The Attribution Identification of Runoff Changes in the Kriya River Based on the Budyko Hypothesis Provides a Basis for the Sustainable Management of Water Resources in the Basin
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. Research Methods
2.3.1. Trend Test and Mutation Test
2.3.2. Runoff Change Attribution Recognition
Sensitivity Analysis
Contribution Analysis of Runoff Changes
3. Results and Analysis
3.1. Characterization of Hydrometeorological Elements
3.2. Sensitivity Analysis of Runoff to Climate and Underlying Surface Changes
3.3. Runoff Change Attribution Identification
4. Discussion
4.1. Physical Response of Runoff to Precipitation and Watershed Characteristic Parameter ω
4.2. Uncertainties and Limitations
4.3. Limitations and Feasibility of Utilizing Annual Runoff Data for Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lei, X.; Gao, L.; Wei, J.; Ma, M.; Xu, L.; Fan, H.; Li, X.; Gao, J.; Dang, H.; Chen, X.; et al. Contributions of Climate Change and Human Activities to Runoff Variations in the Poyang Lake Basin of China. Phys. Chem. Earth Parts A/B/C 2021, 123, 103019. [Google Scholar] [CrossRef]
- Saedi, J.; Sharifi, M.R.; Saremi, A.; Babazadeh, H. Assessing the Impact of Climate Change and Human Activity on Streamflow in a Semiarid Basin Using Precipitation and Baseflow Analysis. Sci. Rep. 2022, 12, 9228. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, H.; Du, W.; Gu, H.; Zhou, F.; Chi, B. Responses of Runoff to Changes in Climate and Human Activities in the Liuhe River Basin, China. J. Arid Land 2024, 16, 1023–1043. [Google Scholar] [CrossRef]
- Senbeta, T.B.; Romanowicz, R.J. The Role of Climate Change and Human Interventions in Affecting Watershed Runoff Responses. Hydrol. Process. 2021, 35, e14448. [Google Scholar] [CrossRef]
- Acworth, I.; Bernardi, T.; Andersen, M.S.; Rau, G.C. Hydrological Complexity and Climate Implications in Australia’s Arid Zone: A Decade of High-Resolution Rainfall Observations. J. Hydrol. Reg. Stud. 2024, 51, 101643. [Google Scholar] [CrossRef]
- Zeng, F.; Ma, M.-G.; Di, D.-R.; Shi, W.-Y. Separating the Impacts of Climate Change and Human Activities on Runoff: A Review of Method and Application. Water 2020, 12, 2201. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Klaar, M.; Chen, A.; Gudmundsson, L.; Holden, J. Anthropogenic Climate Change Has Influenced Global River Flow Seasonality. Science 2024, 383, 1009–1014. [Google Scholar] [CrossRef]
- Pei, W.; Liu, J.; Chen, Y.; Fu, G.; Ma, C.; Liu, Y. Quantifying Impacts of Human Activities and Climate Change on Runoff Variation: A Case Study of Songhua River Basin, China. Chin. Geogr. Sci. 2025. [Google Scholar] [CrossRef]
- Araya, D.; Mendoza, P.A.; Muñoz-Castro, E.; McPhee, J. Towards Robust Seasonal Streamflow Forecasts in Mountainous Catchments: Impact of Calibration Metric Selection in Hydrological Modeling. Hydrol. Earth Syst. Sci. 2023, 27, 4385–4408. [Google Scholar] [CrossRef]
- Heinicke, S.; Volkholz, J.; Schewe, J.; Gosling, S.N.; Müller Schmied, H.; Zimmermann, S.; Mengel, M.; Sauer, I.J.; Burek, P.; Chang, J.; et al. Global Hydrological Models Continue to Overestimate River Discharge. Environ. Res. Lett. 2024, 19, 074005. [Google Scholar] [CrossRef]
- Li, M.; Yang, X.; Di, C.; Wang, K.; Xiang, W.; Bian, D.; Babuna, P. A Novel Framework for Integrative Assessment of Water Balance Health in China. J. Clean. Prod. 2024, 443, 141199. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Zhang, H.; Chang, J.; Yu, Y. Runoff Response to Changing Environment in Loess Plateau, China: Implications of the Influence of Climate, Land Use/Land Cover, and Water Withdrawal Changes. J. Hydrol. 2022, 613, 128458. [Google Scholar] [CrossRef]
