. Fire Suppression and the Wildfire Paradox in Contemporary China: Policies, Resilience, and Effects in Chinese Fire Regimes. Hum. Ecol. 2021, 49, 19–32. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Huang, H.; Li, R.; Fan, W.; Shan, C. Analysis on characteristics of safety resilient city and enlightenments for safe development of Xiongan New Area. J. Saf. Sci. Technol. 2018, 14, 5–7. [Google Scholar]
- Zampieri, M. Reconciling the Ecological and Engineering Definitions of Resilience. Ecosphere 2021, 12, e03375. [Google Scholar] [CrossRef]
- Troy, A.S.; Willroth, E.C.; Shallcross, A.J.; Giuliani, N.R.; Gross, J.J.; Mauss, I.B. Psychological Resilience: An Affect-Regulation Framework. Annu. Rev. Psychol. 2023, 74, 547–576. [Google Scholar] [CrossRef]
- Woods, D.D. Four Concepts for Resilience and the Implications for the Future of Resilience Engineering. Reliab. Eng. Syst. Saf. 2015, 141, 5–9. [Google Scholar] [CrossRef]
- Ribeiro, P.J.G.; Pena Jardim Gonçalves, L.A. Urban Resilience: A Conceptual Framework. Sustain. Cities Soc. 2019, 50, 101625. [Google Scholar] [CrossRef]
- Sutton, J.; Arcidiacono, A.; Torrisi, G.; Arku, R.N. Regional Economic Resilience: A Scoping Review. Prog. Hum. Geogr. 2023, 47, 500–532. [Google Scholar] [CrossRef]
- Tang, Q.; Liu, S. Evaluation of fire safety resilience of metro station based on improved matter-element extension model with variable weight. J. Saf. Environ. 2018, 14, 5–11. [Google Scholar]
- Min, Q.; Yu, C.; Xing-Fu, X.; Jiang, W. A Framework to Identify Indicators for Evaluating Car Sharing Systems. J. Intell. Fuzzy Syst. 2020, 39, 4703–4721. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, T. Evaluation Model and Indicator System of Informationization Applications and Services in Smart Cities. In Proceedings of the 2014 International Conference on Intelligent Environments, Shanghai, China, 4–30 June 2014; pp. 95–101. [Google Scholar]
- Hammond, D.H.; Strand, E.K.; Morgan, P.; Hudak, A.T.; Newingham, B.A. Environmental Influences on Density and Height Growth of Natural Ponderosa Pine Regeneration Following Wildfires. Fire 2021, 4, 80. [Google Scholar] [CrossRef]
- Parks, S.A.; Holsinger, L.M.; Panunto, M.H.; Jolly, W.M.; Dobrowski, S.Z.; Dillon, G.K. High-Severity Fire: Evaluating Its Key Drivers and Mapping Its Probability across Western US Forests. Environ. Res. Lett. 2018, 13, 044037. [Google Scholar] [CrossRef]
- Zhu, Z.; Deng, X.; Zhao, F.; Li, S.; Wang, L. How Environmental Factors Affect Forest Fire Occurrence in Yunnan Forest Region. Forests 2022, 13, 1392. [Google Scholar] [CrossRef]
- Vorster, A.G.; Stevens-Rumann, C.; Young, N.; Woodward, B.; Choi, C.T.H.; Chambers, M.E.; Cheng, A.S.; Caggiano, M.; Schultz, C.; Thompson, M.; et al. Metrics and Considerations for Evaluating How Forest Treatments Alter Wildfire Behavior and Effects. J. For. 2024, 122, 13–30. [Google Scholar] [CrossRef]
- Littell, J.S.; Peterson, D.L.; Riley, K.L.; Liu, Y.; Luce, C.H. A Review of the Relationships between Drought and Forest Fire in the United States. Glob. Change Biol. 2016, 22, 2353–2369. [Google Scholar] [CrossRef]
- Gao, B.; Shan, Y.; Liu, X.; Yin, S.; Yu, B.; Cui, C.; Cao, L. Prediction and Driving Factors of Forest Fire Occurrence in Jilin Province, China. J. For. Res. 2024, 35, 21. [Google Scholar] [CrossRef]
- Shao, Y.; Fan, G.; Feng, Z.; Sun, L.; Yang, X.; Ma, T.; Li, X.; Fu, H.; Wang, A. Prediction of Forest Fire Occurrence in China under Climate Change Scenarios. J. For. Res. 2023, 34, 1217–1228. [Google Scholar] [CrossRef]
- Li, W.; Xu, Q.; Yi, J.; Liu, J. Predictive Model of Spatial Scale of Forest Fire Driving Factors: A Case Study of Yunnan Province, China. Sci. Rep. 2022, 12, 19029. [Google Scholar] [CrossRef]
