Analysis of Trihalomethanes in Drinking Water Distribution Lines and Assessment of Their Carcinogenic Risk Potentials
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Water Sampling
2.2. Chemicals
2.3. Analytical Procedure
2.4. Statistical Analysis
2.5. Cancer Risk Assessment
2.6. Cancer Risk Characterization
2.7. Non-Cancer Risk
2.8. Sensitivity Radar Chart
3. Results and Discussion
3.1. Characterization of Source Waters and THMs Concentrations
3.2. Correlation Analysis
3.3. Levels of THMs in Drinking Water Distribution Systems
3.4. Spatial and Seasonal Speciation of THMs in Drinking Water Distribution Systems
3.5. Total Lifetime Cancer Risk Assessment
3.6. Contribution of THM Species to Total Cancer Risk
3.7. Non-Cancer Risk Assessment
3.8. Sensitivity Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Onyeaka, H.; Anumudu, C.K.; Okolo, C.A.; Anyogu, A.; Odeyemi, O.; Bassey, A.P. A review of the top 100 most cited papers on food safety. Qual. Assur. Saf. Crops Foods 2022, 14, 91–104. [Google Scholar] [CrossRef]
- Nshemereirwe, A.; Zewge, F.; Malambala, E. Evaluation of formation and health risks of disinfection by-products in drinking water supply of Ggaba waterworks, Kampala, Uganda. J. Water Health 2022, 20, 560–574. [Google Scholar] [CrossRef] [PubMed]
- Kanno, G.; Ashuro, Z.; Negassa, B.; Alembo, A.; Abate, Z.; Getahun, B.; Kabthymer, R.H.; Tesfu, M.; Andarge, S.D.; Korita, G.K.; et al. Sanitary Survey and drinking water quality performance of treatment plant: The case of Dilla Town, Ethiopia. Sci. Med. 2020, 1, 3–9. [Google Scholar]
- Zietzschmann, F.; Worch, E.; Altmann, J.; Ruhl, A.S.; Sperlich, A.; Meinel, F.; Jekel, M. Impact of EfOM size on competition in activated carbon adsorption of organic micro-pollutants from treated wastewater. Water Res. 2014, 65, 297–306. [Google Scholar] [CrossRef]
- Akintokun, O.A.; Okediran, O.A.; Agoh, A.O. Development of gas chromatographic method for the analysis of trihalomethanes (THMS) in drinking water. Ajayi Crowther J. Pure Appl. Sci. 2022, 1, 18–27. [Google Scholar] [CrossRef]
- Dong, F.; Zhu, J.; Li, J.; Fu, C.; He, G.; Lin, Q.; Li, C.; Song, S. The occurrence, formation and transformation of disinfection byproducts in the water distribution system: A review. Sci. Total Environ. 2023, 867, 161497. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Rodriguez, M.J.; Sadiq, R. Disinfection byproducts in Canadian provinces: Associated cancer risks and medical expenses. J. Hazard. Mater. 2011, 187, 574–584. [Google Scholar] [CrossRef]
- Cantor, K.; Lynich, C.; Hildesheim, M.; Dosemeci, M.; Lubin, J.; Alavanja, M.; Craun, G. Drinking water source and chlorination byproducts I, Risk of Bladder Cancer. Epidemiology 1998, 9, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.M.; Komulainen, H. Carcinogenicity of the chlorination disinfection byproduct MX. J. Environ. Sci. Health Part C 2005, 23, 163–214. [Google Scholar] [CrossRef]
- Das, J.; Rehman, A.U.; Verma, R.; Gulen, G.; Young, M.H. Comparative Life-Cycle Assessment of Electricity-Generation Technologies: West Texas Case Study. Energies 2024, 17, 992, Erratum in Energies 2024, 17, 2380. [Google Scholar] [CrossRef]
- Gong, T.; Xian, Q.; Zhang, B.; Hang, C. Occurrence and health risk assessment of halogenated disinfection byproducts in indoor swimming pool water. Sci. Total Environ. 2016, 543, 425–431. [Google Scholar] [CrossRef]
- Bond, T.; Goslan, E.H.; Parsons, S.A.; Jefferson, B. Treatment of disinfection byproduct precursors. Environ. Technol. 2011, 32, 1–25. [Google Scholar] [CrossRef]
- Xie, P.C.; Ma, J.; Fang, J.Y.; Guan, Y.; Yue, S.Y.; Li, X.C.; Chen, L.W. Comparison of permanganate preoxidation and preozonation on algae-containing water: Cell integrity, characteristics, and chlorinated disinfection byproduct formation. Environ. Sci. Technol. 2013, 47, 14051–14061. [Google Scholar] [CrossRef]
- Kolb, C.; Francis, R.A.; VanBriesen, J.M. Disinfection byproduct regulatory compliance surrogates and bromide-associated risk. J. Environ. Sci. 2017, 58, 191–207. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Z.; Shen, J.; Zhao, S.; Kang, J.; Chu, W.; Zhou, Y.; Wang, B. Formation and interdependence of disinfection byproducts during chlorination of natural organic matter in a conventional drinking water treatment plant. Chemosphere 2020, 242, 125227. [Google Scholar] [CrossRef]
- Perez-Lucas, G.; Martínez-Menchon, M.; Vela, N.; Navarro, S. Removal assessment of disinfection by-products (DBPs) from drinking water supplies by solar heterogeneous photocatalysis: A case study of trihalomethanes (THMs). J. Environ. Manag. 2022, 321, 115936. [Google Scholar] [CrossRef]
- Padhi, R.K.; Sowmya, M.; Mohanty, A.K.; Bramha, S.N.; Satpathy, K.K. Formation and speciation characteristics of brominated trihalomethanes in seawater chlorination. Water Environ. Res. 2012, 84, 2003–2009. [Google Scholar] [CrossRef] [PubMed]
- Fabbricino, M.; Korshin, G.V. Formation of disinfection by-products and applicability of differential absorbance spectroscopy to monitor halogenation in chlorinated coastal and deep ocean seawater. Desalination 2005, 176, 57–69. [Google Scholar] [CrossRef]
- Shah, A.D.; Liu, Z.-Q.; Salhi, E.; Hofer, T.; Werschkun, B.; von Gunten, U. Formation of disinfection by-products during ballast water treatment with ozone, chlorine, and peracetic acid: Influence of water quality parameters. Environ. Sci. Water Res. Technol. 2015, 1, 465–480. [Google Scholar] [CrossRef]
- Hua, G.; Reckhow, D.A. Effect of pre-ozonation on the formation and speciation of DBPs. Water Res. 2013, 4322–4330. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency (US EPA). National primary drinking water regulations: Stage 2 disinfectants and disinfection byproducts rule. Fed. Regist. 2006, 71, 388–494. [Google Scholar]
- European Community (EC). Re-examined proposal for a Council Directive on the quality of water intended for human consumption. In Council of the European Union. Directive 80/778/EEC; COM (98) 388 final. 95/0010 (SYN); European Community: Brussels, Belgium, 1998. [Google Scholar]
- Turkish Ministry of Health (TMH). Turkish Ministry of Health: Regulation Concerning Water Intended for Human Consumption; Official News Paper No. 25730; TMH: Ankara, Turkey, 2005.
