Techno-Economic and Life Cycle Assessments of Aqueous Phase Reforming for the Energetic Valorization of Winery Wastewaters
Abstract
1. Introduction
2. Materials and Methods
- -
- Scenario 1 (S1): The produced gas phase is entirely valorized through cogeneration, supplying both the thermal and electrical demands of the plant. The surplus electricity is sold.
- -
- Scenario 2 (S2): Hydrogen is first separated and purified via pressure swing adsorption (PSA) for external sale, while the remaining combustible gases are used in cogeneration to meet the plant’s energy needs. Any excess electricity is also sold.
2.1. Wastewater Characterization
2.2. Bench-Scale APR Tests
2.3. Process Simulation
2.4. Energy Sustainability Analysis (ESA)
- -
- Available energy, Eavailable, MJ: This refers to the energy content of the material inputs to the process. In this study, ethanol is the main available source of energy, and its lower heating value (LHV) is used to quantify the input energy. Although not directly used in the ESA calculation, Eavailable is reported to establish a consistent reference point across both scenarios.
- -
- Produced energy, Eproduced, MJ: This represents the total energy output generated by the system. For S1, it is calculated as the sum of the thermal and electrical energy produced. For S2, it includes the same contributions, along with the intrinsic chemical energy (i.e., LHV) of the recovered hydrogen.
- -
- Direct energy, Edirect, MJ: This includes the energy directly required to operate the plant, such as the thermal energy needed by the APR reactor and heat exchangers, as well as the electrical duties required by pumps and compressors.
- -
- Indirect energy, Eindirect, MJ: This accounts for all additional energy contributions associated with each component considered in the analysis, including catalyst synthesis, equipment manufacturing, and waste treatments.
2.5. Techno-Economic Analysis (TEA)
Category | Parameter | Value | Unit | Reference |
---|---|---|---|---|
Raw materials | Fresh Pt | 30.70 | USD/g | [58] |
Fresh activated carbon | 2.75 | USD/kg | [59] | |
Solids transport | 0.02 * | USD/kg | [60] | |
COD treatment > 500 ppm | 1.05 | USD/kg | [53] | |
COD treatment < 500 ppm | 0.53 | USD/m3 | [56] | |
Fixed operation costs | Labor | 24 588.0 | USD/year/shift position | [61] |
Supervision | 25.0 | % labor | [50] | |
Maintenance | 4.0 | % ISBL | [50] | |
Insurance | 1.5 | % ISBL + OSBL | [50] | |
Overhead charges | 50.0 | % labor + supervision | [50] | |
Land rent | 1.5 | % ISBL + OSBL | [50] | |
Economic parameters in ACC | ISBL | - | - | [50,62] |
OSBL | 40.0 | % ISBL | [50] | |
Engineering cost | 25.0 | % ISBL + OSBL | [50] | |
Contingency | 10.0 | % ISBL + OSBL | [50] | |
CRF | 6.5 | % | [50] | |
Plant life | 20.0 | years | assumed | |
Nominal interest rate | 3.4 | % | [63] | |
Inflation | 0.7 | % | [57] | |
Real interest rate | 2.6 | % | calculated |
2.6. Life Cycle Assessment (LCA)
3. Results and Discussion
3.1. Process Simulations for Material and Energy Balances
3.1.1. Upstream Configuration
3.1.2. The APR Reactor
3.1.3. Downstream Scenario 1—Electricity Production
3.1.4. Downstream Scenario 2—Hydrogen Production
3.2. Energy Sustainability Assessment (ESA) Results
3.3. Techno-Economic Assessment (TEA) Results
Minimum Selling Prices
3.4. Sensitivity Analysis
3.4.1. Ethanol Conversion Effect
3.4.2. Configuration Effect
3.4.3. Economic Benefits from Avoided Wastewater Treatment Costs
3.4.4. Minimum Selling Prices Variability
3.5. Life Cycle Assessment (LCA) Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UNFCCC. The Paris Agreement. United Nations Framework Convention on Climate Change. 2015. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement (accessed on 26 May 2025).
- The European Green Deal. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52019DC0640 (accessed on 3 June 2025).
