Analysis of the Inverted “U” Relationship Between R&D Intensity and Green Innovation Performance: A Study Based on Listed Manufacturing Enterprises in China
Abstract
1. Introduction
2. Research Hypotheses
2.1. R&D Investment and Green Innovation Performance
2.2. The Moderating Effect of Environmental Regulation
2.3. The Moderating Effect of Environmental Protection Subsidies
3. Research Design
3.1. Selection of the Sample
3.2. Variable Definitions
3.2.1. Dependent Variable
3.2.2. Independent Variables
3.2.3. Control Variables
3.3. Model Section
4. Empirical Findings
4.1. Descriptive Statistics
4.2. Correlation Matrix
4.3. Benchmark Regression
4.4. Analysis of Regulatory Effect
4.5. Robustness Test
4.6. Further Analysis
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biermann, F.; Betsill, M.M.; Gupta, J.; Kanie, N.; Lebel, L.; Liverman, D.; Schroeder, H.; Siebenhüner, B.; Zondervan, R. Earth system governance: A research framework. Int. Environ. Agreem. Politics Law Economics. 2010, 10, 277–298. [Google Scholar] [CrossRef]
- Kraus, S.; Rehman, S.U.; García, F.J.S. Corporate social responsibility and environmental performance: The mediating role of environmental strategy and green innovation. Technol. Forecast. Soc. Change 2020, 160, 120262. [Google Scholar] [CrossRef]
- Chen, J.; Abbas, J.; Najam, H.; Liu, J.; Abbas, J. Green technological innovation, green finance, and financial development and their role in green total factor productivity: Empirical insights from China. J. Clean. Prod. 2023, 382, 135131. [Google Scholar] [CrossRef]
- Nie, M.; Zhang, X. The impact of green technology innovation on enterprise financial performance under the “dual carbon” goals: Empirical evidence from heavily polluting manufacturing industries. Theory Pract. Financ. Econ. 2020, 46, 90–98. [Google Scholar] [CrossRef]
- Zhao, C.; Guo, Y.; Yuan, J.; Wu, M.; Li, D.; Zhou, Y.; Kang, J. The relationship between corporate ESG performance, green technological innovation and corporate performance. Sci. Technol. Prog. Policy 2025, 1–11. [Google Scholar]
- Zhang, Z.; Luo, X.; Du, J.; Xu, B. Substantive or strategic: Government R&D subsidies and green innovation. Financ. Res. Lett. 2024, 67, 105796. [Google Scholar] [CrossRef]
- Song, P.; Gu, Y.; Su, B.; Tanveer, A.; Peng, Q.; Gao, W.; Wu, S.; Zeng, S. The impact of green technology research and development (R&D) investment on performance: A case study of listed energy companies in Beijing, China. Sustainability 2023, 15, 12370. [Google Scholar] [CrossRef]
- Dong, Y.; Wei, Z.; Liu, T.; Xing, X. The impact of R&D intensity on the innovation performance of artificial intelligence enterprises—Based on the moderating effect of patent portfolio. Sustainability 2021, 13, 328. [Google Scholar] [CrossRef]
- Liu, L. Green innovation, firm performance, and risk mitigation: Evidence from the USA. Environ. Dev. Sustain. 2024, 26, 24009–24030. [Google Scholar] [CrossRef]
- Chen, M.; Shi, V.; Wei, X. Environmental regulations, R&D intensity, and enterprise profit rate: Understanding firm performance in heavy pollution industries. Front. Environ. Sci. 2022, 10, 1077209. [Google Scholar] [CrossRef]
- Fu, Y. Enterprises’ internationalization, R&D investment and enterprise performance. Finance Res. Lett. 2024, 67, 105721. [Google Scholar] [CrossRef]
- Sarpong, D.; Boakye, D.; Ofosu, G.; Botchie, D. The three pointers of research and development (R&D) for growth-boosting sustainable innovation system. Technovation 2023, 122, 102581. [Google Scholar] [CrossRef]