- Chowdhury, S.; Champagne, P.; McLellan, P. Factors influencing formation of Trihalomethanes in drinking water: Results from multivariate statistical investigation of the Ontario drinking water surveillance program database. Water Qual. Res. J. 2008, 43, 189–199. [Google Scholar] [CrossRef]
- Ye, B.; Wang, W.; Yang, L.; Wei, J.; E, X. Factors influencing disinfection by-products formation in drinking water of six cities in China. J. Hazard. Mater. 2009, 171, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Mahato, J.; Gupta, S. Modification of Bael fruit shell and its application towards natural organic matter removal with special reference to predictive modeling and control of THMs in drinking water supplies. Environ. Technol. Innov. 2020, 18, 100666. [Google Scholar] [CrossRef]
- Kitis, M.; Yigit, N.O.; Harman, B.I.; Muhammetoglu, H.; Muhammetoglu, A.; Karadirek, I.E. Occurrence of trihalomethanes in chlorinated groundwaters with very low natural organic matter and bromide concentrations. Environ. Forensics 2010, 11, 264–274. [Google Scholar] [CrossRef]
- Graves, C.G.; Matanoski, G.M.; Tardiff, R.C. Weight of evidence for an association between adverse reproductive and developmental effects and exposure to disinfection by-products: A critical review. Regul. Toxicol. Pharmacol. 2001, 34, 103–124. [Google Scholar] [CrossRef]
- Eslami, H.; Esmaeili, A.; Razaeian, M.; Salari, M.; Hosseini, A.N.; Mobini, M.; Barani, A. Potentially toxic metal concentration, spatial distribution, and health risk assessment in drinking groundwater resources of southeast Iran. Geosci. Front. 2022, 13, 101276. [Google Scholar] [CrossRef]
- Kazemi, A.; Berizi, E.; Emadi, Z.; Mohammadpour, A. Trihalomethanes in chlorinated drinking water: Seasonal variations and health risk assessment in southern Iran. Groundw. Sustain. Dev. 2024, 27, 101342. [Google Scholar] [CrossRef]
- Lee, S.C.; Guo, H.; Lam, S.M.J.; Lau, A.L.S. Multipathway risk assessment on disinfection by-products of drinking water in Hong Kong. Environ. Res. 2004, 94, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Gängler, S.; Makris, K.C.; Bouhamra, W.; Dockery, D.W. Coupling external with internal exposure metrics of trihalomethanes in young females from Kuwait and Cyprus. J. Expo. Sci. Environ. Epidemiol. 2018, 28, 140–146. [Google Scholar] [CrossRef]
- Kumari, M.; Gupta, S.K.; Mishra, B.K. Multi-exposure cancer and non-cancer risk assessment of trihalomethanes in drinking water supplies—A case study of Eastern region of India. Ecotoxicol. Environ. Saf. 2015, 113, 433–438. [Google Scholar] [CrossRef]
- TSE-EN-ISO-5667-1; Sampling Programmes and Sampling Regulation on the Design of Techniques. Turkish Ministry of Environment, Urbanisation and Climate Change (TMEUC): Ankara, Turkey, 2008; pp. 1–45.
- US EPA. Method 551. Determination of Chlorination Disinfection By-Products and Chlorinated Solvents in Drinking Water by Liquid-Liquid Extraction and Gas Chromatography with Electron-Capture Detection; Environmental Monitoring Systems Laboratory, Office of Research and Development, US Environmental Protection Agency: Cincinnati, OH, USA, 2003.
- APHA. Standard Methods for the Examination of Water and Wastewater; American Water Works Association, Water Environment Federation: Washington, DC, USA, 2005. [Google Scholar]
- Uyak, V. Multi-pathway risk assessment of trihalomethane exposure in Istanbul drinking water supplies. Environ. Int. 2006, 32, 12–21. [Google Scholar] [CrossRef]
- USEPA. Guidelines for Exposure Assessment; EPA/600/Z-92/001; U.S. Environmental Protection Agency, Risk Assessment Forum: Washington, DC, USA, 1992.
- Genisoglu, M.; Ergi-Kaytmaz, C.; Sofuoğlu, S.C. Multi-Route Multi-Pathway exposure to trihalomethanes and associated cumulative health risks with response and dose addition. J. Environ. Manag. 2019, 233, 823–831. [Google Scholar] [CrossRef]
- Turkish Statistical Institute (TSI). Nüfus ve Demografi. 2021. Available online: https://data.tuik.gov.tr/Kategori/GetKategori?p=Nufusve-Demografi-109 (accessed on 26 June 2025).
- Zhang, H.; Chang, S.; Wang, L.; Wang, W. Estimating and comparing the cancer risks from trihalometans and lowlevel arsenic in drinking water based on disability adjusted life years. Water Res. 2018, 145, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; An, W.; Li, H.; Su, M.; Zhang, J.; Yang, M. Cancer risk assessment on trihalomethanes and haloacetic acids in drinking water of China using disability-adjusted life years. J. Hazard. Mater. 2014, 280, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Little, J.C. Applying the Two-Resistance Theory to Contaminant Volatilization in Showers. Environ. Sci. Technol. 1992, 26, 1341–1349. [Google Scholar] [CrossRef]
- Nicholson, B.C.; Magure, B.P.; Bursill, D.B. Henry’s law constants for the trihalomethanes: Effects of water composition and temperature. Environ. Sci. Technol. 1984, 18, 518–521. [Google Scholar] [CrossRef]
- Ozgür, C.; Harman, B.İ.; Koseoglu, H.; Bekaroğlu, Ş.S.K. Life-Time cancer risk assessment of carbonaceous disinfection by-products through multiple pathways of exposure in drinking water: Isparta distribution system. Pamukkale Univ. J. Eng. Sci. 2022, 28, 901–912. [Google Scholar] [CrossRef]
- RAIS (The Risk Assessment Information System). RAIS Toxicity Values and Physical Parameters Search. 2019. Available online: https://rais.ornl.gov/cgi-bin/tools/TOX_search?select=chemtox (accessed on 26 June 2025).
