Efficient Energy Management for Smart Homes with Electric Vehicles Using Scenario-Based Model Predictive Control
Abstract
1. Introduction
1.1. Literature Review
1.2. Contributions
- To address the economic impact of PV power generation and load demand prediction error in smart homes, the uncertainties about the prediction error are simulated by generating multiple stochastic scenarios. Then C-ADMM, benefiting from its decomposition, coordination, and parallel computing capability, is used to accelerate the solution of scenario-based MPC. This avoids the economic loss caused by the scenario reduction and realizes the online operation of scenario-based MPC.
- This paper analyzes the economic impact of stochastic scenario number on scenario-based MPC and verifies that too few scenarios will lead to more economic loss. Meanwhile, the effect of increasing scenarios on the single iteration time and the iteration number of C-ADMM algorithm is also discussed. The existing literature has not discussed the above characteristics of scenario-based MPC.
2. System Modeling
2.1. System Layout
2.2. Component Modeling
3. Methods
3.1. Scenario Generation
3.2. Problem Formulation
3.3. Solution Procedure
4. Results and Discussion
4.1. Analysis of Scenario-Based MPC
4.2. Comparison of Different MPC
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MPC | Model predictive control |
PV | Photovoltaic |
EV | Electric vehicle |
BESS | Battery energy storage system |
C-ADMM | Consensus alternating direction method of multipliers |
PSO | Particle swarm optimization |
TOU | Time-of-use |
V2H | Vehicle to home |
PMPC | Precise MPC |
DMPC | Deterministic MPC |
References
- International Energy Agency (IEA). Global EV Outlook 2023; IEA: Paris, France, 2023; Available online: https://www.iea.org/reports/global-ev-outlook-2023 (accessed on 10 April 2025).
- International Renewable Energy Agency (IRENA). Renewable Power Generation Costs in 2022; IRENA: Abu Dhabi, United Arab Emirates, 2023; Available online: https://www.irena.org/publications/2023/Aug/Renewable-Power-Generation-Costs-in-2022 (accessed on 10 April 2025).
- The Stanford Precourt Institute for Energy. Charging Cars at Home at Night is Not the Way to Go, Stanford Study Finds; The Stanford Precourt Institute for Energy: Stanford, CA, USA, 2022; Available online: https://news.stanford.edu/stories/2022/09/charging-cars-home-night-not-way-go (accessed on 10 April 2025).
- Sarda, J.; Patel, N.; Patel, H.; Vaghela, R.; Brahma, B.; Bhoi, A.K.; Barsocchi, P. A review of the electric vehicle charging technology, impact on grid integration, policy consequences, challenges and future trends. Energy Rep. 2024, 12, 5671–5692. [Google Scholar] [CrossRef]
- Hu, X.; Deng, X.; Wang, F.; Deng, Z.; Lin, X.; Teodorescu, R.; Pecht, M.G. A review of second-life lithium-ion batteries for stationary energy storage applications. Proc. IEEE 2022, 110, 735–753. [Google Scholar] [CrossRef]
- Kootstra, M.A.; Tong, S.; Park, J.W. Photovoltaic grid stabilization system using second life lithium battery. Int. J. Energy Res. 2015, 39, 825–841. [Google Scholar] [CrossRef]
- Heirung, T.A.N.; Paulson, J.A.; O’Leary, J.; Mesbah, A. Stochastic model predictive control—How does it work? Comput. Chem. Eng. 2018, 114, 158–170. [Google Scholar] [CrossRef]
- Tesla, Inc. Powerwall Technical Specifications; Tesla, Inc.: Austin, TX, USA, 2023; Available online: https://www.tesla.com/support/energy/powerwall/learn (accessed on 10 April 2025).
- Wu, X.; Hu, X.; Moura, S.; Yin, X.; Pickert, V. Stochastic control of smart home energy management with plug-in electric vehicle battery energy storage and photovoltaic array. J. Power Sources 2016, 333, 203–212. [Google Scholar] [CrossRef]
- Conte, F.; Massucco, S.; Saviozzi, M.; Silvestro, F. A stochastic optimization method for planning and real-time control of integrated pv-storage systems: Design and experimental validation. IEEE Trans. Sustain. Energy 2017, 9, 1188–1197. [Google Scholar] [CrossRef]
- Huang, G.; Chow, T.-T. Uncertainty shift in robust predictive control design for application in CAV air-conditioning systems. Build. Serv. Eng. Res. Technol. 2011, 32, 329–343. [Google Scholar] [CrossRef]
- Mesbah, A. Stochastic model predictive control: An overview and perspectives for future research. IEEE Control Syst. Mag. 2016, 36, 30–44. [Google Scholar]
- Ramandi, M.Y.; Bigdeli, N.; Afshar, K. Stochastic economic model predictive control for real-time scheduling of balance responsible parties. Int. J. Electr. Power Energy Syst. 2020, 118, 105800. [Google Scholar] [CrossRef]
- Guo, X.; Bao, Z.; Yan, W. Stochastic model predictive control based scheduling optimization of multi-energy system considering hybrid CHPs and EVs. Appl. Sci. 2019, 9, 356. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, L.; Guo, W.; Kang, Q.; Wu, Q. Chance constrained optimization in a home energy management system. IEEE Trans. Smart Grid 2016, 9, 252–260. [Google Scholar] [CrossRef]