- Habtewold, T.M. Impacts of internal R&D on firms’ performance and energy consumption: Evidence from Ethiopian firms. Int. J. Innov. Stud. 2023, 7, 47–67. [Google Scholar] [CrossRef]
- Leung, T.Y.; Sharma, P. Differences in the impact of R&D intensity and R&D internationalization on firm performance—Mediating role of innovation performance. J. Bus. Res. 2021, 131, 81–91. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Hou, J. Research on the impact of R&D investment and government subsidies on enterprise innovation performance. Stat. Inf. Forum 2022, 37, 108–116. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, P. The impact of R&D models on the innovation performance of manufacturing enterprises. Sci. Technol. Prog. Policy 2020, 37, 89–97. [Google Scholar] [CrossRef]
- Cohen, W.M.; Levinthal, D.A. Absorptive capacity: A new perspective on learning and innovation. Adm. Sci. Q. 1990, 35, 128–152. [Google Scholar] [CrossRef]
- Teece, D.J.; Pisano, G.; Shuen, A. Dynamic capabilities and strategic management. Strateg. Manag. J. 1997, 18, 509–533. [Google Scholar] [CrossRef]
- Guo, B.; Wang, J.; Wei, S.X. R&D spending, strategic position and firm performance. Front. Bus. Res. China 2018, 12, 14. [Google Scholar] [CrossRef]
- Huang, J.; Zheng, B.; Du, M. How digital economy mitigates urban carbon emissions: The green facilitative power of industrial coagglomeration. Appl. Econ. 2025, 1–19. [Google Scholar] [CrossRef]
- Costantini, V.; Crespi, F.; Marin, G.; Paglialunga, E. Eco-innovation, sustainable supply chains and environmental performance in European industries. J. Clean. Prod. 2017, 155, 141–154. [Google Scholar] [CrossRef]
- Tong, T.W.; He, W.; He, Z.L.; Lu, J. Patent regime shift and firm innovation: Evidence from the second amendment to China’s patent law. Acad. Manag. Annu. Meet. Proc. 2014, 2014, 14174. [Google Scholar] [CrossRef]
- Liu, M.; Liu, L.; Feng, A. The impact of green innovation on corporate performance: An analysis based on substantive and strategic green innovations. Sustainability 2024, 16, 2588. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X. Promotion or inhibition: The impact of government R&D subsidies on enterprises’ green innovation performance. China Ind. Econ. 2023, 2, 131–149. [Google Scholar] [CrossRef]
- Fang, L.; Li, Z. Corporate digitalization and green innovation: Evidence from textual analysis of firm annual reports and corporate green patent data in China. Bus. Strategy Environ. 2024, 33, 3936–3964. [Google Scholar] [CrossRef]
- Ren, S.; Huang, M.; Liu, D.; Yan, J. Understanding the impact of mandatory CSR disclosure on green innovation: Evidence from Chinese listed firms. Br. J. Manag. 2023, 34, 576–594. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Z.; Su, Y. New media environment, environmental regulation and corporate green technology innovation: Evidence from China. Energy Econ. 2023, 119, 106545. [Google Scholar] [CrossRef]
- Wu, R.; Lin, B. Environmental regulation and its influence on energy-environmental performance: Evidence on the Porter hypothesis from China’s iron and steel industry. Resour. Conserv. Recycl. 2022, 176, 105954. [Google Scholar] [CrossRef]
- Wang, F.; Jiang, T.; Guo, X. Government quality, environmental regulation and enterprise green technology innovation. Sci. Res. Manag. 2018, 39, 26–33. [Google Scholar] [CrossRef]
- Yu, D.; Li, X. Environmental regulation, financing constraints and enterprise innovation. Ecol. Econ. 2021, 37, 44–49+79. Available online: https://d.wanfangdata.com.cn/periodical/stjj202104009 (accessed on 17 July 2025).
