Comparison of the Properties of Compostable and Conventional LDPE Films
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- The reduction in LDPE packaging in the environment is a possibility.
- The W-Nature CP 101 compostable film is not appropriate for the manufacture of food packaging.
- The use of INZEA F38 (by NUREL) with a bacteriostatic additive in the production of compostable film packaging will result in easier opening compared to traditional LDPE film.
- Compostable film manufactured from INZEA F38 (by NUREL) is deemed suitable for the production of packaging intended for all types of food.
- Despite the possibility of producing packaging from thinner, compostable film while maintaining the same tensile properties as LDPE film, the production costs of such packaging remain higher than those of conventional packaging.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andrady, A.L.; Neal, M.A. Applications and Societal Benefits of Plastics. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1977–1984. [Google Scholar] [CrossRef]
- Koch, H.M.; Calafat, A.M. Human Body Burdens of Chemicals Used in Plastic Manufacture. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2063–2078. [Google Scholar] [CrossRef] [PubMed]
- Oehlmann, J.; Schulte-Oehlmann, U.; Kloas, W.; Jagnytsch, O.; Lutz, I.; Kusk, K.O.; Wollenberger, L.; Santos, E.M.; Paull, G.C.; Van Look, K.J.W.; et al. A Critical Analysis of the Biological Impacts of Plasticizers on Wildlife. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2047–2062. [Google Scholar] [CrossRef] [PubMed]
- Żakowska, H. Opakowanie a Środowisko, Wymagania, Standardy, Projektowanie, Znakowanie; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2017. [Google Scholar]
- Marsh, K.; Bugusu, B. Food packaging—Roles, materials, and environmental issues. J. Food Sci. 2007, 72, R39–R55. [Google Scholar] [CrossRef] [PubMed]
- ASTM F1249-20; Standard Test Method for Water Vapor Transmission Rate Through Plastic Film and Sheeting Using a Modulated Infrared Sensor. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM F1927-20; Standard Test Method for Determination of Oxygen Gas Transmission Rate, Permeability, and Permeance at Controlled Relative Humidity Through Barrier Materials Using a Coulometric Detector. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM F2476-20; Standard Test Method for the Determination of Carbon Dioxide Gas Transmission Rate (CO2TR) Through Barrier Materials Using an Infrared Detector. ASTM International: West Conshohocken, PA, USA, 2020.
- DIN 10955:2004; Sensory Analysis—Testing of Packaging Materials and Packages for Food Products. Deutsches Institut für Normung e.V.: Berlin, Germany, 2004.
- PN-EN 1186-3:2005; Materials and Articles in Contact with Foodstuffs—Plastics—Part 3: Test Methods for Overall Migration into Aqueous Food Simulants by Total Immersion. Polish Committee for Standardization: Warsaw, Poland, 2005. Available online: https://standards.globalspec.com/std/14561480/en-1186-3 (accessed on 21 July 2023).
- PN-EN 1186-14:2005; Materials and Articles in Contact with Foodstuffs—Plastics—Part 14: Test Methods for Overall Migration from Plastics Intended to Come into Contact with Fatty Foods Using Substitute Tests with Iso-Octane and 95% Ethanol as Food Simulants. Polish Committee for Standardization: Warsaw, Poland, 2005. Available online: https://standards.iteh.ai/catalog/standards/cen/f2589591-a9c0-429a-80f0-8bf7fd2a02fb/pren-1186-14 (accessed on 21 July 2023).
- Commission Regulation (EU) No 10/2011 of 14 January 2011 on Plastic Materials and Articles Intended to Come into Contact with Food; Official Journal of the European Union L 12; European Union: Maastricht, The Netherlands, 2011; pp. 1–89.
- Commission Regulation (EU) 2016/1416 of 24 August 2016 Amending REGULATION (EU) No 10/2011 as Regards Certain Restrictions on the Use of Bisphenol A; Official Journal of the European Union L 230; European Union: Maastricht, The Netherlands, 2016; pp. 1–3.
- Commission Regulation (EU) 2017/752 of 28 April 2017 Amending Regulation (EU) No 10/2011 as Regards Testing Conditions for Migration from Plastic Materials; Official Journal of the European Union L 113; European Union: Maastricht, The Netherlands, 2017; pp. 1–5.
- Commission Regulation (EU) 2019/37 of 10 January 2019 Amending Regulation (EU) No 10/2011 Regarding Testing Conditions for Migration; Official Journal of the European Union L 9; European Union: Maastricht, The Netherlands, 2019; pp. 1–3.
- Commission Regulation (EU) 2020/1245 of 2 September 2020 Amending Regulation (EU) No 10/2011 as Regards Migration Testing Conditions; Official Journal of the European Union L 288; European Union: Maastricht, The Netherlands, 2020; pp. 1–4.