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Jones, E.R.; van Vliet, M.T.H.; Qadir, M.; Marc, F.P. Bierkens. Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth Syst. Sci. Data 2021, 13, 237–254. [Google Scholar] [CrossRef]
- Pratap, B.; Kumar, S.; Nand, S.; Azad, I.; Bharagava, R.N.; Ferreira, L.F.R.; Dutta, V. Wastewater generation and treatment by various eco-friendly technologies: Possible health hazards and further reuse for environmental safety. Chemosphere 2023, 313, 137547. [Google Scholar] [CrossRef] [PubMed]
- Pratap, B.; Kumar, S.; Nand, S.; Azad, I.; Bharagava, R.N.; Ferreira, L.F.R.; Dutta, V. Toward Enhancing Wastewater Treatment with Resource Recovery in Integrated Assessment and Computable General Equilibrium Models. Environ. Sci. Technol. Lett. 2024, 11, 654–663. [Google Scholar] [CrossRef]
- Tong, Y.; Liao, X.; He, Y.; Cui, X.; Wishart, M.; Zhao, F.; Liao, Y.; Zhao, Y.; Lv, X.; Xie, J.; et al. Mitigating Greenhouse Gas Emissions from Municipal Wastewater Treatment in China. Environ. Sci. Ecotechnol. 2023, 20, 100341. [Google Scholar] [CrossRef] [PubMed]
- Zoppi, G.; Pipitone, G.; Pirone, R.; Bensaid, S. Aqueous phase reforming process for the valorization of wastewater streams: Application to different industrial scenarios. Catal. Today 2022, 387, 224–236. [Google Scholar] [CrossRef]
- Xu, C.; Paone, E.; Rodríguez-Padrón, D.; Luque, R.; Mauriello, F. Reductive catalytic routes towards sustainable production of hydrogen, fuels and chemicals from biomass derived polyols. Renew. Sustain. Energy Rev. 2020, 127, 109852. [Google Scholar] [CrossRef]
- González-Arias, J.; Zhang, Z.; Reina, T.R.; Odriozola, J.A. Hydrogen production by catalytic aqueous-phase reforming of waste biomass: A review. Environ. Chem. Lett. 2023, 21, 3089–3104. [Google Scholar] [CrossRef]
- Cortright, R.D.; Davda, R.R.; Dumesic, J.A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 2002, 418, 964–967. [Google Scholar] [CrossRef]
- Huber, G.W.; Dumesic, J.A. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catal. Today 2006, 111, 119–132. [Google Scholar] [CrossRef]
- Davda, R.R.; Shabaker, J.W.; Huber, G.W.; Cortright, R.D.; Dumesic, J.A. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reform-ing of oxygenated hydrocarbons over supported metal catalysts. Appl. Catal. B Environ. 2005, 56, 171–186. [Google Scholar] [CrossRef]
- Rosha, P.; Ali, F.M.; Ibrahim, H. Recent advances in hydrogen production through catalytic steam reforming of ethanol: Advances in catalytic de-sign. Can. J. Chem. Eng. 2023, 101, 5498–5518. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, R.; Dutta, S. Review and Outlook of Hydrogen Production through Catalytic Processes. Energy Fuels 2024, 38, 2601–2629. [Google Scholar] [CrossRef]
- Pipitone, G.; Zoppi, G.; Ansaloni, S.; Bocchini, S.; Deorsola, F.A.; Pirone, R.; Bensaid, S. Towards the sustainable hydrogen production by catalytic conversion of C-laden biorefinery aqueous streams. Chem. Eng. J. 2019, 377, 120677. [Google Scholar] [CrossRef]
- Nozawa, T.; Yoshida, A.; Hikichi, S.; Naito, S. Effects of Re addition upon aqueous phase reforming of ethanol over TiO2 supported Rh and Ir catalysts. Int. J. Hydrogen Energy 2015, 40, 4129–4140. [Google Scholar] [CrossRef]
- Nozawa, T.; Mizukoshi, Y.; Yoshida, A.; Naito, S. Aqueous phase reforming of ethanol and acetic acid over TiO2 supported Ru catalysts. Appl. Catal. B Environ. 2014, 146, 221–226. [Google Scholar] [CrossRef]
- Waheed, A.; Wang, X.; Maeda, N.; Naito, S.; Baiker, A. Surface processes occurring during aqueous phase ethanol reforming on Ru/TiO2 tracked by ATR-IR spectroscopy. Appl. Catal. A Gen. 2019, 581, 111–115. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Cordero-Lanzac, T.; Baeza, J.A.; Calvo, L.; Heras, F.; Rodriguez, J.J.; Gilarranz, M.A. Continuous aqueous phase reforming of a synthetic brewery wastewater with Pt/C and PtRe/C catalysts for biohy-drogen production. Chemosphere 2021, 281, 130885. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Baeza, J.A.; Calvo, L.; Alonso-Morales, N.; Heras, F.; Rodriguez, J.J.; Gilarranz, M.A. Production of hydrogen from brewery wastewater by aqueous phase reforming with Pt/C catalysts. Appl. Catal. B Environ. 2019, 245, 367–375. [Google Scholar] [CrossRef]