- Ga, R.; Liu, X.; Ma, B.; Na, M.; Zhang, J.; Tong, Z.; Wei, X.; Xu, J. The Individual and Combined Effects of Natural–Human Factors on Forest Fire Frequency in Northeast China. Remote Sens. 2025, 17, 1685. [Google Scholar] [CrossRef]
- Xu, H.; Han, R.; Wang, J.; Lan, Y. Temporal–Spatial Characteristics and Influencing Factors of Forest Fires in the Tropic of Cancer (Yunnan Section). Forests 2024, 15, 661. [Google Scholar] [CrossRef]
- Rafaqat, W.; Iqbal, M.; Kanwal, R.; Song, W. Study of Driving Factors Using Machine Learning to Determine the Effect of Topography, Climate, and Fuel on Wildfire in Pakistan. Remote Sens. 2022, 14, 1918. [Google Scholar] [CrossRef]
- Singh, S.S.; Jeganathan, C. Quantifying Forest Resilience Post Forest Fire Disturbances Using Time-Series Satellite Data. Environ. Monit. Assess. 2024, 196, 26. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Xu, S.; Wang, Z. Fuzzy Comprehensive Evaluation of Collapse Risk in Mountain Tunnels Based on Game Theory. Appl. Sci. 2024, 14, 5163. [Google Scholar] [CrossRef]
- Qi, J.; Zhang, Y.; Zhang, J.; Chen, Y.; Wu, C.; Duan, C.; Cheng, Z.; Pan, Z. Research on the Evaluation of Geological Environment Carrying Capacity Based on the AHP-CRITIC Empowerment Method. Land 2022, 11, 1196. [Google Scholar] [CrossRef]
- Yu, S.; Liu, H.; Kang, Q.; Cheng, J.; Gong, Y.; Ke, Y. Research on the Fire Resilience Assessment of Ancient Architectural Complexes Based on the AHP-CRITIC Method. Sustainability 2024, 16, 8022. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, J. Urban Flooding Risk Assessment Based on GIS- Game Theory Combination Weight: A Case Study of Zhengzhou City. Int. J. Disaster Risk Reduct. 2022, 77, 103080. [Google Scholar] [CrossRef]
- Xie, S.; Mao, D.; Chen, S. Research on the comprehensive evaluation of coal blending and mixed burning effects based on AHP-CRITIC game theory combination weighting. China Coal 2024, 50, 200–211. [Google Scholar]
- Liu, H.; Kang, Q.; Zou, Y.; Yu, S.; Ke, Y.; Peng, P. Research on Comprehensive Evaluation Model of Metal Mine Emergency Rescue System Based on Game Theory and Regret Theory. Sustainability 2023, 15, 10879. [Google Scholar] [CrossRef]
- Eskandari, S. A New Approach for Forest Fire Risk Modeling Using Fuzzy AHP and GIS in Hyrcanian Forests of Iran. Arab. J. Geosci. 2017, 10, 190. [Google Scholar] [CrossRef]
Level-1 Indicator (A) | Level-2 Indicators (B) | Level-3 Indicators (C) | Resilience Capability Dimension |
---|---|---|---|
FFR(A) | Vegetation Factor (B1) | Fine fuel load per unit area (C1) | Absorption capability |
Dominant species (group) flammability (C2) | Absorption capability | ||
Vegetation cover (C3) | Resistance capability | ||
Topography Factor (B2) | Slope (C4) | Resistance capability | |
Slope aspect (C5) | Absorption capability | ||
Elevation (C6) | Absorption capability | ||
Climate Factor (B3) | Monthly mean temperature (C7) | Resistance capability | |
Monthly mean wind speed (C8) | Resistance capability | ||
Monthly minimum relative humidity (C9) | Absorption capability | ||
Monthly mean precipitation (C10) | Absorption capability | ||
Infrastructure Factor (B4) | Smart monitoring systems (C11) | Absorption capability | |
Fire suppression equipment (C12) | Recovery capability | ||
Firebreaks (C13) | Resistance capability | ||
Medical facilities (C14) | Recovery capability | ||
Water-supply support facilities (C15) | Recovery capability | ||
ManagementFactor (B5) | Routine fire-prevention inspections (C16) | Absorption capability | |
Firefighting and emergency response capacity (C17) | Recovery capability | ||
Government investment in disaster risk reduction (C18) | Adaptation capability | ||
Fire regulation reform and improvement (C19) | Adaptation capability | ||