- Zazo, S.; Molina, J.-L.; Ruiz-Ortiz, V.; Vélez-Nicolás, M.; García-López, S. Modeling River Runoff Temporal Behavior through a Hybrid Causal–Hydrological (HCH) Method. Water 2020, 12, 3137. [Google Scholar] [CrossRef]
- Sun, Z.; Lotz, T.; Huang, Q. An ET-Based Two-Phase Method for the Calibration and Application of Distributed Hydrological Models. Water Resour. Manag. 2021, 35, 1065–1077. [Google Scholar] [CrossRef]
- Kim, J.H.; Chung, E.-S.; Song, J.Y.; Shahid, S. Quantifying Uncertainty in Hydrological Drought Index Using Calibrated SWAT Model. KSCE J. Civ. Eng. 2024, 28, 2066–2076. [Google Scholar] [CrossRef]
- Melo, P.A.; Alvarenga, L.A.; Tomasella, J.; Santos, A.C.N. Uncertainty Analysis on Long-Term Runoff Projection from the Budyko Framework and a Conceptual Hydrological Model. J. Water Clim. Change 2024, 15, 3850–3866. [Google Scholar] [CrossRef]
- Gan, G.; Liu, Y.; Sun, G. Understanding Interactions among Climate, Water, and Vegetation with the Budyko Framework. Earth-Sci. Rev. 2021, 212, 103451. [Google Scholar] [CrossRef]
- Mo, C.; Huang, K.; Ruan, Y.; Lai, S.; Lei, X. Quantifying Uncertainty Sources in Runoff Change Attribution Based on the Budyko Framework. J. Hydrol. 2024, 630, 130790. [Google Scholar] [CrossRef]
- Wu, C.; Yeh, P.J.-F.; Zhou, J.; Li, J.; Zhong, L.; Wang, S.; Gong, Z.; Shi, M.; Ju, J.; Huang, G. Controlling Factors of Evapotranspiration Predictability Under Diverse Climates with the Effects of Water Storage Change in the Budyko Framework. Water Resour. Res. 2024, 60, e2023WR034499. [Google Scholar] [CrossRef]
- Demeke, G.G.; Huang, J.-C.; Chen, Y.-Y. Runoff Generation Signaled by Deviations from the Budyko Framework. Water Resour. Manage. 2025, 39, 2133–2148. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Xing, K. Assessment of Ecosystem Services and Exploration of Trade-Offs and Synergistic Relationships in Arid Areas: A Case Study of the Kriya River Basin in Xinjiang, China. Sustainability 2024, 16, 2176. [Google Scholar] [CrossRef]
- Yan, W.; Wang, Y.; Ma, X.; Liu, M.; Yan, J.; Tan, Y.; Liu, S. Snow Cover and Climate Change and Their Coupling Effects on Runoff in the Kriya River Basin during 2001–2020. Remote Sens. 2023, 15, 3435. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Li, W.; Deng, H. Runoff Responses to Climate Change in Arid Region of Northwestern China during 1960–2010. Chin. Geogr. Sci. 2013, 23, 286–300. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, F.; Luo, G.; Guo, Y.; Zheng, J.; Wu, S.; Keram, Q.; Liu, S.; Shi, Q. Influence of Natural and Anthropogenic Controls on Runoff in the Kriya River, Central Tarim Basin, China. PLoS ONE 2022, 17, e0269132. [Google Scholar] [CrossRef]
- Wei, X.; Guo, Y.; Zhou, M.; Wang, N.; Wang, H.; Bai, Y. Spatial and Temporal Groundwater Dynamics in Extreme Arid Basins. Hydrol. Process. 2024, 38, e15086. [Google Scholar] [CrossRef]
- McColl, K.A. Practical and Theoretical Benefits of an Alternative to the Penman-monteith Evapotranspiration Equation. Water Resour. Res. 2020, 56, e2020WR027106. [Google Scholar] [CrossRef]
- Tosunoglu, F.; Kisi, O. Trend Analysis of Maximum Hydrologic Drought Variables Using Mann–Kendall and Şen’s Innovative Trend Method. River Res. Appl. 2017, 33, 597–610. [Google Scholar] [CrossRef]
- Nawaz, F.; Wang, T.; Hussain, A. Spatiotemporal Runoff Analysis and Associated Influencing Factors in Chitral Basin, Pakistan. Water 2023, 15, 2175. [Google Scholar] [CrossRef]
- Xu, R.; Gu, C.; Qiu, D.; Wu, C.; Mu, X.; Gao, P. Analysis of Runoff Changes in the Wei River Basin, China: Confronting Climate Change and Human Activities. Water 2023, 15, 2081. [Google Scholar] [CrossRef]
- Zhou, J.; Deitch, M.J.; Grunwald, S.; Screaton, E. Do the Mann-Kendall Test and Theil-Sen Slope Fail to Inform Trend Significance and Magnitude in Hydrology? Hydrol. Sci. J. 2023, 68, 1241–1249. [Google Scholar] [CrossRef]