- Tafesse, N.; Porcelli, M.; Hirpessa, B.B.; Gasana, J.; Padhi, R.K.; Garie, S.R.; Ambelu, A. Exposure and carcinogenic risk assessment of trihalomethanes (THMs) for water supply consumers in Addis Ababa, Ethiopia. Toxicol. Rep. 2023, 10, 261–268. [Google Scholar] [CrossRef]
- Wang, Y.; Small, M.J.; VanBriesen, J.M. Assessing the risk associated with increasing bromide in drinking water sources in the Monongahela River, Pennsylvania; Supplemental data. J. Environ. Eng. 2017, 143, 04016089. [Google Scholar] [CrossRef]
- Lee, J.; Kim, E.S.; Roh, B.S.; Zoh, K.D.; Eom, S.W. Occurrence of disinfection by-products in tap water distribution systems and their associated health risk. Environ. Monit. Assess. 2013, 185, 7675–7691. [Google Scholar] [CrossRef]
- Toroz, I.; Uyak, V. Seasonal variation of trihalomethanes (THMs) within water distribution networks of Istanbul City. Desalination 2005, 17, 127–141. [Google Scholar] [CrossRef]
- Liang, L.; Singer, P.C. Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water. Environ. Sci. Technol. 2003, 37, 2920–2928. [Google Scholar] [CrossRef]
- Ozdemir, K.; Yıldırım, Y.; Uyak, V.; Toroz, I. Experimental Investigation of Trihalomethanes Formation and Its Modeling in Drinking waters. Asian J. Chem. 2015, 27, 984–990. [Google Scholar] [CrossRef]
- Reckhow, D.A.; Singer, P.C.; Malcolm, R.L. Chlorination of humic materials: Byproduct formation and chemical interpretations. Environ. Sci. Technol. 1990, 24, 1655–1664. [Google Scholar] [CrossRef]
- Chowdhury, S. Exposure assessment for trihalomethanes in municipal drinking water and risk reduction strategy. Sci. Total Environ. 2013, 463–464, 922–930. [Google Scholar] [CrossRef] [PubMed]
- Uyak, V.; Ozdemir, K.; Toroz, I. Multiple linear regression modeling of disinfection by-products formation in Istanbul drinking water reservoirs. Sci. Total Environ. 2008, 378, 269–280. [Google Scholar] [CrossRef]
- Rizzo, L.; Belgiorno, V.; Gallo, M.; Meric, S. Removal of THM precursors from a high-alkaline surface water by enhanced coagulation and behavior of THMFP toxicity on D. magna. Desalination 2005, 176, 177–188. [Google Scholar] [CrossRef]
- Tsitsifli, S.; Kanakoudis, V. Total and specific THMs’ prediction models in drinking water pipe network. Environ. Sci. Proc. 2020, 2, 55. [Google Scholar] [CrossRef]
- Ates, N.; Kaplan-Bekaroglu, S.S.; Dadaser-Celik, F. Spatial/temporal distribution and multi-pathway cancer risk assessment of trihalomethanes in low TOC and high bromide groundwater. Environ. Sci. Process. Impacts 2020, 22, 2276–2290. [Google Scholar] [CrossRef]
- Kelly-Coto, D.E.; Gamboa-Jiménez, A.; Mora-Campos, D.; Salas-Jiménez, P.; Silva-Narváez, B.; Jiménez-Antillón, J.; Pino-Gómez, M.; Romero-Esquivel, L.G. Modeling the formation of trihalomethanes in rural and semi-urban drinking water distribution networks of Costa Rica. Environ. Sci. Pollut. Control Ser. 2022, 29, 32845–32854. [Google Scholar] [CrossRef]
- Tubic, A.; Agbaba, J.; Dalmacija, B.; Molnar, J.; Maletic, S.; Watson, M.; Perovic, S.U. Insight into changes during coagulation in NOM reactivity for trihalomethane and haloacetic acids formation. J. Environ. Manag. 2013, 118, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Parveen, N.; Goel, S. Trihalomethane cancer risk assessment for private and shared residences: Addressing the differences in inhalation exposure. Toxics 2023, 11, 295. [Google Scholar] [CrossRef]
- Almonacid Garrido, M.C.; Villanueva-Suárez, M.J.; Álamo Gómez, A.; Garcia-Alonso, A.; Tenorio Sanz, M.D. Trihalomethane levels in municipal drinking water of Madrid (Spain) and health risk assessment for oral exposure. Expo. Health 2024, 16, 911–924. [Google Scholar] [CrossRef]
- Mujathel, A.M.; El-Barky, W.; Fayed, M.; Aly, S.A. Trihalomethane evaluation in chlorinated treated drinking water sources in Saudi Arabia (Aseer region a case study). Alex. Eng. J. 2022, 61, 12699–12711. [Google Scholar] [CrossRef]
- Almoiqli, M.S.; Alshayeb, N.K.; Alsaif, R.S.; Almutairi, A.K.; Aloliwi, A.S.; Aljufareen, M.A.; Alharbi, K.N.; Aleid, M.K. Evaluation of water quality via determination of trihalomethanes in water distribution networks of Riyadh city in Kingdom of Saudi Arabia. Arab. J. Chem. 2024, 17, 105431. [Google Scholar] [CrossRef]
- Nikolaou, A.D.; Lekkas, T.D.; Kostopoulou, M.N.; Golfinopoulos, S.K. Investigation of the behaviour of haloketones in water samples. Chemosphere 2001, 44, 907–912. [Google Scholar] [CrossRef]
- Mosaferi, M.; Asadi, M.; Aslani, H.; Mohammadi, A.; Abedi, S.; Mansour, S.N.; Maleki, S. Temporospatial variation and health risk assessment of trihalomethanes (THMs) in drinking water (Northwest Iran). Environ. Sci. Pollut. Res. 2021, 28, 8168–8180. [Google Scholar] [CrossRef]