- Sikora, J.; Majewski, Ł.; Puszka, A. Modern Biodegradable Plastics—Processing and Properties: Part I. Materials 2020, 13, 1986. [Google Scholar] [CrossRef]
- Fabijański, M.; Gołofit, T. Influence of Processing Parameters on Mechanical Properties and Degree of Crystallization of Polylactide. Materials 2024, 17, 3584. [Google Scholar] [CrossRef]
- Lang, H.; Chen, X.; Tian, J.; Chen, J.; Zhou, M.; Lu, F.; Qian, S. Effect of Microcrystalline Cellulose on the Properties of PBAT/Thermoplastic Starch Biodegradable Film with Chain Extender. Polymers 2022, 14, 4517. [Google Scholar] [CrossRef]
- Titone, V.; Correnti, A.; La Mantia, F.P. Effect of Moisture Content on the Processing and Mechanical Properties of a Biodegradable Polyester. Polymers 2021, 13, 1616. [Google Scholar] [CrossRef]
- Yousif, E.; Haddad, R. Photodegradation and Photostabilization of Polymers, Especially Polystyrene: Review. SpringerPlus 2013, 2, 398. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Andrady, A.L.; Heikkilä, A.M.; Pandey, K.K.; Bruckman, L.S.; White, C.C.; Zhu, M.; Zhu, L. Effects of UV Radiation on Natural and Synthetic Materials. Photochem. Photobiol. Sci. 2023, 22, 1177–1202. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- North, M.J.; Jenkins, J.M. The mechanisms of the secondary crystallisation process in polymers: A narrative review. Polymer 2025, 321, 128122. [Google Scholar] [CrossRef]
- Sritham, E.; Phunsombat, P.; Chaishome, J. Tensile properties of PLA/PBAT blends and PLA fibre-reinforced PBAT composite. MATEC Web Conf. 2018, 192, 03014. [Google Scholar] [CrossRef]
- Tang, D.; Zhang, C.; Weng, Y. Effect of multi-functional epoxy chain extender on the weathering resistance performance of Poly(butylene adipate-co-terephthalate) (PBAT). Polym. Test. 2021, 99, 107204. [Google Scholar] [CrossRef]
- Rejak, A. Badania właściwości fizycznych skrobiowych folii biodegradowalnych. Acta Agrophysica 2007, 9, 747–754. [Google Scholar]
- Avérous, L.; Halley, P.J. Biocomposites based on plasticized starch. Biofuels Bioprod. Biorefining 2009, 3, 329–343. [Google Scholar] [CrossRef]
- Siracusa, V. Food packaging permeability behaviour: A report. Int. J. Polym. Sci. 2012, 1, 302029. [Google Scholar] [CrossRef]
- Russo, G.M.; Simon, G.P.; Incarnato, L. Correlation between rheological, mechanical, and barrier properties in new copolyamide-based nanocomposite films. Macromolecules 2006, 39, 3855–3864. [Google Scholar] [CrossRef]
- Sikora, J.W.; Majewski, Ł.; Puszka, A. Modern Biodegradable Plastics-Processing and Properties Part II. Materials 2021, 14, 2523. [Google Scholar] [CrossRef]
- Roy, S.; Ghosh, T.; Zhang, W.; Rhim, J.-W. Recent Progress in PBAT-Based Films and Food Packaging Applications: A Mini-Review. Food Chem. 2024, 437, 137822. [Google Scholar] [CrossRef]
- Pająk, P.; Rożnowski, J. Skrobia ziemniaczana i inne biopolimery jako alternatywa dla tworzyw sztucznych—Przepisy prawne, możliwości i wyzwania dla branży opakowaniowej. Żywność 2024, 31, 23–46. [Google Scholar]
- Siracusa, V.; Rocculi, P.; Romani, S.; Rosa, M.D. Biodegradable polymers for food packaging: A review. Trends Food Sci. Technol. 2008, 19, 634–643. [Google Scholar] [CrossRef]
- Chiellini, E.; Corti, A.; Swift, G. Biodegradation of thermally-oxidized, fragmented low-density polyethylenes. Polym. Degrad. Stab. 2003, 81, 341–351. [Google Scholar] [CrossRef]
- Ohtake, Y.; Kobayashi, T.; Asabe, H.; Murakami, N. Studies on Biodegradation of LDPE—Observation of LDPE Films Scattered in Agricultural Fields or in Garden Soil. Polym. Degrad. Stab. 1998, 60, 79–84. [Google Scholar] [CrossRef]