- Şen, Z.; Şişman, E. Risk Attachment Sen’s Slope Calculation in Hydrometeorological Trend Analysis. Nat. Hazard. 2024, 120, 3239–3252. [Google Scholar] [CrossRef]
- Xie, L.; Moustakides, G.V.; Xie, Y. Window-Limited CUSUM for Sequential Change Detection. IEEE Trans. Inform. Theory 2023, 69, 5990–6005. [Google Scholar] [CrossRef]
- Rau, P.; Bourrel, L.; Labat, D.; Frappart, F.; Ruelland, D.; Lavado, W.; Dewitte, B.; Felipe, O. Hydroclimatic Change Disparity of Peruvian Pacific Drainage Catchments. Theor. Appl. Climatol. 2018, 134, 139–153. [Google Scholar] [CrossRef]
- Saha, A.; Joseph, J.; Ghosh, S. Climate Controls on the Terrestrial Water Balance: Influence of Aridity on the Basin Characteristics Parameter in the Budyko Framework. Sci. Total Environ. 2020, 739, 139863. [Google Scholar] [CrossRef]
- He, S.; Chen, K.; Liu, Z.; Deng, L. Exploring the Impacts of Climate Change and Human Activities on Future Runoff Variations at the Seasonal Scale. J. Hydrol. 2023, 619, 129382. [Google Scholar] [CrossRef]
- Hu, Y.; He, Y. Attribution Analysis of Runoff Variation in the Yue River Watershed of the Qinling Mountains. Adv. Meteorol. 2021, 2021, 1238546. [Google Scholar] [CrossRef]
- Ni, M.X.; Duan, Z.; Xia, J. Melting of mountain glacier and its risk to future water resources in Southern Xinjiang, China. Mt. Res. 2022, 40, 329–342. (In Chinese) [Google Scholar]
- Zhang, D.; Cong, Z.; Ni, G.; Yang, D.; Hu, S. Effects of Snow Ratio on Annual Runoff within the Budyko Framework. Hydrol. Earth Syst. Sci. 2015, 19, 1977–1992. [Google Scholar] [CrossRef]
- Anderson, E.A. Development and Testing of Snow Pack Energy Balance Equations. Water Resour. Res. 1968, 4, 19–37. [Google Scholar] [CrossRef]
- Sang, L.; Zhu, G.; Qiu, D.; Zhang, Z.; Liu, Y.; Zhao, K.; Wang, L.; Sun, Z. Spatial Variability of Runoff Recharge Sources and Influence Mechanisms in an Arid Mountain Flow-producing Zone. Hydrol. Process. 2022, 36, e14642. [Google Scholar] [CrossRef]
- Bantcev, D.; Ganyushkin, D.; Terekhov, A.; Ekaykin, A.; Tokarev, I.; Chistyakov, K. Isotopic Composition of Glacier Ice and Meltwater in the Arid Parts of the Altai Mountains (Central Asia). Water 2022, 14, 252. [Google Scholar] [CrossRef]
- Sposito, G. Understanding the Budyko Equation. Water 2017, 9, 236. [Google Scholar] [CrossRef]
- Ji, G.; Yue, S.; Zhang, J.; Huang, J.; Guo, Y.; Chen, W. Assessing the Impact of Vegetation Variation, Climate and Human Factors on the Streamflow Variation of Yarlung Zangbo River with the Corrected Budyko Equation. Forests 2023, 14, 1312. [Google Scholar] [CrossRef]
- Xing, W.; Wang, W.; Shao, Q.; Yong, B.; Liu, C.; Feng, X.; Dong, Q. Estimating Monthly Evapotranspiration by Assimilating Remotely Sensed Water Storage Data into the Extended Budyko Framework across Different Climatic Regions. J. Hydrol. 2018, 567, 684–695. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Scanlon, B.R.; Zhang, L.; Pan, M. Local and Global Factors Controlling Water-energy Balances within the Budyko Framework. Geophys. Res. Lett. 2013, 40, 6123–6129. [Google Scholar] [CrossRef]
- Williams, C.A.; Reichstein, M.; Buchmann, N.; Baldocchi, D.; Beer, C.; Schwalm, C.; Wohlfahrt, G.; Hasler, N.; Bernhofer, C.; Foken, T.; et al. Climate and Vegetation Controls on the Surface Water Balance: Synthesis of Evapotranspiration Measured across a Global Network of Flux Towers. Water Resour. Res. 2012, 48, 2011WR011586. [Google Scholar] [CrossRef]
- Yang, D.; Shao, W.; Yeh, P.J.-F.; Yang, H.; Kanae, S.; Oki, T. Impact of Vegetation Coverage on Regional Water Balance in the Nonhumid Regions of China. Water Resour. Res. 2009, 45, 2008WR006948. [Google Scholar] [CrossRef]