- Li, M.; Ji, W.; Huang, C.; Si, X.; Liu, Q.; Lu, R.; Lu, T. A Review on Green Hydrogen Production by Aqueous Phase Reforming of Lignocellulose and Derivatives. Catalysts 2025, 15, 280. [Google Scholar] [CrossRef]
- Messori, A.; Martelli, G.; Piazzi, A.; Basile, F.; De Maron, J.; Fasolini, A.; Mazzoni, R. Molecular Ruthenium Cyclopentadienone Bifunctional Catalysts for the Conversion of Sugar Platforms to Hydro-gen. ChemPlusChem 2023, 88, e202300357. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.S.; Baeza, J.A.; Calvo, L.; Gilarranz, M.A. Aqueous phase reforming of starch wastewater over Pt and Pt-based bimetallic catalysts for green hydrogen pro-duction. Chem. Eng. J. 2023, 460, 141770. [Google Scholar] [CrossRef]
- Pipitone, G.; Pirone, R.; Bensaid, S. Aqueous Phase Reforming of Dairy Wastewater for Hydrogen Production: An Experimental and Energetic Assessment. Sustainability 2024, 16, 1743. [Google Scholar] [CrossRef]
- Seluy, L.G.; Isla, M.A. A Process To Treat High-Strength Brewery Wastewater via Ethanol Recovery and Vinasse Fermentation. Ind. Eng. Chem. Res. 2014, 53, 17043–17050. [Google Scholar] [CrossRef]
- Jorge, N.; Teixeira, A.R.; Gomes, A.; Peres, J.A.; Lucas, M.S. Winery Wastewater: Challenges and Perspectives. In Proceedings of the 4th International Electronic Conference on Applied Sciences, Online, 27 October–10 November 2023; MDPI: Basel, Switzerland, 2023; p. 267. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine. 2024 World Wine Production Outlook—OIV First Estimates, Dijon, France, 29 November 2024. Available online: https://www.oiv.int/sites/default/files/2024-11/OIV_2024_World_Wine_Production_Outlook.pdf (accessed on 9 August 2025).
- Miklas, V.; Touš, M.; Miklasová, M.; Máša, V.; Horňák, D. Winery Wastewater Treatment Technologies: Current Trends and Future Perspective. Chem. Eng. Trans. 2022, 94, 847–852. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Paredes, C.; Moral, R.; Moreno-Caselles, J.; Pérez-Espinosa, A.; Pérez-Murcia, M.D. Uses of winery and distillery effluents in agriculture: Characterisation of nutrient and hazardous components. Water Sci. Technol. 2005, 51, 145–151. [Google Scholar] [CrossRef]
- Italian Republic. Law No. 238 of 12 December 2016 on the Organic Regulation of Vine Cultivation and Wine Production and Trade 2016. Available online: https://www.normattiva.it/ (accessed on 27 August 2025).
- Howell, C.L.; Myburgh, P.A.; Lategan, E.L.; Hoffman, J.E. Seasonal Variation in Composition of Winery Wastewater in the Breede River Valley with Respect to Classical Water Quality Parameters. S. Afr. J. Enol. Vitic. 2016, 37. [Google Scholar] [CrossRef]
- Becker, S.; Bouzdine-Chameeva, T.; Jaegler, A. The carbon neutrality principle: A case study in the French spirits sector. J. Clean. Prod. 2020, 274, 122739. [Google Scholar] [CrossRef]
- Melchiors, E.; Freire, F.B. Winery wastewater treatment: A systematic review of traditional and emerging technologies and their efficiencies. Environ. Process. 2023, 10, 43. [Google Scholar] [CrossRef]
- Andreottola, G.; Foladori, P.; Ziglio, G. Biological treatment of winery wastewater: An overview. Water Sci. Technol. 2009, 60, 1117–1125. [Google Scholar] [CrossRef]
- Vlotman, D.E.; Key, D.; Bladergroen, B.J. Technological advances in winery wastewater treatment: A comprehensive review. S. Afr. J. Enol. Vitic. 2022, 43, 58–80. [Google Scholar] [CrossRef]
- Sravan, J.S.; Matsakas, L.; Sarkar, O. Advances in biological wastewater treatment processes: Focus on low-carbon energy and resource recovery in bio-refinery context. Bioengineering 2024, 11, 281. [Google Scholar] [CrossRef]
- Heras, F.; Justicia, J.; Baeza, J.A.; Gilarranz, M.A.; Ferro, V.R. Energy and economic analysis of alternatives for the valorization of hydrogen-rich stream produced in the aqueous phase reforming of pyrolysis bio-oil aqueous fraction. Bioresour. Technol. 2024, 399, 130572. [Google Scholar] [CrossRef]