- Legay, C.; Rodriguez, M.J.; Miranda-Moreno, L.; Sérodes, J.-B.; Levallois, P. Multi-level modelling of chlorination by-product presence in drinking water distribution systems for human exposure assessment purposes. Environ. Monit. Assess. 2011, 178, 507–524. [Google Scholar] [CrossRef]
- Rodriguez, M.J.; Serodes, J.B.; Levallois, P.; Proulx, F. Chlorinated disinfection by-products in drinking water according to source, treatment, season, and distribution location. J. Environ. Eng. Sci. 2007, 6, 355–365. [Google Scholar] [CrossRef]
- Uyak, V.; Toroz, I. Disinfection by-product precursors reduction by various coagulation techniques in Istanbul water supplies. J. Hazard. Mater. 2007, 141, 320–328. [Google Scholar] [CrossRef]
- Mıshaqa, E.I.; Radwan, E.K.; Ibrahim, B.M.B.; Hegazy, T.A.; Ibrahim, M.S. Multi-exposure human health risks assessment of trihalomethanes in drinking water of Egypt. Environ. Res. 2022, 207, 112643. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhai, H.; Han, J.; Liu, J.; Sharma, V.K. Effects of ozone dose on brominated DBPs in subsequent chlor(am)ination: A comprehensive study of aliphatic, alicyclic and aromatic DBPs. Water Res. 2024, 250, 121039. [Google Scholar] [CrossRef]
- Ozdemir, K.; Toroz, I.; Uyak, V. Relationship Among Chlorine Dose, Reaction Time and Bromide Ions on Trihalomethane Formation in Drinking Water Sources in Istanbul, Turkey. Asian J. Chem. 2014, 26, 6935–6939. [Google Scholar] [CrossRef]
- Perez, M.F.L.; Susa, M.R. Exopolymeric substances from drinking water biofilms: Dynamics of production and relation with disinfection by products. Water Res. 2017, 116, 304–315. [Google Scholar] [CrossRef]
- Xu, J.N.; Huang, C.H.; Shi, X.Y.; Dong, S.K.; Yuan, B.L.; Nguyen, H.T. Role of drinking water biofilms on residual chlorine decay and trihalomethane formation: An experimental and modeling study. Sci. Total Environ. 2018, 642, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Duan, X.; Chen, J.; Xie, S.; Qi, H.; Li, F.; Yuan, B. THMs, HAAs and NAs production from culturable microorganisms in pipeline network by ozonation, chlorination, chloramination and joint disinfection strategies. Sci. Total Environ. 2020, 744, 140833. [Google Scholar] [CrossRef]
- Zhou, S.; Zhu, S.; Shao, Y.; Gao, N. Characteristics of C-, N-DBPs formation from algal organic matter: Role of molecular weight fractions and impacts of pre-ozonation. Water Res. 2015, 72, 381–390. [Google Scholar] [CrossRef]
- Zhai, H.; He, X.; Zhang, Y.; Du, T.; Adeleye, A.S.; Li, Y. Disinfection byproduct formation in drinking water sources: A case study of Yuqiao reservoir. Chemosphere 2017, 181, 224–231. [Google Scholar] [CrossRef]
- El-Athman, F.; Zehlike, L.; Kämpfe, A.; Junek, R.; Selinka, H.C.; Mahringer, D.; Grunert, A. Pool water disinfection by ozone-bromine treatment: Assessing the disinfectant efficacy and the occurrence and in vitro toxicity of brominated disinfection by-products. Water Res. 2021, 204, 117648. [Google Scholar] [CrossRef]
- Kampioti, A.A.; Stephanou, G.E. The impact of bromide on the formation of neutral and acidic disinfection by-products (DBPs) in Mediterranean chlorinated drinking water. Water Res. 2002, 36, 2596–2606. [Google Scholar] [CrossRef]
- Yang, H.; Mao, Y.; Wang, X.; Wang, H.; Xie, Y.F. Effects of ozonation on disinfection byproduct formation and speciation during subsequent chlorination. Chemosphere 2014, 17, 515–520. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, B.; Liu, Y. Effect of ozone on algal organic matters as precursors for disinfection by-products production. Environ. Technol. 2014, 35, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Volk, C.; Kaplan, L.A.; Robinson, J.; Johnson, B.; Wood, L.; Zhu, H.W.; LeChevallier, M. Fluctuations of dissolved organic matter in a river used for drinking water and impacts on conventional treatment plant performance. Environ. Sci. Technol. 2005, 39, 4258–4264. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, K. The Effects of Coagulation on Adsorption of Micropollutants in Waste Water Treatment Plants. ChemistrySelect 2024, 9, e202403043. [Google Scholar] [CrossRef]
- Sharp, E.L.; Parsons, S.A.; Jefferson, B. The impact of seasonal variations in DOC arising from a moorland peat catchment on coagulation with iron and aluminum salts. Environ. Pollut. 2006, 140, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Golfinopoulos, S.K.; Arhonditsis, G.B. Multiple regression models: A methodology for evaluating trihalomethane concentrations in drinking water from raw water characteristics. Chemosphere 2002, 47, 107–1018. [Google Scholar] [CrossRef]
- Rodriguez, M.J.; Vinette, Y.; Serodes, J.B.; Bouchard, C. Trihalomethanes in drinking water of Greater Quebec Region (Canada): Occurrence, variations and modelling. Environ. Monit. Assess. 2003, 89, 69–93. [Google Scholar] [CrossRef]