- Porter, M.E.; van der Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Lanoie, P.; Laurent-Lucchetti, J.; Johnstone, N.; Ambec, S. Environmental policy, innovation and performance: New insights on the Porter hypothesis. J. Econ. Manag. Strategy 2011, 20, 803–842. [Google Scholar] [CrossRef]
- Bansal, P.; Roth, K. Why companies go green: A model of ecological responsiveness. Acad. Manag. J. 2000, 43, 717–736. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, M.; Chen, H.; Ma, J. The green finance pilot policy suppresses green innovation efficiency: Evidence from Chinese cities. Sustainability 2025, 17, 6136. [Google Scholar] [CrossRef]
- Luo, K.; Zhang, K. Executive’s environmental background and sustainable development: Evidence from substantial green innovation. Sustain. Dev. 2024, 32, 4812–4828. [Google Scholar] [CrossRef]
- Benkhodja, M.T.; Fromentin, V.; Ma, X. Macroeconomic effects of green subsidies. J. Clean. Prod. 2023, 410, 137166. [Google Scholar] [CrossRef]
- An, J.; He, G.; Ge, S.; Wu, S. The impact of government green subsidies on corporate green innovation. Financ. Res. Lett. 2025, 71, 106378. [Google Scholar] [CrossRef]
- Hu, D.; Qiu, L.; She, M.; Wang, Y. Sustaining the sustainable development: How do firms turn government green subsidies into financial performance through green innovation? Bus. Strategy Environ. 2021, 30, 2271–2292. [Google Scholar] [CrossRef]
- Yuan, Y.; Feng, J.; Gu, Z. Can environmental protection subsidies motivate enterprises to carry out green innovation?—Test based on the threshold effect of corporate social responsibility. Stud. Sci. Sci. 2024, 42, 437–448. [Google Scholar] [CrossRef]
- Dai, X.; Cheng, L. The effect of public subsidies on corporate R&D investment: An application of the generalized propensity score. Technol. Forecast. Soc. Change 2015, 90, 410–419. [Google Scholar] [CrossRef]
- Li, Q.; Xiao, Z. Heterogeneous environmental regulation tools and green innovation incentives for enterprises: Evidence from green patents of listed companies. Econ. Res. J. 2020, 55, 192–208. Available online: https://d.wanfangdata.com.cn/periodical/jjyj202009012 (accessed on 17 July 2025).
- Liu, C.; Pan, H.; Li, P.; Feng, Y. Research on the impact and mechanism of digital transformation on the green innovation efficiency of manufacturing enterprises. China Soft Sci. 2023, 4, 121–129. [Google Scholar] [CrossRef]
- Yu, Z. Environmental protection talks, government environmental protection subsidies and enterprise green innovation. Foreign Econ. Manag. 2021, 43, 22–37. [Google Scholar] [CrossRef]
- Li, D.; Huang, M.; Ren, S.; Chen, X.; Ning, L. Environmental Legitimacy, Green Innovation, and Corporate Carbon Disclosure: Evidence from CDP China 100. J. Bus. Ethics 2018, 150, 1089–1104. [Google Scholar] [CrossRef]
- Sun, J.; Chen, S. R&D investment intensity and enterprise viability: A regulatory effect based on equity structure. Stat. Decis. 2023, 39, 177–182. [Google Scholar] [CrossRef]
- Ruan, M.; Xiao, F. Voluntary participatory environmental regulation and enterprise technological innovation: The regulatory role of public attention and market process. Sci. Technol. Prog. Policy 2022, 39, 79–90. [Google Scholar] [CrossRef]
- Wen, Z.; Hou, J.; Zhang, L. Comparison and application of moderating effect and mediating effect. Acta Psychol. Sin. 2005, 37, 268–274. Available online: https://journal.psych.ac.cn/xlxb/CN/Y2005/V37/I02/268 (accessed on 17 July 2025).