- Antonini, C.; Treyer, K.; Streb, A.; van der Spek, M.; Bauer, C.; Mazzotti, M. Hydrogen production from natural gas and biomethane with carbon capture and storage—A techno-environmental analysis. Sustain. Energy Fuels. 2020, 4, 2967–2986. [Google Scholar] [CrossRef]
- Mahmud, R. Integration of Techno-Economic Analysis (TEA) and Life Cycle Assessment (LCA) for Sustainable Process Design. Ph.D. Thesis, Clemson University, Clemson, SC, USA, August 2022. [Google Scholar]
- Giuliano, A.; Medici, A.R.; Barletta, D. Integrating Techno-Economic and Environmental Criteria in the Design and Optimization of A Full Utilization Multiproduct Lignocellulosic Biorefinery. ACS Sustain. Chem. Eng. 2025, 13, 1961–1973. [Google Scholar] [CrossRef]
- Di Addario, M.; Luongo Malavè, A.C.; Sanfilippo, S.; Fino, D.; Ruggeri, B. Evaluation of sustainable useful index (SUI) by fuzzy approach for energy producing processes. Chem. Eng. Res. Des. 2016, 107, 153–166. [Google Scholar] [CrossRef]
- Heras, F.; de Oliveira, A.S.; Baeza, J.A.; Calvo, L.; Ferro, V.R.; Gilarranz, M.A. Toward Sustainability of the Aqueous Phase Reforming of Wastewater: Heat Recovery and Integration. Appl. Sci. 2022, 12, 10424. [Google Scholar] [CrossRef]
- Latessa, S.H.; Hanley, L.; Tao, W. Characteristics and practical treatment technologies of winery wastewater: A review for wastewater management at small wineries. J. Environ. Manag. 2023, 342, 118343. [Google Scholar] [CrossRef] [PubMed]
- Neau, E.; Nicolas, C.; Jaubert, J.-N.; Mutelet, F. The generalized NRTL model associated with the Peng-Robinson equation of state to predict liquid-liquid equilibria between hydrocarbons, water and ethylene glycol. Pol. J. Chem. 2006, 80, 27–35. [Google Scholar]
- Ioannou, L.A.; Puma, G.L.; Fatta-Kassinos, D. Treatment of winery wastewater by physicochemical, biological and advanced processes: A review. J. Hazard. Mater. 2015, 286, 343–368. [Google Scholar] [CrossRef] [PubMed]
- Mader, A.E.; Holtman, G.A.; Welz, P.J. Treatment wetlands and phyto-technologies for remediation of winery effluent: Challenges and opportunities. Sci. Total Environ. 2022, 807, 150544. [Google Scholar] [CrossRef]
- Gómez-Camacho, C.E.; Ruggeri, B. Energy Sustainability Analysis (ESA) of Energy-Producing Processes: A Case Study on Distributed H2 Production. Sustainability 2019, 11, 4911. [Google Scholar] [CrossRef]
- Ruggeri, B.; Gómez-Camacho, C.E.N. Georgescu-Roegen’s production model for EROI evaluation. Case study: Electrolytic H2 production using solar energy. Energy Convers. Manag. 2023, 283, 116915. [Google Scholar] [CrossRef]
- Sinnott, R.; Towler, G. Costing and Project Evaluation. In Chemical Engineering Design; Elsevier: Amsterdam, The Netherlands, 2020; pp. 275–369. [Google Scholar] [CrossRef]
- Khodabandehloo, M.; Larimi, A.; Khorasheh, F. Comparative process modeling and techno-economic evaluation of renewable hydrogen production by glycerol re-forming in aqueous and gaseous phase. Energy Convers. Manag. 2020, 225, 113483. [Google Scholar] [CrossRef]
- Sladkovskiy, D.A.; Godina, L.I.; Semikin, K.V.; Sladkovskaya, E.V.; Smirnova, D.A.; Murzin, D.Y. Process design and techno-economical analysis of hydrogen production by aqueous phase reforming of sorbito. Chem. Eng. Res. Des. 2018, 134, 104–116. [Google Scholar] [CrossRef]
- Jiménez-Benítez, A.; Ruiz-Martínez, A.; Robles, Á.; Serralta, J.; Ribes, J.; Rogalla, F.; Seco, A.; Ferrer, J. A semi-industrial AnMBR plant for urban wastewater treatment at ambient temperature: Analysis of the filtration process, energy balance and quantification of GHG emissions. J. Environ. Chem. Eng. 2023, 11, 109454. [Google Scholar] [CrossRef]
- Italian Republic. Legislative Decree No. 152 of 3 April 2006 on Environmental Regulations (Environmental Code) 2006. Available online: https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:decreto.legislativo:2006-04-03;152 (accessed on 4 May 2025).
- Directive (EU) 2024/1203 of the European Parliament and of the Council of 11 April 2024 on the Protection of the Environment Through Criminal Law and Replacing Directives 2008/99/EC and 2009/123/EC 2024. Available online: http://data.europa.eu/eli/dir/2024/1203/oj/eng (accessed on 4 May 2025).