- Kujlu, R.; Mahdavianpour, M.; Ghanbari, F. Multi-route human health risk assessment from trihalomethanes in drinking and non-drinking water in Abadan, Iran. Environ. Sci. Pollut. Res. 2020, 27, 42621–42630. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, G.; Engel, B. Health risk assessment of trihalomethanes in water treatment plants in Jiangsu Province, China. Ecotoxicol. Environ. Saf. 2019, 170, 346–354. [Google Scholar] [CrossRef]
- Mishra, B.K.; Gupta, S.K.; Sinha, A. Human health risk analysis from disinfection by-products (DBPs) in drinking and bathing water of some Indian cities. J. Environ. Health Sci. Eng. 2014, 12, 73. [Google Scholar] [CrossRef]
- Semerjian, L.; Dennis, J. Multipathway risk assessment of trihalomethane exposure in drinking water of Lebanon. J. Water Health 2007, 5, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Basu, M.; Gupta, S.K.; Singh, G.; Mukhopadhyay, U. Multi-route risk assessment from trihalomethanes in drinking water supplies. Environ. Monit. Assess. 2011, 178, 121–134. [Google Scholar] [CrossRef]
- Ahmed, F.; Khan, T.A.; Fakhruddin, A.N.M.; Rahman, M.M.; Mazumdar, R.M.; Ahmed, S.; Abdullah, A.T.M. Estimation and exposure concentration of trihalomethanes (THMs) and its human carcinogenic risk in supplied pipeline water of Dhaka City, Bangladesh. Environ. Sci. Pollut. Res. 2019, 26, 16316–16330. [Google Scholar] [CrossRef]
- Abdolahnejad, A.; Pourbakbar, M.; Mohammadi, A.; Solimani, A.; Benhami, A.; Jafari, N.; Ghayurdoost, F. Analysis of THM formation potential in drinking water networks: Effects of network age, health risks, and seasonal variations in northwest of Iran. Heliyon 2024, 10, e34563. [Google Scholar] [CrossRef]
- Ye, B.; Wang, W.; Yang, L.; Li, Y.; Wang, Y. Risk assessment on disinfection by-products of drinking water of different water sources and disinfection processes. Environ. Int. 2007, 33, 219–225. [Google Scholar] [CrossRef]
- Sadeghi, H.; Nasseri, S.; Yunesian, M.; Mahvi, A.H.; Nabizadeh, R.; Alimohammadi, M. Trihalomethanes in urban drinking water: Measuring exposures and assessing carcinogenic risk. J. Environ. Health Sci. Eng. 2019, 17, 619–632. [Google Scholar] [CrossRef]
- Pentamwa, P.; Sukton, B.; Wongklom, T.; Pentamwa, S. Cancer risk assessment from trihalomethanes in community water supply at northeastern Thailand. Int. J. Environ. Sustain. 2013, 4, 538–544. [Google Scholar] [CrossRef]
- Kumari, M.; Gupta, S.K. Advanced oxidation of Trihalomethane (THMs) precursors and season-wise multi-pathway human carcinogenic risk assessment in Indian drinking water supplies. Process Saf. Environ. Protect. 2022, 159, 996–1007. [Google Scholar] [CrossRef]
- Kumari, M.; Gupta, S.K. Cumulative human health risk analysis of trihalomethanes exposure in drinking water systems. J. Environ. Manag. 2022, 321, 115949. [Google Scholar] [CrossRef] [PubMed]
- Kumari, M.; Gupta, S.K. Age dependent adjustment factor (ADAF) for the estimation of cancer risk through trihalomethanes (THMs) for different age groups. A innovative approach. Ecotoxicol. Environ. Saf. 2018, 148, 960–968. [Google Scholar] [CrossRef]
- USEPA. Guidelines for Carcinogen Risk Assessment; NCEA-F-0644; U.S. Environmental Protection Agency, Risk Assessment Forum: Washington, DC, USA, 1999.
- Integrated Risk Information System (IRIS). United States Environmental Protection Agency. Available online: https://www.epa.gov/iris (accessed on 21 September 2018).
- Tokmak, B.; Capar, G.; Dilek, F.B.; Yetis, U. Trihalomethanes and associated potential cancer risks in the water supply in Ankara, Turkey. Environ. Res. 2004, 96, 345–352. [Google Scholar] [CrossRef]
- Moudgal, C.J.; Lipscomb, J.C.; Bruce, R.M. Potential health effects of drinking water disinfection byproducts using quantitative structure toxicity relationship. Toxicology 2000, 147, 109–131. [Google Scholar] [CrossRef]
- Gilca, A.F.; Teodosiu, C.; Fiore, S.; Musteret, C.P. Emerging disinfection byproducts: A review on their occurrence and control in drinking water treatment processes. Chemosphere 2020, 259, 127476. [Google Scholar] [CrossRef]
- Evlampidou, I.; Font-Ribera, L.; Rojas-Rueda, D.; Gracia-Lavedan, E.; Costet, N.; Pearce, N.; Vineis, P.; Jaakkola, J.J.K.; Delloye, F.; Makris, K.C.; et al. Trihalomethanes in drinking water and bladder cancer burden in the European Union. Environ. Health Perspect. 2020, 128, 17001. [Google Scholar] [CrossRef]
- Du, Y.; Zhao, L.; Ban, J.; Zhu, J.; Wang, S.; Zhu, X.; Zhang, Y.; Huang, Z.; Li, T. Cumulative health risk assessment of disinfection by-products in drinking water by different disinfection methods in typical regions of China. Sci. Total Environ. 2021, 770, 144662. [Google Scholar] [CrossRef]
- Greentumble 2023. 10 Countries with the Best Quality Tap Water to Drink. Available online: https://greentumble.com/10-countries-with-the-best-quality-tap-water (accessed on 26 June 2025).