- De Stefano, F.; Bonet, R.; Camuffo, A. Does losing temporary workers matter? The effects of planned turnover on replacements and unit performance. Acad. Manag. J. 2019, 62, 979–1002. [Google Scholar] [CrossRef]
- Cao, W.; Bai, S. Research on the “U”-shaped moderating effect of linear relations and the linear moderating effect of “U”-shaped relations. Stat. Decis. 2020, 41, 46–50. [Google Scholar] [CrossRef]
- Terza, J.V.; Basu, A.; Rathouz, P.J. Two-stage residual inclusion estimation: Addressing endogeneity in health econometric modeling. J. Health Econ. 2008, 27, 531–543. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Control function methods in applied econometrics. J. Hum. Resour. 2015, 50, 420–445. [Google Scholar] [CrossRef]
- Stock, J.H.; Yogo, M. Testing for Weak Instruments in Linear IV Regression. In Identification and Inference for Econometric Models: Essays in Honor of Thomas Rothenberg; Cambridge University Press: Cambridge, UK, 2005; pp. 80–108. [Google Scholar] [CrossRef]
- Wang, W.; Wen, J.; Luo, Z.; Luo, W. How does environmental punishment affect regional green technology innovation?—Evidence from Chinese provinces. PLoS ONE 2023, 18, e0288080. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, L.; Wu, J. Does the environmental supervision system improve air quality in China? An empirical study using the difference-in-differences model. J. Resour. Ecol. 2021, 12, 581–592. [Google Scholar] [CrossRef]
- Wang, B.; Ma, C.; Wu, J. Does central environmental inspection promote the industrial structure upgrading in China? An attention-based view. Front. Environ. Sci. 2022, 10, 1030653. [Google Scholar] [CrossRef]
- Andorka, R. Review of economics of shortage. Simultaneous Hungarian edition: “A. hiány,” by J. Kornai. Acta Oeconomica 1981, 26, 199–201. Available online: http://www.jstor.org/stable/40728846 (accessed on 17 July 2025).
- Maurel, M.; Pernet, T. New evidence on the soft budget constraint: Chinese environmental policy effectiveness in SOE-dominated cities. Public Choice 2021, 187, 111–142. [Google Scholar] [CrossRef]
- Fu, X. Foreign direct investment, absorptive capacity and regional innovation capabilities: Evidence from China. Oxf. Dev. Stud. 2008, 36, 89–110. [Google Scholar] [CrossRef]
- Fan, F.; Lian, H.; Liu, X.Y.; Wang, X.L. Can environmental regulation promote urban green innovation efficiency? An empirical study based on Chinese cities. J. Clean. Prod. 2021, 287, 125060. [Google Scholar] [CrossRef]
Category | Variable Name | Symbol | Measurement | Reference | Data Source |
---|---|---|---|---|---|
Dependent Variables | Substantive green innovation performance | GI | Number of green invention patent applications | [24,41] | CNRDS |
Strategic green innovation performance | GU | Number of green utility model patent applications | CNRDS | ||
Independent Variable | R&D investment intensity | RD | R&D investment/revenue | [8,10,14] | CSMAR |
Regulated variables | Environmental regulation | ERI | Pollution control amount/industrial output value | [42] | CSMAR |