Firefighting force development (C20) | Resistance capability | ||
Emergency plan optimization and improvement (C21) | Adaptation capability | ||
Social Factor (B6) | Individual fire safety competence (C22) | Adaptation capability | |
Public education and awareness campaigns (C23) | Adaptation capability | ||
Traditional cultural practices (C24) | Absorption capability | ||
Fire use in livelihood and production activities (C25) | Absorption capability |
Scales | Interpretations |
---|---|
1 | Factor i and j are equally important |
3 | Factor i is slightly more important than j |
5 | Factor i is significantly more important than j |
7 | Factor i is strongly more important than j |
9 | Factor i is extremely more important than j |
2, 4, 6, 8 | Intermediate values of the above scales |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
RI | 0.00 | 0.00 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 |
Level-1 Indicator (A) | Level-2 Indicators (B) | Level-3 Indicators (C) | AHP Subjective Weights | CRITIC Objective Weights | Game-Theoretic Combination Weights |
---|---|---|---|---|---|
FFR(A) | Vegetation Factor (B1) | C1 | 0.1351 | 0.0690 | 0.1067 |
C2 | 0.0409 | 0.0223 | 0.0329 | ||
C3 | 0.0744 | 0.0393 | 0.0593 | ||
Topography Factor (B2) | C4 | 0.0256 | 0.0336 | 0.0290 | |
C5 | 0.0256 | 0.0331 | 0.0288 | ||
C6 | 0.0128 | 0.0174 | 0.0148 | ||
Climate Factor (B3) | C7 | 0.0751 | 0.0282 | 0.0549 | |
C8 | 0.0278 | 0.0102 | 0.0202 | ||
C9 | 0.2045 | 0.0754 | 0.1490 | ||
C10 | 0.0751 | 0.0276 | 0.0547 | ||
Infrastructure Factor (B4) | C11 | 0.0649 | 0.1272 | 0.0917 | |
C12 | 0.0228 | 0.0561 | 0.0371 | ||
C13 | 0.0228 | 0.0115 | 0.0179 | ||
C14 | 0.0094 | 0.0044 | 0.0072 | ||
C15 | 0.0397 | 0.1201 | 0.0743 | ||
ManagementFactor (B5) | C16 | 0.0368 | 0.1123 | 0.0693 | |
C17 | 0.0137 | 0.0066 | 0.0106 | ||
C18 | 0.0137 | 0.0073 | 0.0109 | ||
C19 | 0.0232 | 0.0111 | 0.0180 | ||
C20 | 0.0081 | 0.0037 | 0.0062 | ||
C21 | 0.0052 | 0.0026 | 0.0041 | ||
Social Factor (B6) | C22 | 0.0068 | 0.0698 | 0.0340 | |
C23 | 0.0041 | 0.0019 | 0.0032 | ||
C24 | 0.0119 | 0.0053 | 0.0091 | ||
C25 | 0.0200 | 0.1040 | 0.0561 |
Omitted Domain | Spearman ρ | Kendall τ | Δrank |
---|---|---|---|
B1 | 0.867 | 0.758 | 4 |
B2 | 0.993 | 0.97 | 1 |
B3 | 0.993 | 0.97 | 1 |
B4 | 0.986 | 0.939 | 1 |
B5 | 0.993 | 0.97 | 1 |
B6 | 0.986 | 0.939 | 1 |
Region | Ping guo | You jiang | Jing xi | Tian dong | Tian yang | De bao | Ling yun | Napo | Xilin | Leye | Tian lin | Long lin |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Proposed Method | 65.765 | 62.926 | 62.405 | 58.908 | 58.097 | 57.849 | 56.888 | 56.656 | 56.449 | 53.910 | 52.687 | 49.932 |
Fuzzy AHP Method | 63.254 | 62.182 | 62.056 | 59.325 | 58.978 | 57.035 | 57.529 | 56.814 | 56.241 | 52.312 | 52.712 | 50.259 |
Ranking Change | 0 | 0 | 0 | 0 | 0 | −1 | 1 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Z.; Xiong, J.; Zhuo, M.; Ke, Y.; Kang, Q. Resilience Assessment of Forest Fires Based on a Game-Theoretic Combination Weighting Method. Sustainability 2025, 17, 7907. https://doi.org/10.3390/su17177907
Lv Z, Xiong J, Zhuo M, Ke Y, Kang Q. Resilience Assessment of Forest Fires Based on a Game-Theoretic Combination Weighting Method. Sustainability. 2025; 17(17):7907. https://doi.org/10.3390/su17177907
Chicago/Turabian StyleLv, Zhengtong, Junqiao Xiong, Mingfu Zhuo, Yuxian Ke, and Qian Kang. 2025. "Resilience Assessment of Forest Fires Based on a Game-Theoretic Combination Weighting Method" Sustainability 17, no. 17: 7907. https://doi.org/10.3390/su17177907
APA StyleLv, Z., Xiong, J., Zhuo, M., Ke, Y., & Kang, Q. (2025). Resilience Assessment of Forest Fires Based on a Game-Theoretic Combination Weighting Method. Sustainability, 17(17), 7907. https://doi.org/10.3390/su17177907