- Paggiaro, J.; de Souza, A.K.N.; Bihain, M.F.R.; dos Santos Pereira, A.K.; Cavallini, G.S.; Pereira, D.H. Disinfection of water by chlorine, peracetic acid, ultraviolet and solar radiations: A review. Fine Chem. Eng. 2024, 5, 172–196. [Google Scholar] [CrossRef]
- Li, J.; Xie, B.; Chen, J.; Kai, J. Association between drinking water disinfection byproducts exposure and human bladder cancer: A time-updated meta-analysis of trihalomethanes. J. Hazard. Mater. 2025, 490, 1–13. [Google Scholar] [CrossRef]
- Mohammadi, A.; Faraji, M.; Ebrahimi, A.A.; Nemati, S.; Abdolahnejad, A.; Miri, M. Comparing THMs level in old and new water distribution systems; seasonal variation and Probabilistic risk assessment. Ecotoxicol. Environ. Saf. 2020, 192, 110286. [Google Scholar] [CrossRef]
- Gabriel, M.F.; Felgueiras, F.; Mourão, Z.; Fernandes, E.O. Assessment of the air quality in 20 public indoor swimming pools located in the northern region of Portugal. Environ. Int. 2019, 133 Pt B, 105274. [Google Scholar] [CrossRef]
- Catto, C.; Charest-Tardif, G.; Rodrigues, M.; Tardif, R. Assessing exposure to chloroform in swimming pools using physiologically based toxicokinetic modeling. Environ. Pollut. 2012, 1, 132–147. [Google Scholar] [CrossRef]
- Ewaid, S.H.; Rabee, A.M.; Al-Naseri, S.K. Carcinogenic risk assessment of trihalomethanes in major drinking water sources of Baghdad city. Water Resour. 2018, 45, 803. [Google Scholar] [CrossRef]
- Babaei, A.A.; Alavi, N.; Hassani, G.; Yousefian, F.; Shirmardi, M.; Atari, L. Occurrence and related risk assessment of trihalomethanes in drinking water, Ahvaz, Iran. Fresenius Environ. Bull. 2015, 24, 4807–4815. [Google Scholar]
- Ding, X.; Hao, Y.; Zhu, X.; Chen, L.; Zhu, J.; Huang, C.; Zhang, X.; Zhou, R. Occurrence and multi-pathway health risk assessment of trihalomethanes in drinking water of Wuxi, China. Chemosphere 2023, 335, 139085. [Google Scholar] [CrossRef] [PubMed]
- Amjad, H.; Hashmi, I.; Awan, M.A.; Rehman, M.S.U.; Ghaffar, S.; Khan, Z. Cancer and non-cancer risk assessment of trihalomethanes in urban drinking water supplies of Pakistan. Ecotoxicol. Environ. Saf. 2013, 91, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Karim, Z.; Mumtaz, M.; Kamal, T. Health risk assessment of trihalomethanes from tap water in Karachi, Pakistan. J. Chem. Soc. Pak. 2011, 33, 215–219. [Google Scholar]
- Lee, J.; Ha, K.T.; Zoh, K.D. Characteristics of trihalomethane (THM) production and associated health risk assessment in swimming pool waters treated with different disinfection methods. Sci. Total Environ. 2009, 407, 1990–1997. [Google Scholar] [CrossRef]
- Wang, X.; Dong, S. Assessment of exposure of children swimmers to trihalomethanes in an indoor swimming pool. J. Water Health 2020, 18, 533–544. [Google Scholar] [CrossRef]
- Shi, Y.; Ma, W.; Han, F.; You, X.; Geng, Y.; Wang, H.; Kimura, S.Y.; Wei, X.; Kauffman, A.; Xiao, S.; et al. Precise exposure assessment revealed the cancer risk and disease burden caused by trihalomethanes and haloacetic acids in Shanghai indoor swimming pool water. J. Hazard. Mater. 2020, 15, 121810. [Google Scholar] [CrossRef]
- Panyakapo, M.; Soontornchai, S.; Paopuree, P. Cancer risk assessment from exposure to trihalomethanes in tap water and swimming pool water. J. Environ. Sci. 2008, 20, 372–378. [Google Scholar] [CrossRef]
- Viana, R.B.; Cavalcante, R.M.; Braga, F.M.G.; Viana, B.A.; de Araujo, J.C.; Nascimento, R.F.; Pimentel, A.S. Risk assessment of trihalomethanes from tap water in Fortaleza, Brazil. Environ. Monit. Assess. 2009, 151, 317–325. [Google Scholar] [CrossRef]
- Costa, C.; Assunçao, R.; Sequeira, D.; Esteves, F.; Valdiglesias, V.; Laffon, B.; Teixeira, J.P.; Madureira, J. From trihalomethanes chronic daily intake through multiple exposure routes to cancer and non-cancer health risk assessment: Evidence from public Portuguese indoor swimming pools facilities using a probabilistic approach. Sci. Total Environ. 2022, 818, 151790. [Google Scholar] [CrossRef] [PubMed]
- Anchal, P.; Kumari, M.; Gupta, S.K. Human health risk estimation and predictive modeling of halogenated disinfection by-products (chloroform) in swimming pool waters: A case study of Dhanbad, Jharkhand, India. J. Environ. Health Sci. Eng. 2020, 18, 1595–1605. [Google Scholar] [CrossRef] [PubMed]
- Geriesh, M.H.; Mansour, B.M.H.; Farouk, H. Assessment of drinking water quality along Port Said Canal treatment plants, Suez Canal corridor, Egypt. Arab. J. Geosci. 2019, 12, 738. [Google Scholar] [CrossRef]
- USEPA 2019. Guidelines for Human Exposure Assessment. Available online: https://www.epa.gov/risk/guidelines-human-exposure-assessment (accessed on 7 March 2022).