Environmental subsidies | SUB | Natural logarithm of environmental protection subsidy values | [43] | WIND | |
Control variables | financial leverage | SLEC | Total liabilities of the enterprise/total assets | [24] | CSMAR |
enterprise age | AGE | The number of years since the establishment of the company is taken as the natural logarithm | CSMAR | ||
Return on assets | ROA | Net income divided by total asset value. | CSMAR | ||
capital-intensity | CC | Total asset value of the company/operating income | CSMAR | ||
Cash flow ratio | CASH | Total cash assets/assets | CSMAR | ||
Enterprise Ownership | SOE | For state-owned, it is 1; otherwise, it is 0 | CSMAR | ||
Equity concentration | SC | Proportion of the top ten shareholders | CSMAR |
Variables | Count | Mean | Sd | Min | Max |
---|---|---|---|---|---|
GI | 14,457 | 0.872 | 2.929 | 0.000 | 21.000 |
GU | 14,457 | 0.768 | 2.372 | 0.000 | 16.000 |
RD | 14,457 | 4.821 | 3.783 | 0.080 | 22.650 |
ERI | 14,457 | 0.015 | 0.015 | 0.001 | 0.083 |
SUB | 14,457 | 4.067 | 6.181 | 0.000 | 16.966 |
CASH | 14,457 | 0.811 | 1.203 | 0.023 | 7.710 |
CC | 14,457 | 2.134 | 1.273 | 0.475 | 8.217 |
SLEC | 14,457 | 0.393 | 0.189 | 0.059 | 0.868 |
AGE | 14,457 | 1.831 | 0.956 | 0.000 | 3.258 |
SOE | 14,457 | 0.262 | 0.440 | 0.000 | 1.000 |
SC | 14,457 | 0.582 | 0.143 | 0.246 | 0.878 |
ROA | 14,457 | 0.039 | 0.065 | −0.257 | 0.202 |
Variables | GU | GI | RD | ERI | SUB | CASH | CC | SLEC | AGE | SOE | SC | ROA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
GU | 1.000 | |||||||||||
GI | 0.682 *** | 1.000 | ||||||||||
RD | 0.067 *** | 0.086 *** | 1.000 | |||||||||
ERI | −0.031 *** | −0.025 *** | −0.173 *** | 1.000 | ||||||||
SUB | 0.00400 | −0.00300 | −0.170 *** | 0.168 *** | 1.000 | |||||||
CASH | −0.065 *** | −0.058 *** | 0.186 *** | −0.024 *** | −0.097 *** | 1.000 | ||||||
CC | −0.047 *** | −0.060 *** | 0.380 *** | 0.016 * | −0.074 *** | 0.223 *** | 1.000 | |||||
SLEC | 0.139 *** | 0.145 *** | −0.216 *** | 0.062 *** | 0.114 *** | −0.564 *** | −0.161 *** | 1.000 | ||||
AGE | −0.00700 | 0.021 ** | −0.199 *** | 0.100 *** | 0.137 *** | −0.276 *** | −0.072 *** | 0.365 *** | 1.000 | |||
SOE | 0.041 *** | 0.079 *** | −0.137 *** | 0.158 *** | 0.128 *** | −0.122 *** | −0.099 *** | 0.259 *** | 0.445 *** | 1.000 | ||
SC | 0.016 * | 0.0100 | −0.00500 | −0.055 *** | −0.057 *** | 0.161 *** | −0.068 *** | −0.181 *** | −0.461 *** | −0.125 *** | 1.000 | |
ROA | 0.014 * | 0.023 *** | −0.062 *** | −0.035 *** | −0.027 *** | 0.213 *** | −0.261 *** | −0.390 *** | −0.193 *** | −0.099 *** | 0.245 *** | 1.000 |
Variables | (1) GI | (2) GI | (3) GU | (4) GU |
---|---|---|---|---|
RD | 0.148 *** (3.68) | 0.253 *** (7.22) | 0.101 *** (2.88) | 0.158 *** (4.58) |
RD2 | −0.005 *** (−3.03) | −0.007 *** (−4.67) | −0.004 *** (−2.63) | −0.005 *** (−3.16) |
CASH | 0.051 (1.24) | −0.009 (−0.24) | ||
CC | −0.084 ** (−1.74) | −0.075 * (−1.78) | ||
SLEC | 3.811 *** (11.66) | 2.744 *** (8.71) | ||
AGE | −0.126 ** (−2.02) | −0.194 *** (−3.13) | ||
SOE | 0.497 *** (3.61) | 0.317 ** (2.44) | ||