- Xu, J.; Liu, S.; Zhang, S.; Shangguan, D. Glaciers fluctuations in the Karamilan-Kriya River Watershed in the past 30 years. J. Glaciol. Geocryol. 2006, 28, 312–318. (In Chinese) [Google Scholar]
- Suzuki, K.; Liston, G.E.; Matsuo, K. Estimation of Continental-Basin-Scale Sublimation in the Lena River Basin, Siberia. Adv. Meteorol. 2015, 2015, 286206. [Google Scholar] [CrossRef]
- Strasser, U.; Bernhardt, M.; Weber, M.; Liston, G.E.; Mauser, W. Is Snow Sublimation Important in the Alpine Water Balance? Cryosphere 2008, 2, 53–66. [Google Scholar] [CrossRef]
- Wolf, M.A.; Jamison, L.R.; Solomon, D.K.; Strong, C.; Brooks, P.D. Multi-year Controls on Groundwater Storage in Seasonally Snow-covered Headwater Catchments. Water Resour. Res. 2023, 59, e2022WR033394. [Google Scholar] [CrossRef]
- Hamlington, B.D.; Reager, J.T.; Chandanpurkar, H.; Kim, K.-Y. Amplitude Modulation of Seasonal Variability in Terrestrial Water Storage. Geophys. Res. Lett. 2019, 46, 4404–4412. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Larsen, J.R.; Van Emmerik, T.H.M.; Woods, R.A. A Global Assessment of Runoff Sensitivity to Changes in Precipitation, Potential Evaporation, and Other Factors. Water Resour. Res. 2017, 53, 8475–8486. [Google Scholar] [CrossRef]
- Bharat, S.; Mishra, V. Runoff Sensitivity of Indian Sub-Continental River Basins. Sci. Total Environ. 2021, 766, 142642. [Google Scholar] [CrossRef]
- Liu, D.; Mishra, A.K.; Zhang, K. Runoff Sensitivity over Asia: Role of Climate Variables and Initial Soil Conditions. JGR Atmos. 2017, 122, 2218–2238. [Google Scholar] [CrossRef]
Basin | Station | Catchment Area/km2 | Runoff Depth/mm | Annual Precipitation/mm | Annual Potential Evapotranspiration/mm | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean Value | Extreme Ratio | MK Test | Sen’s Slope | MK Test | Sen’s Slope | MK Test | Sen’s Slope | |||
Kriya river | Langan | 7358 | 102.61 | 2.33 | 2.9558 *** | 0.47358 | 0.26158 | 0.04167 | −3.5771 | −0.00719 |
Basin | Period | P/mm | R/mm | ET0/mm | ω | R/P | ET0/P | ε Elastic Coefficient | ||
---|---|---|---|---|---|---|---|---|---|---|
εP | εET0 | εω | ||||||||
Kriya river | 1957–1999 | 48.23 | 94.46 | 1240.47 | 0.34 | 1.96 | 25.72 | 4.11 | −0.65 | −4.32 |
2000–2015 | 57.95 | 124.49 | 1204.93 | 0.32 | 2.15 | 20.79 | 4.06 | −0.56 | −3.73 |
Basin | Base Period | Change Period | dRP/mm | dRET0/mm | dRω/mm | dR/mm | dR′/mm | CP/% | CET0/% | Cω/% |
---|---|---|---|---|---|---|---|---|---|---|
Kriya river | 1957–1999 | 2000–2015 | 11.59 | 0.26 | 3.55 | 15.40 | 2.82 | 75.23 | 1.69 | 23.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Xing, K. The Attribution Identification of Runoff Changes in the Kriya River Based on the Budyko Hypothesis Provides a Basis for the Sustainable Management of Water Resources in the Basin. Sustainability 2025, 17, 7882. https://doi.org/10.3390/su17177882
Liu S, Xing K. The Attribution Identification of Runoff Changes in the Kriya River Based on the Budyko Hypothesis Provides a Basis for the Sustainable Management of Water Resources in the Basin. Sustainability. 2025; 17(17):7882. https://doi.org/10.3390/su17177882
Chicago/Turabian StyleLiu, Sihai, and Kun Xing. 2025. "The Attribution Identification of Runoff Changes in the Kriya River Based on the Budyko Hypothesis Provides a Basis for the Sustainable Management of Water Resources in the Basin" Sustainability 17, no. 17: 7882. https://doi.org/10.3390/su17177882
APA StyleLiu, S., & Xing, K. (2025). The Attribution Identification of Runoff Changes in the Kriya River Based on the Budyko Hypothesis Provides a Basis for the Sustainable Management of Water Resources in the Basin. Sustainability, 17(17), 7882. https://doi.org/10.3390/su17177882