- Sofuoğlu, C.S.; Baytak, D.; Sofuoğlu, A.; Inal, F. Seasonal variation in drinking water concentrations of disinfection by-products in IZMIR and associated human health risks. Sci. Total Environ. 2008, 407, 286–296. [Google Scholar] [CrossRef]
- Tanatti, P.N.; Orgev, C.; Demirel, H.; Şengil, İ.A. Cancer Risk Analysis in Untreated and Photocatalytic Treated Water Containing THM. Sak. Univ. J. Sci. 2023, 27, 428–441. [Google Scholar] [CrossRef]
Water Source | Distribution System | Pre-Treatment Stage | Treatment Process | Average Population | Sampling District |
---|---|---|---|---|---|
Ulutan Dam (UD) | Ulutan Distribution System (UDS) | Chlorination | Cascade Aeration, PAC Coagulation, Filtration, Disinfection | 70,000 | 1. Kozlu 2. Kilimli 3. Acılık 4. Kavaklık 5. İncivez 6. Karaelmas 7. Dilaver |
Kızılcapınar Dam (KD) | Kızılcapınar Distribution System (KDS) | Ozonation | Aeration, Ozonation, Alum Coagulation, AC adsorption, Filtration, Disinfection | 90,000 | 1. Ömerli 2. Armutçuk 3. Topçalı 4. Kışla 5. Kocaali 6. Göktepe 7. Uzunçayır |
Input Parameters | Symbol | Unit | Value | Reference |
---|---|---|---|---|
THM concentration | Cw,i | mg/L | Tables S2 and S3 | This study |
Ingestion rate | IR | L/day | 2 | [40] |
Exposure frequency | EF | days/year | 365 | [40] |
Exposure duration | ED | years | Female: 81 Male: 75.6 | [41] |
Body Weight | BW | kg | Female: 68.4 Male: 77.4 | [41] |
Average Time | AT | years | Female: 29,565 Male: 27,594 | [41] |
Skin surface area | SA | m2 | Female: 1.77 Male: 1.89 | [42] |
Exposure time | ET | hours | Female:0.13 Male: 0.12 | [42] |
Dermal permeability constant | PC | cm/h | TCM: 0.16 BDCM: 0.18 DBCM: 0.20 TBM: 0.21 | [42] |
THMs in air | Ca,i | mg/m3 | Model | [42] |
Inhalation rate | IRa | m3/h | Female: 0.66 Male: 0.84 | [43] |
Overall mass transfer coefficient | KOLA | L/min | TCM: 7.4 BDCM: 5.9 DBCM: 4.6 TBM: 3.7 | [44] |
Henry’s constant | H | Unitless | TCM: 0.35 BDCM: 0.186 DBCM: 0.102 TBM: 0.058 | [44] |
Flow rate in liquid | QL | L/min | 5 | [45] |
Air flow rate | QG | L/min | 50 | [45] |
Air volume in the shower | Vs | m3 | 6 | [45] |
Exposure time in air | ET | h/day | 0.2 | [46] |
Reference dose | RfD | mg/kg/day | TCM: 0.01 BDCM: 0.02 DBCM: 0.02 TBM: 0.02 | [46] |
Parameters | Unit | Ulutan Dam (UD) | Kızılcapınar Dam (KD) | ||||
---|---|---|---|---|---|---|---|
Median | SD | Range | Median | SD | Range | ||
PH | 7.56 | ±0.39 | 6.87–8.2 | 7.96 | ±0.33 | 7.42–8.44 | |
Turbidity | NTU | 4.41 | ±1.05 | 2.69–6.32 | 3.58 | ±1.01 | 2.25–5.48 |
Br- | µg/L | 112 | ±40.4 | 75.1–207 | 189 | ±48.2 | 95.1–240 |
TOC | Mg/L | 4.3 | ±0.93 | 3.02–6.30 | 4.18 | ±0.81 | 2.82–6.03 |
UV254 | cm−1 | 0.13 | ±0.029 | 0.07–0.16 | 0.12 | ±0.029 | 0.07–0.17 |
SUVA | L/mg.m | 2.75 | ±0.199 | 2.32–2.99 | 2.91 | ±0.246 | 2.47–3.19 |
TCM | µg/L | 170.88 | ±37.91 | 93.08–207.61 | 200.88 | ±43.02 | 112.52–229.05 |
BDCM | µg/L | 27.55 | ±7.18 | 14.2–42.14 | 41.15 | ±14.94 | 23.14–73.36 |
DBCM | µg/L | 17.56 | ±6.79 | 7.4–29.03 | 31.79 | ±13.31 | 13.1–49.5 |
TBM | µg/L | 7.19 | ±2.87 | 1.92–11.38 | 6.13 | ±4.96 | 3.59–17.2 |
TTHM | µg/L | 223.19 | ±54.13 | 116.6–289.32 | 283.88 | ±74.04 | 152.35–368.58 |
UDS | F | df1 | df2 | p |
---|---|---|---|---|
TTHMs | 3.13 | 6 | 140 | 0.007 |
F | df1 | df2 | p | |
---|---|---|---|---|
TTHMs | 5.90 | 6 | 140 | <0.001 |
F | df1 | df2 | p | |
---|---|---|---|---|
TTHMs | 51.4 | 6 | 61.9 | <0.001 |
F | df1 | df2 | p | |
---|---|---|---|---|
TTHMs | 179 | 6 | 61.7 | <0.001 |
F | df1 | df2 | p | |
---|---|---|---|---|
TTHM | 1.82 | 3 | 64 | 0.153 |
F | df1 | df2 | p | |
---|---|---|---|---|
TTHM | 0.237 | 3 | 64 | 0.870 |
F | df1 | df2 | p | |
---|---|---|---|---|
TTHM | 44.2 | 3 | 64 | <0.001 |
F | df1 | df2 | p | |
---|---|---|---|---|
TTHM | 9.83 | 3 | 64 | <0.001 |
Water System | Distribution Districts | Males | |||||
---|---|---|---|---|---|---|---|
Exposure Pathways | Total Cancer Risk | Health Risk Assessment | |||||
Ingestion | Dermal | Inhalation | Risk Level * | Carcinogenicity ** | |||
UDS | Kozlu | 9.80 × 10−5 | 2.26 × 10−6 | 3.39 × 10−7 | 1.04 × 10−4 | Unacceptable | Carcinogenic |
Kilimli | 3.63 × 10−5 | 1.42 × 10−6 | 2.22 × 10−7 | 3.65 × 10−5 | Low | Possibly carcinogenic | |
Acılık | 5.46 × 10−5 | 2.32 × 10−6 | 3.39 × 10−7 | 5.73 × 10−5 | High | Probably carcinogenic | |
Kavaklık | 5.95 × 10−5 | 2.50 × 10−6 | 3.70 × 10−7 | 6.24 × 10−5 | High | Probably carcinogenic | |
İncivez | 5.76 × 10−5 | 2.22 × 10−6 | 3.63 × 10−7 | 6.02 × 10−5 | High | Probably carcinogenic | |
Karaelmas | 6.66 × 10−5 | 2.62 × 10−6 | 3.57 × 10−7 | 6.95 × 10−5 | High | Probably carcinogenic | |