SC | 0.071 (0.19) | −0.346 (−0.89) | ||
ROA | 5.651 *** (8.46) | 4.678 *** (6.80) | ||
Industry-fixed effects | YES | YES | YES | YES |
Year-fixed effects | YES | YES | YES | YES |
Observed value | 14,457 | 14,457 | 14,457 | 14,457 |
Pseudo R2 | 0.046 | 0.069 | 0.051 | 0.066 |
Prob > | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Log Likelihood | −13,219.28 | −12,901.47 | −13,030.86 | −12,830.97 |
Variables | (1) GI | (2) GI | (3) GU | (4) GU |
---|---|---|---|---|
RD | 0.287 *** (8.08) | 0.273 *** | 0.170 *** | 0.168 *** |
(7.83) | (4.87) | (4.91) | ||
RD2 | −0.010 *** (−6.17) | −0.009 *** | −0.006 ** | −0.005 *** |
(−5.72) | (−3.74) | (−3.67) | ||
ERI | −6.300 (−1.55) | −2.966 (−0.81) | ||
SUB | 0.011 ** (1.96) | 0.012 ** (2.10) | ||
ERI × RD | 6.921 *** (3.83) | 2.991 * | 1 | |
(1.70) | ||||
ERI × RD2 | −0.512 *** | −0.212 ** | 1 | |
(−4.52) | (−2.08) | |||
SUB × RD | 0.005 −1.35 | 0.001 | ||
(0.36) | ||||
SUB × RD2 | −0.0004 ** (−2.39) | −0.0002 | ||
(−1.04) | ||||
controlled variable | YES | YES | YES | YES |
Industry-fixed effects | YES | YES | YES | YES |
Year-fixed effects | YES | YES | YES | YES |
Observed value | 14,457 | 14,457 | 14,457 | 14,457 |
Pseudo R2 | 0.070 | 0.069 | 0.066 | 0.066 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | |
Log Likelihood | −12,882.93 | −12,891.83 | −12,825.88 | −12,824.24 |
Variables | (1) GI | (2) GI | (3) GU | (4) GU |
---|---|---|---|---|
RD | 0.237 *** (7.12) | 0.233 *** | 0.146 *** | 0.148 *** |
(7.10) | (5.61) | (5.70) | ||
RD2 | −0.008 *** (−5.50) | −0.008 *** | −0.005 *** | −0.005 *** |
(−5.39) | (−4.71) | (−4.65) | ||
ERI | −5.126 (−1.38) | −0.832 (−0.29) | ||
SUB | 0.011 ** (2.09) | 0.012 *** (2.95) | ||
ERI × RD | 5.248 *** (3.27) | 3.132 ** | ||
(2.28) | ||||
ERI × RD2 | −0.354 *** | −0.167 ** | ||
(−3.74) | (−2.42) | |||
SUB × RD | 0.003 (0.79) | 0.004 | ||
(1.27) | ||||
SUB × RD2 | −0.0003 * (−1.93) | −0.0003 | ||
(−1.56) | ||||
controlled variable | YES | YES | YES | YES |
Industry fixed effects | YES | YES | YES | YES |
Time fixed effects | YES | YES | YES | YES |
observed value | 14,457 | 14,457 | 14,457 | 14,457 |
Prob > | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Log Likelihood | −17,955.04 | −17,960.59 | −22,905.63 | −22,900.33 |
Variables | (1) GI | (2) GI | (3) GU | (4) GU |
---|---|---|---|---|
RD | 0.279 *** (5.29) | 0.310 *** | 0.145 *** | 0.168 *** |
(5.98) | (2.93) | (3.53) | ||
RD2 | −0.010 *** (−3.94) | −0.011 *** | −0.006 ** | −0.007 *** |
(−4.07) | (−2.56) | (−2.98) | ||
ERI | −8.365 ** (−2.04) | −4.982 (−1.22) | ||
SUB | 0.019 ** (2.47) | 0.018 ** (2.54) | ||
ERI × RD | 8.444 *** (3.74) | 3.273 | ||
(1.39) | ||||
ERI × RD2 | −0.635 *** | −0.212 | ||
(−3.88) | (−1.53) | |||
SUB × RD | 0.008 (1.47) | −0.004 | ||
(−0.81) | ||||
SUB × RD2 | −0.001 * (−1.75) | 0.0003 | ||
(0.97) | ||||
Controlled variable | YES | YES | YES | YES |
Industry-fixed effects | YES | YES | YES | YES |
Year-fixed effects | YES | YES | YES | YES |
Prob > | 0 | 0 | 0 | 0 |
Log Likelihood | −5162.91 | −5136.81 | −5136.81 | −5135.49 |