- Nowak, W.; Podsiadło, H. Wpływ promieniowania na wybrane właściwości folii biodegradowalnych. Acta Poligraphica 2018, 12, 65–69. [Google Scholar]
- Bonilla, J.; Atarés, L.; Vargas, M.; Chiralt, A. Effect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocoll. 2013, 30, 203–212. [Google Scholar] [CrossRef]
- Krishnaswamy, R.K.; Sukhadia, A.M. Orientation Characteristics of LLDPE Blown Films and Their Implications on Elmendorf Tear Performance. Polymer 2000, 41, 9205–9217. [Google Scholar] [CrossRef]
- Shirin, S.; Khorshidi, N. Investigate the Effect of Short Chain Branching and Lamellar Thickness on Mechanical and Optical Properties of Linear Low-Density Polyethylene by Successive Self-Nucleation/Annealing (SSA) Technique. Int. J. Polym. Anal. Charact. 2003, 28, 307–324. [Google Scholar]
- Kissin, Y.V. Elmendorf Tear Test of Polyethylene Films: Mechanical Interpretation and Model. Macromol. Mater. Eng. 2011, 296, 729–743. [Google Scholar] [CrossRef]
Sample Identification | Reference Substance | Contact Conditions | Result | ||
---|---|---|---|---|---|
Test Time | Temperature | Flavour | Odour | ||
PE Bralen+ FA 03–01 | Water | 10 days | 40 °C ± 1 °C | 1 | 0 |
W-Natural CP 101 | 0.5 | 1 | |||
PBAT | 1 | 0 |
Sample Identification | Model Fluids | Contact Conditions | Migration Level (mg/dm2) [Intermediate Results] | |
---|---|---|---|---|
Test Time | Temperature | |||
PE Bralen+ FA 03–01 | 10% Ethanol | 10 days | 40 °C ± 1 °C | 1.4 ± 0.2 (1) [1.4; 1.4; 1.5] |
3% Acetic acid | 1.2 ± 0.1 (1) [1.1; 1.2; 1.2] | |||
Isooctane | 2 days | 20 °C ± 1 °C | 1.7 ± 0.2 (1) [1.6; 1.6; 1.8] | |
W-Natural CP 101 | 10% Ethanol | 10 days | 40 °C ± 1 °C | 11.4 ± 1.4 (1) [11.2; 11.3; 11.6] |
3% Acetic acid | 223.1 ± 26.8 (1) [211.3; 223.9; 234.0] | |||
95% Ethanol | 68.2 ± 8.2 (1) [67.7; 68.2; 68.6] | |||
Isooctane | 2 days | 20 °C ± 1 °C | 7.8 ± 0.9 (1) | |
PBAT | 10% Ethanol | 10 days | 40 °C ± 1 °C | <0.5 (2) |
3% Acetic acid | <0.5 (2) | |||
95% Ethanol | 5.5 ± 0.7 (1) | |||
Isooctane | 2 days | 20 °C ± 1 °C | <0.5 (2) |
Test Name | Unit | Mean Values ± Uncertainty (1) | ||
---|---|---|---|---|
LDPE | W-Nature CP 101 | PBAT | ||
Oxygen permeability rating | cm3/(m2·24 h) | 2174.1 (2) 3492.1 (2) | 340.8 ± 61.3 | 150.29 ± 22.54 |
Carbon dioxide permeability rating | 8103.3 (2) 12,834.5 (2) | 3458.0 ± 518.7 | 807.9 ± 121.2 | |
Water vapour permeability rating | g/(m2·24 h) | 2.36 (2) 3.63 (2) | 228.6 ± 34.3 | 61.07 ± 9.16 |
Tested Property | Test Method | Exposure Time | LDPE | NUREL + D | ||
---|---|---|---|---|---|---|
Result | Deviation | Result | Standard Deviation | |||
Elmendorf tear strength: lengthwise, N crosswise, N | PN-EN ISO 6383-2:2005 | prior to the ageing | 4.03 7.90 | 0.35 0.09 | 2.70 1.58 | 0.14 0.06 |
after 24 h | 3.21 7.84 | 0.31 0.21 | 2.22 2.33 | 0.11 0.25 | ||
after 7 days | 3.35 7.42 | 0.36 0.33 | 0.26 1.85 | 0.03 0.16 | ||
after 14 days | 2.04 5.69 | 0.27 0.31 | 0.25 1.37 | 0.08 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krupińska, K.; Korzeniowska, M. Comparison of the Properties of Compostable and Conventional LDPE Films. Sustainability 2025, 17, 7867. https://doi.org/10.3390/su17177867
Krupińska K, Korzeniowska M. Comparison of the Properties of Compostable and Conventional LDPE Films. Sustainability. 2025; 17(17):7867. https://doi.org/10.3390/su17177867
Chicago/Turabian StyleKrupińska, Katarzyna, and Małgorzata Korzeniowska. 2025. "Comparison of the Properties of Compostable and Conventional LDPE Films" Sustainability 17, no. 17: 7867. https://doi.org/10.3390/su17177867
APA StyleKrupińska, K., & Korzeniowska, M. (2025). Comparison of the Properties of Compostable and Conventional LDPE Films. Sustainability, 17(17), 7867. https://doi.org/10.3390/su17177867