- Moral Pajares, E.; Gallego Valero, L.; Román Sánchez, I.M. Cost of Urban Wastewater Treatment and Ecotaxes: Evidence from Municipalities in Southern Europe. Water 2019, 11, 423. [Google Scholar] [CrossRef]
- Annual Inflation Stable at 2.2% in the Euro Area. Available online: https://ec.europa.eu/eurostat/web/products-euro-indicators/w/2-19052025-ap (accessed on 28 May 2025).
- U.S. Geological Survey (USGS). Mineral Commodity Summaries 2025; U.S. Geological Survey: Reston, VA, USA, 2025. Available online: https://pubs.usgs.gov/periodicals/mcs2025/mcs2025.pdf (accessed on 16 May 2025).
- León, M.; Silva, J.; Carrasco, S.; Barrientos, N. Design, Cost Estimation and Sensitivity Analysis for a Production Process of Activated Carbon from Waste Nutshells by Physical Activation. Processes 2020, 8, 945. [Google Scholar] [CrossRef]
- Yang, L.; Hao, C.; Chai, Y. Life Cycle Assessment of Commercial Delivery Trucks: Diesel, Plug-In Electric, and Battery-Swap Electric. Sustainability 2018, 10, 4547. [Google Scholar] [CrossRef]
- Conflavoro PMI. CCNL Metalmeccanico Industria. National Collective Labour Agreement for the Metalworking Industry. Conflavoro PMI. 2021. Available online: https://file.conflavoro.it/pdf/ccnl/ccnl_metalmeccanico_industria_conflavoro.pdf (accessed on 1 June 2025).
- Databases—AssessCCUS. Available online: https://assessccus.globalco2initiative.org/tea/databases/ (accessed on 28 May 2025).
- European Central Bank. Official Interest Rates. Available online: https://www.ecb.europa.eu/stats/policy_and_exchange_rates/key_ecb_interest_rates/html/index.en.html (accessed on 28 May 2025).
- Pipitone, G.; Zoppi, G.; Pirone, R.; Bensaid, S. Sustainable aviation fuel production using in-situ hydrogen supply via aqueous phase reforming: A tech-no-economic and life-cycle greenhouse gas emissions assessment. J. Clean. Prod. 2023, 418, 138141. [Google Scholar] [CrossRef]
- Green, D.W.; Southard, M.Z. Perry’s Chemical Engineers’ Handbook, 9th ed.; McGraw-Hill Education: New York, NY, USA, 2019. [Google Scholar]
- The Chemical Engineering Plant Cost Index®—Chemical Engineering. Available online: https://www.chemengonline.com/pci-home/ (accessed on 28 May 2025).
- ARERA. Annual Report 2024. Activities Carried Out and Work Programmes. Italian Regulatory Authority for Energy, Networks and Environment, Vol. 1. 2024. Available online: https://www.arera.it/fileadmin/allegati/relaz_ann/24/RA24_vol1.pdf (accessed on 30 May 2025).
- International Organization for Standardization (ISO). Environmental Management—Life Cycle Assessment—Principles and Framework (ISO 14040:2006); International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- International Organization for Standardization (ISO). Environmental Management—Life Cycle Assessment—Requirements and Guidelines (ISO 14044:2006); ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Weidema, B.P.; Bauer, C.; Hischier, R.; Mutel, C.; Nemecek, T.; Reinhard, J.; Vadenbo, C.O.; Wernet, G. Overview and Methodology: Data Quality Guideline for the Ecoinvent Database Version 3. Swiss Centre for Life Cycle Inventories. Ecoinvent Report Vol. 3 No. 1. 2013. Available online: https://vbn.aau.dk/ws/portalfiles/portal/176769045/Overview_and_methodology.pdf (accessed on 30 May 2025).
- Mutel, C. Brightway: An Open Source Framework for Life Cycle Assessment. J. Open Source Softw. 2024, 2, 236. [Google Scholar] [CrossRef]
- Zampori, L.; Pant, R. Suggestions for Updating the Product Environmental Footprint (PEF) Method. JRC Publications Repository. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC115959 (accessed on 4 June 2025).
- Crenna, E.; Secchi, M.; Benini, L.; Sala, S. Global environmental impacts: Data sources and methodological choices for calculating normalization factors for LCA. Int. J. Life Cycle Assess 2019, 24, 1851–1877. [Google Scholar] [CrossRef]
- Sala, S. Development of a Weighting Approach for the Environmental Footprint. JRC Publications Repository. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC106545 (accessed on 4 June 2025).