The First Phase of Regression | Second-Stage Regression Results | ||
---|---|---|---|
R&D intensity (1) | GI (2) | GU (3) | |
L.Policy Intensity | 3.68 *** (9.06) | ||
RD | 0.35 *** (2.59) | 0.22 (1.36) | |
RD2 | −0.009 *** (−5.13) | −0.006 *** (−3.57) | |
ERI × RD | 7.70 *** (3.95) | 5.04 ** (2.51) | |
ERI × RD2 | −0.56 *** (−4.64) | −0.33 *** (−2.66) | |
controlled variable | YES | YES | YES |
fixed effect | YES | YES | YES |
R2 | 0.36 | 0.07 | 0.07 |
F-statistic | 82.04 |
GI | Take Environmental Regulation as the Regulating Variable Panel (1) | The Environmental Subsidy is the Moderating Variable Panel (2) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variables | State- Owned | Non-State-Owned | Eastern | Mid- Sized | Western | State- Owned | Non-State-Owned | Eastern | Mid- Sized | Western |
RD | 0.213 *** (3.32) | 0.319 *** (7.82) | 0.354 *** (8.56) | 0.253 *** (3.74) | 0.141 ** (2.00) | 0.209 *** (3.31) | 0.302 *** (7.81) | 0.350 *** (8.89) | 0.201 *** (2.98) | 0.173 ** (2.20) |
RD2 | −0.009 *** (−2.71) | −0.011 *** (−5.68) | −0.013 *** (−6.28) | −0.010 *** (−3.41) | −0.006 ** (−2.02) | −0.007 ** (−2.25) | −0.010 *** (−5.66) | −0.012 *** (−6.75) | −0.006 *** (−2.05) | −0.010 ** (−2.01) |
ERI | −7.012 (−1.36) | −5.922 (−1.04) | −0.037 (−0.01) | −8.274 (−1.05) | −30.703 *** (−3.99) | |||||
SUB | −0.001 (−0.10) | 0.021 *** (2.97) | 0.021 *** (3.30) | −0.007 (−0.65) | −0.031 * (−1.73) | |||||
ERI × RD | 9.250 *** (3.66) | 7.939 *** (2.78) | 9.078 *** (3.53) | 6.882 ** (2.12) | 0.091 (0.03) | |||||
ERI × RD2 | −0.764 *** (−3.99) | −0.508 *** (−3.32) | −0.613 *** (−4.23) | −0.522 *** (−2.74) | −0.394 * (−1.80) | |||||
SUB × RD | 0.001 (0.14) | 0.001 (0.27) | 0.010 * (1.90) | −0.001 (−0.21) | 0.004 (0.45) | |||||
SUB × RD2 | 0.0008 (0.26) | −0.0004 (−1.51) | −0.001 *** (−3.13) | 0.0001 (0.56) | −0.002 (−1.54) | |||||
Control variable | YES | YES | ||||||||
fixed effect | YES | YES | ||||||||
N | 3794 | 10,663 | 9593 | 2933 | 1885 | 3794 | 10,663 | 9593 | 2933 | 1885 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Si, Y. Analysis of the Inverted “U” Relationship Between R&D Intensity and Green Innovation Performance: A Study Based on Listed Manufacturing Enterprises in China. Sustainability 2025, 17, 7625. https://doi.org/10.3390/su17177625
Wang L, Si Y. Analysis of the Inverted “U” Relationship Between R&D Intensity and Green Innovation Performance: A Study Based on Listed Manufacturing Enterprises in China. Sustainability. 2025; 17(17):7625. https://doi.org/10.3390/su17177625
Chicago/Turabian StyleWang, Ling, and Yuyang Si. 2025. "Analysis of the Inverted “U” Relationship Between R&D Intensity and Green Innovation Performance: A Study Based on Listed Manufacturing Enterprises in China" Sustainability 17, no. 17: 7625. https://doi.org/10.3390/su17177625
APA StyleWang, L., & Si, Y. (2025). Analysis of the Inverted “U” Relationship Between R&D Intensity and Green Innovation Performance: A Study Based on Listed Manufacturing Enterprises in China. Sustainability, 17(17), 7625. https://doi.org/10.3390/su17177625