- Aghdam, F.H.; Kalantari, N.T.; Mohammadi-Ivatloo, B. A chance-constrained energy management in multi-microgrid systems considering degradation cost of energy storage elements. J. Energy Storage 2020, 29, 101416. [Google Scholar] [CrossRef]
- Shi, Z.; Liang, H.; Huang, S.; Dinavahi, V. Distributionally robust chance-constrained energy management for islanded microgrids. IEEE Trans. Smart Grid 2018, 10, 2234–2244. [Google Scholar] [CrossRef]
- Daneshvar, M.; Mohammadi-Ivatloo, B.; Asadi, S.; Anvari-Moghaddam, A.; Rasouli, M.; Abapour, M.; Gharehpetian, G.B. Chance-constrained models for transactive energy management of interconnected microgrid clusters. J. Clean. Prod. 2020, 271, 122177. [Google Scholar] [CrossRef]
- Van der Meer, D.; Wang, G.C.; Munkhammar, J. An alternative optimal strategy for stochastic model predictive control of a residential battery energy management system with solar photovoltaic. Appl. Energy 2021, 283, 116289. [Google Scholar] [CrossRef]
- Hans, C.A.; Sopasakis, P.; Bemporad, A.; Raisch, J.; Reincke-Collon, C. Scenario-based model predictive operation control of islanded microgrids. In Proceedings of the 2015 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, 15–18 December 2015; pp. 3272–3277. [Google Scholar]
- Zhou, Z.; Shojafar, M.; Abawajy, J.; Bashir, A.K. IADE: An Improved Differential Evolution Algorithm to Preserve Sustainability in a 6G Network. IEEE Trans. Green Commun. Netw. 2021, 5, 1747–1760. [Google Scholar] [CrossRef]
- Dupacová, J.; Gröwe-Kuska, N.; Römisch, W. Scenario Reduction in Stochastic Programming: An Approach Using Probability Metrics; Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik: Berlin, Germany, 2000. [Google Scholar]
- Deng, X.; Wang, F.; Lin, X.; Hu, B.; Arash, K.; Hu, X. Distributed energy management of home-vehicle Nexus with Stationary battery energy storage. Renew. Sustain. Energy Rev. 2022, 168, 112837. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Chen, B.; Begovic, M.M.; He, Y. MPC-based voltage/var optimization for distribution circuits with distributed generators and exponential load models. IEEE Trans. Smart Grid 2014, 5, 2412–2420. [Google Scholar] [CrossRef]
- Feng, Y.; Ryan, S.M. Scenario construction and reduction applied to stochastic power generation expansion planning. Comput. Oper. Res. 2013, 40, 9–23. [Google Scholar] [CrossRef]
- Diamond, S.; Boyd, S. CVXPY: A Python-embedded modeling language for convex optimization. J. Mach. Learn. Res. 2016, 17, 2909–2913. [Google Scholar]
- Truong, C.N.; Naumann, M.; Karl, R.C.; Müller, M.; Jossen, A.; Hesse, H.C. Economics of residential photovoltaic battery systems in Germany: The case of Tesla’s Powerwall. Batteries 2016, 2, 14. [Google Scholar] [CrossRef]
- Pecan Street Inc. Pecan Street Dataport; Pecan Street Inc.: Austin, TX, USA, 2015. [Google Scholar]
- Deng, X.; Wang, F.; Hu, B.; Lin, X.; Hu, X. Optimal sizing of residential battery energy storage systems for long-term operational planning. J. Power Sources 2022, 551, 232218. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, K. Accelerated Computation and Tracking of AC Optimal Power Flow Solutions Using GPUs. In Proceedings of the Workshop Proceedings of the 51st International Conference on Parallel Processing, Bordeaux, France, 29 August–1 September 2022; pp. 1–8. [Google Scholar]
Parameters | Symbol | Value |
---|---|---|
Nominal BESS capacity | 6 kWh | |
BESS energy efficiency | 0.95 | |
Minimum BESS energy | 1.2 kWh | |
Maximum BESS energy | 4.8 kWh | |
Maximum BESS discharging power | 10 kW | |
Maximum BESS charging power | 10 kW | |
Nominal EV capacity | 60 kWh | |
EV energy efficiency | 0.95 | |
Minimum EV energy | 12 kWh | |
Maximum EV energy | 48 kWh | |
Maximum EV charging power | 10 kW | |
Maximum sold PV power | - | 5 kW |
Days | Precise MPC | DMPC | SMPC (Scenario = 100) |
---|---|---|---|
1 | 213 | 272 | 222 |
10 | 1520 | 1726 | 1605 |
15 | 3978 | 4412 | 4204 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, X.; Li, J.; Bao, H.; Zhao, Z.; Su, X.; Huang, Y. Efficient Energy Management for Smart Homes with Electric Vehicles Using Scenario-Based Model Predictive Control. Sustainability 2025, 17, 7678. https://doi.org/10.3390/su17177678
Deng X, Li J, Bao H, Zhao Z, Su X, Huang Y. Efficient Energy Management for Smart Homes with Electric Vehicles Using Scenario-Based Model Predictive Control. Sustainability. 2025; 17(17):7678. https://doi.org/10.3390/su17177678
Chicago/Turabian StyleDeng, Xinchen, Jiacheng Li, Huanhuan Bao, Zhiwei Zhao, Xiaojia Su, and Yao Huang. 2025. "Efficient Energy Management for Smart Homes with Electric Vehicles Using Scenario-Based Model Predictive Control" Sustainability 17, no. 17: 7678. https://doi.org/10.3390/su17177678
APA StyleDeng, X., Li, J., Bao, H., Zhao, Z., Su, X., & Huang, Y. (2025). Efficient Energy Management for Smart Homes with Electric Vehicles Using Scenario-Based Model Predictive Control. Sustainability, 17(17), 7678. https://doi.org/10.3390/su17177678