- Kolpakova, V.; Ospanov, K.; Kuldeyev, E.; Andraka, D. Clarification of Biologically Treated Wastewater in a Clarifier with Suspended Sludge Layer. Water 2021, 13, 2486. [Google Scholar] [CrossRef]
- Seretis, A.; Tsiakaras, P. A thermodynamic analysis of hydrogen production via aqueous phase reforming of glycerol. Fuel Process. Technol. 2015, 134, 107–115. [Google Scholar] [CrossRef]
- Coronado, I.; Stekrova, M.; Reinikainen, M.; Simell, P.; Lehtonen, J. A review of catalytic aqueous-phase reforming of oxygenated hydrocarbons derived from biorefinery water fractions. Int. J. Hydrogen Energy 2016, 41, 11003–11032. [Google Scholar] [CrossRef]
- Towler, G.P.; Sinnott, R.K. Chemical Engineering Design: Principles, Practice, and Economics of Plant and Process Design, 2nd ed.; Butterworth-Heinemann: Boston, MA, USA, 2013. [Google Scholar]
- Sutton, G.; Fateev, A.; Rodríguez-Conejo, M.A.; Meléndez, J.; Guarnizo, G. Validation of Emission Spectroscopy Gas Temperature Measurements Using a Standard Flame Traceable to the International Temperature Scale of 1990 (ITS-90). Int. J. Thermophys. 2019, 40, 99. [Google Scholar] [CrossRef]
- Yang, H.; Jin, S.; He, Y.; Liu, Y. Experimental study on flame temperature distribution and pollutant emission characteristics of CH4 mixed with CO2/N2/H2 combustion. Int. J. Hydrogen Energy 2024, 71, 750–762. [Google Scholar] [CrossRef]
- Nordio, M.; Wassie, S.A.; Van Sint Annaland, M.; Tanaka, D.A.P.; Sole, J.L.V.; Gallucci, F. Techno-economic evaluation on a hybrid technology for low hydrogen concentration separation and purification from natural gas grid. Int. J. Hydrogen Energy 2021, 46, 23417–23435. [Google Scholar] [CrossRef]
- Salkuyeh, Y.K.; Saville, B.A.; MacLean, H.L. Techno-economic analysis and life cycle assessment of hydrogen production from natural gas using current and emerging technologies. Int. J. Hydrogen Energy 2017, 42, 18894–18909. [Google Scholar] [CrossRef]
- Tribe, M.A.; Alpine, R.L.W. Scale economies and the “0.6 rule”. Eng. Costs Prod. Econ. 1986, 10, 271–278. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Catalog of CHP Technologies, Washington, DC. 2015. Available online: https://www.epa.gov/sites/default/files/2015-07/documents/catalog_of_chp_technologies.pdf (accessed on 29 May 2025).
- U.S. Department of Energy. Clean Hydrogen Production Cost Scenarios with PEM Electrolyzer Technology. DOE Hydrogen Program Record #24005, 20 May 2024. Available online: https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/24005-clean-hydrogen-production-cost-pem-electrolyzer.pdf?sfvrsn=8cb10889_1 (accessed on 29 May 2025).
- Zheng, Z.; Lu, Z.; Tan, Q.; Yang, F.; Resasco, D. Synergistic bimetallic Ru–Pt catalysts for the low-temperature aqueous phase reforming of ethanol. AIChE J. 2019, 65, 151–160. [Google Scholar] [CrossRef]
- Tito, E.; Zoppi, G.; Pipitone, G.; Miliotti, E.; Di Fraia, A.; Rizzo, A.M.; Pirone, R.; Chiaramonti, D.; Bensaid, S. Conceptual design and techno-economic assessment of coupled hydrothermal liquefaction and aqueous phase re-forming of lignocellulosic residues. J. Environ. Chem. Eng. 2023, 11, 109076. [Google Scholar] [CrossRef]
- Le-Boulch, D.; Morisset, V.; Jobard, Z.; Burguburu, A.; Czyrnek-Delêtre, M.M. Life cycle assessment of nuclear power in France: EDF case study. EPJ Nucl. Sci. Technol. 2024, 10, 8. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Italy—Countries & Regions. Available online: https://www.iea.org/countries/italy/energy-mix (accessed on 24 June 2025).
- Valente, A.; Iribarren, D.; Dufour, J. Harmonised life-cycle global warming impact of renewable hydrogen. J. Clean. Prod. 2017, 149, 762–772. [Google Scholar] [CrossRef]
- Critical Raw Materials—European Commission. Available online: https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw-materials_en (accessed on 25 June 2025).
- Roy, B.; Leclerc, C.A. Study of preparation method and oxidization/reduction effect on the performance of nickel-cerium oxide catalysts for aqueous-phase reforming of ethanol. J. Power Sources 2015, 299, 114–124. [Google Scholar] [CrossRef]
- Roy, B.; Artyushkova, K.; Pham, H.N.; Li, L.; Datye, A.K.; Leclerc, C.A. Effect of preparation method on the performance of the Ni/Al2O3 catalysts for aqueous-phase reforming of ethanol: Part II—Characterization. Int. J. Hydrogen Energy 2012, 37, 18815–18826. [Google Scholar] [CrossRef]
LCA Step | Details |
---|---|
I—Goal and scope definition | Evaluate the environmental footprint of ethanol APR from WWW for electricity (S1) and/or H2 (S2) production through attributional LCA Benchmarking against alternative technologies Functional units (FUs): 1 kWh of electricity (S1), 1 kg H2 (S2) |
II—Inventory analysis | Boundaries of analysis: cradle-to-gate approach, including raw material extraction, end-of-life treatment of the infrastructure and of the WWW. Foreground: based on data provided from the (upscaled) process simulations, basic equipment sizing for materials Background: ecoinvent 3.9, system model: cutoff Calculation implementation: python brightway2 framework in Activity Browser |
III—Impact assessment | Selected indicators from Environmental Footprint (EF) methodology v3.1 no LT were used for impact assessment, GWP100 (with +1/0 CFs for fossil/non fossil carbon), and total aggregated single score impact (i.e., through EF normalization) |
IV—Interpretation | Compare the LCA results for each scenario and benchmark against alternative technologies |
Unit | Sizing Reference | Specification |
---|---|---|
Storage tank | Volume: 78.0 m3 | One day inflow + 30% of capacity |
Clarifier | Flow rate: 2.5 m3/h | 3 h retention time, SOR: 0.3 m3/h·m2 Volume: 8.0 m3 |
High-pressure pump | Power rating: 19.0 kW | Discharge pressure: 5.00 bar Flow rate: 0.7 L/s |
Heat exchanger 1 (HE1) | Surface: 13.0 m2 | Shell and tube, net energy exchanged: 741.0 kW U: 1250.0 W/m2·K, fouling effect considered |
Heat exchanger 2 (HE2) | Surface: 3.0 m2 | Shell and tube, net energy exchanged: 84.0 kW U: 2750.0 W/m2·K, fouling effect considered |
APR reactor | Input flow: 2525.0 kg/h | Volume: 0.14 m3, 3.3 min retention time Catalyst loading: 70.0 kg |
Equipment | Scenario 1 | Scenario 2 |
---|---|---|
Flash 1 | P: 1.1 bar Tin: 118 °C Tout: 86 °C Duty: 0 kW RT: 10 min Settling velocity: 0.1 m/s Vol: 0.55 m3 | P: 25 bar Tin: 118 °C Tout: 117 °C Duty: 0 kW RT: 10 min Settling velocity: 0.1 m/s Vol: 0.49 m3 |
Condenser 1 | Double pipe Net heat exchanged: 114 kW Area: 6.08 m2 U: 1000 W/m2·K | Double pipe Net heat exchanged: 20 kW Area: 1.12 m2 U: 1000 W/m2·K |
PSA | - | P: 25 bar T: 26 °C 99% H2 purity 85% H2 recovery 7 kg/h H2 |
Flash 2 | - | P: 1 bar T: 97.5 °C Duty: −9.15 kW RT: 10 min Settling velocity: 0.1 m/s Vol: 0.55 m3 |
Condenser 2 | Plate and frame Net heat exchanged: 171 kW Area: 13 m2 U: 1150 W/m2·K | Plate and frame Net heat exchanged: 210 kW Area: 16 m2 U: 1150 W/m2·K |
Air blower | Flow rate: 1230 kg/h Power rating: 2.8 kW P: 1.1 bar Isentropic compression | Flow rate: 952 kg/h Power rating: 2.2 kW P: 1.1 bar Isentropic compression |
CHP (Boiler + turbine + generator) | Fuel LHV: 956 kW Fumes T: 1665 °C Electricity capacity: 195 kW 0.6 wt.% water content | Fuel LHV: 712 kW Fumes T: 1462 °C Electricity capacity: 115 kW 6 wt.% water content |
Ƞel: 20% Thermal capacity: 319 kW Ƞthermic: 33% Ƞisentropic: 85% Ƞmechanical: 100% Discharge pressure: 0.1 bar 6% heat loss (LHV) | Ƞel: 16% Thermal capacity: 319 kW Ƞthermic: 44% Ƞisentropic: 85% Ƞmechanical: 100% Discharge pressure: 0.1 bar 6% heat loss (LHV) | |
Pump CHP 1 | Discharge pressure: 170 bar ∆P: 110 bar Flow rate: 0.2 L/s Power rating: 3.4 kW Ƞ: 95% | Discharge pressure: 170 bar ∆P: 110 bar Flow rate: 0.2 L/s Power rating: 3.4 kW Ƞ: 95% |
Pump CHP 2 | Discharge pressure: 170 bar ∆P: 171 bar Flow rate: 0.15 L/s Power rating: 2.8 kW Ƞ: 95% | Discharge pressure: 170 bar ∆P: 171 bar Flow rate: 0.09 L/s Power rating: 1.9 kW Ƞ: 95% |
Economizer CHP 1 | Double pipe Net heat exchanged: 170 kW Area: 1.95 m2 U: 769 W/m2·K | Double pipe Net heat exchanged: 100 kW Area: 1.82 m2 U: 769 W/m2·K |
Economizer CHP 2 | Double pipe Net heat exchanged: 215 kW Area: 0.83 m2 U: 769 W/m2·K | Double pipe Net heat exchanged: 177 kW Area: 1.10 m2 U: 769 W/m2·K |
Reboiler CHP | Double pipe Net heat exchanged: 298 kW Area: 0.5 m2 U: 769 W/m2·K | Double pipe Net heat exchanged: 244 kW Area: 0.5 m2 U: 769 W/m2·K |
Heater CHP | Double pipe Net heat exchanged: 137 kW Area: 0.17 m2 U: 769 W/m2·K | Double pipe Net heat exchanged: 82 kW Area: 0.12 m2 U: 769 W/m2·K |
Cooling water | 25–40 °C Total plant flow rate: 36 m3/h | 25–40 °C Total plant flow rate: 27 m3/h |
Scenario | S1 | S1–95 | S2 | S2–95 |
---|---|---|---|---|
Ethanol conversion (%) | 75 | 95 | 75 | 95 |
Available energy (MJ/h) | 3384 | 3384 | 3384 | 3384 |
Produced energy (MJ/h) | 1850 | 1990 | 2409 | 2725 |
Direct energy (MJ/h) | 1254 | 1442 | 1247 | 1436 |
Indirect energy (MJ/h) | 380 | 346 | 428 | 371 |
Net energy (MJ/h) | 596 | 549 | 1162 | 1288 |
ESI | 1.48 | 1.38 | 1.93 | 1.90 |
EROI | 1.57 | 1.59 | 2.71 | 3.47 |
Scenario | Conversion (%) | Turbine (kWh) | APR Revenue (USD0.315/kgCOD) | COD Removal Efficiency (%) | COD (ppm) | MSP (USD/kWh, USD/kgH2) |
---|---|---|---|---|---|---|
S1 | 75 | 195 | 0 | 98.8 | 1268 | 0.86 |
S1* | 75 | 195 | 629,350 | 98.8 | 1268 | 0.20 |
S1–95 | 95 | 182 | 0 | 99.9 | 226 | 0.92 |
S1–95+ | 95 | 176 | 0 | 100 | 105 | 0.93 |
S2 | 75 | 115 | 0 | 97.5 | 2809 | 15.52 |
S2* | 75 | 115 | 620,988 | 97.5 | 2809 | 4.62 |
S2–95 | 95 | 87 | 0 | 99.6 | 357 | 12.59 |
S2–95+ | 95 | 94 | 0 | 100 | 124 | 12.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farnocchia, G.; Gómez-Camacho, C.E.; Pipitone, G.; Hischier, R.; Pirone, R.; Bensaid, S. Techno-Economic and Life Cycle Assessments of Aqueous Phase Reforming for the Energetic Valorization of Winery Wastewaters. Sustainability 2025, 17, 7856. https://doi.org/10.3390/su17177856
Farnocchia G, Gómez-Camacho CE, Pipitone G, Hischier R, Pirone R, Bensaid S. Techno-Economic and Life Cycle Assessments of Aqueous Phase Reforming for the Energetic Valorization of Winery Wastewaters. Sustainability. 2025; 17(17):7856. https://doi.org/10.3390/su17177856
Chicago/Turabian StyleFarnocchia, Giulia, Carlos E. Gómez-Camacho, Giuseppe Pipitone, Roland Hischier, Raffaele Pirone, and Samir Bensaid. 2025. "Techno-Economic and Life Cycle Assessments of Aqueous Phase Reforming for the Energetic Valorization of Winery Wastewaters" Sustainability 17, no. 17: 7856. https://doi.org/10.3390/su17177856
APA StyleFarnocchia, G., Gómez-Camacho, C. E., Pipitone, G., Hischier, R., Pirone, R., & Bensaid, S. (2025). Techno-Economic and Life Cycle Assessments of Aqueous Phase Reforming for the Energetic Valorization of Winery Wastewaters. Sustainability, 17(17), 7856. https://doi.org/10.3390/su17177856