Dilaver | 4.64 × 10−5 | 1.84 × 10−6 | 2.85 × 10−7 | 4.85 × 10−5 | Low | Possibly carcinogenic |
Water System | Distribution Districts | Females | |||||
---|---|---|---|---|---|---|---|
Exposure Pathways | Total Cancer Risk | Health Risk Assessment | |||||
Ingestion | Dermal | Inhalation | Risk Level * | Carcinogenicity ** | |||
UDS | Kozlu | 3.62 × 10−5 | 2.60 × 10−6 | 3.30 × 10−7 | 3.91 × 10−5 | Low | Possibly carcinogenic |
Kilimli | 4.11 × 10−5 | 1.63 × 10−6 | 1.98 × 10−7 | 4.29 × 10−5 | Low | Possibly carcinogenic | |
Acılık | 6.18 × 10−5 | 2.66 × 10−6 | 3.01 × 10−7 | 6.48 × 10−5 | High | Probably carcinogenic | |
Kavaklık | 6.74 × 10−5 | 2.87 × 10−6 | 3.29 × 10−7 | 7.06 × 10−5 | High | Probably carcinogenic | |
İncivez | 6.51 × 10−5 | 2.55 × 10−6 | 3.23 × 10−7 | 6.80 × 10−5 | High | Probably carcinogenic | |
Karaelmas | 7.54 × 10−5 | 3.01 × 10−6 | 1.82 × 10−7 | 7.86 × 10−5 | High | Probably carcinogenic | |
Dilaver | 5.25 × 10−5 | 2.11 × 10−6 | 2.54 × 10−7 | 5.49 × 10−5 | High | Probably carcinogenic |
Water System | Distribution Districts | Males | |||||
---|---|---|---|---|---|---|---|
Exposure Pathways | Total Cancer Risk | Health Risk Assessment | |||||
Ingestion | Dermal | Inhalation | Risk Level * | Carcinogenicity ** | |||
SDS | Ömerli | 9.82 × 10−5 | 3.82 × 10−6 | 4.91 × 10−7 | 1.03 × 10−4 | Unacceptable | Carcinogenic |
Armutçuk | 6.76 × 10−5 | 2.62 × 10−6 | 3.31 × 10−7 | 7.06 × 10−5 | High | Probably carcinogenic | |
Topçalı | 9.05 × 10−5 | 3.34 × 10−6 | 4.39 × 10−7 | 9.43 × 10−5 | High | Probably carcinogenic | |
Kışla | 6.68 × 10−5 | 2.78 × 10−6 | 3.55 × 10−7 | 6.99 × 10−5 | High | Probably carcinogenic | |
Kocaali | 7.32 × 10−5 | 2.53 × 10−6 | 3.23 × 10−7 | 7.61 × 10−5 | High | Probably carcinogenic | |
Göktepe | 6.31 × 10−5 | 2.50 × 10−6 | 3.34 × 10−7 | 6.59 × 10−5 | High | Probably carcinogenic | |
Uzunçayır | 8.80 × 10−5 | 3.22 × 10−6 | 4.18 × 10−7 | 9.16 × 10−5 | High | Probably carcinogenic |
Water System | Distribution Districts | Females | |||||
---|---|---|---|---|---|---|---|
Exposure Pathways | Total Cancer Risk | Health Risk Assessment | |||||
Ingestion | Dermal | Inhalation | Risk Level * | Carcinogenicity ** | |||
SDS | Ömerli | 1.11 × 10−4 | 4.38 × 10−6 | 4.36 × 10−7 | 1.16 × 10−4 | Unacceptable | Carcinogenic |
Armutçuk | 4.54 × 10−5 | 3.01 × 10−6 | 2.94 × 10−7 | 4.87 × 10−5 | High | Probably carcinogenic | |
Topçalı | 1.02 × 10−4 | 3.83 × 10−6 | 4.33 × 10−7 | 1.06 × 10−4 | Unacceptable | Completely Carcinogenic | |
Kışla | 7.56 × 10−5 | 3.19 × 10−6 | 3.16 × 10−7 | 7.91 × 10−5 | High | Probably carcinogenic | |
Kocaali | 8.29 × 10−5 | 3.31 × 10−6 | 2.87 × 10−7 | 8.65 × 10−5 | High | Probably carcinogenic | |
Göktepe | 7.13 × 10−5 | 2.91 × 10−6 | 2.97 × 10−7 | 7.45 × 10−5 | High | Probably carcinogenic | |
Uzunçayır | 9.96 × 10−5 | 3.69 × 10−6 | 3.72 × 10−7 | 1.04 × 10−4 | Unacceptable | Completely Carcinogenic |
City, Country | Water System | Expos. Routes | TCM | % | BDCM | % | DBCM | % | TBM | % | TTHM | % | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Zonguldak, Türkiye | Distribution * networks | Ingestion | 5.03 × 10−6 | 6 | 2.44 × 10−5 | 28 | 5.48 × 10−5 | 64 | 1.72 × 10−6 | 2 | 8.60 × 10−5 | 100 | This study |
Dermal | 1.12 × 10−6 | 20 | 1.39 × 10−6 | 24 | 2.82 × 10−6 | 49 | 4.05 × 10−7 | 7 | 5.74 × 10−6 | 100 | |||
Inhalation | 1.09 × 10−7 | 43 | 1.16 × 10−7 | 45 | 3.04 × 10−8 | 11 | 1.30 × 10−9 | 1 | 2.57 × 10−7 | 100 | |||
Cancer risk | 6.26 × 10−6 | 7 | 2.59 × 10−5 | 28 | 5.77 × 10−5 | 63 | 2.13 × 10−6 | 3 | 9.19 × 10−5 | 100 | |||
Wuxi, China | Distribution networks | Ingestion | 2.87 × 10−6 | 7 | 2.23 × 10−5 | 55 | 1.46 × 10−5 | 36 | 1.16 × 10−6 | 2 | 4.09 × 10−5 | 100 | [115] |
Dermal | 1.01 × 10−7 | 7 | 7.01 × 10−7 | 47 | 6.40 × 10−7 | 43 | 6.09 × 10−8 | 3 | 1.50 × 10−6 | 100 | |||
Inhalation | 1.18 × 10−5 | 15 | 3.79 × 10−5 | 48 | 2.82 × 10−5 | 36 | 1.55 × 10−6 | 1 | 7.95 × 10−5 | 100 | |||
Cancer risk | 1.48 × 10−5 | 12 | 6.09 × 10−5 | 50 | 4.34 × 10−5 | 36 | 2.77 × 10−6 | 2 | 1.22 × 10−4 | 100 | |||
Maragheh, Iran | Distribution networks | Ingestion | 3.07 × 10−6 | 7 | 2.85 × 10−6 | 55 | 1.48 × 10−5 | 36 | 3.44 × 10−8 | 2 | 2.08 × 10−5 | 100 | [93] |
Dermal | 2.62 × 10−7 | 7 | 2.32 × 10−7 | 47 | 1.66 × 10−6 | 43 | 6.68 × 10−9 | 3 | 2.13 × 10−6 | 100 | |||
Inhalation | 2.09 × 10−8 | 15 | 1.04 × 10−10 | 48 | 5.85 × 10−10 | 36 | 2.80 × 10−12 | 1 | 3.05 × 10−8 | 100 | |||
Cancer risk | 3.35 × 10−6 | 15 | 3.08 × 10−6 | 13 | 1.65 × 10−5 | 71 | 4.11 × 10−8 | 1 | 2.29 × 10−5 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özdemir, K.; Özdoğan, N. Analysis of Trihalomethanes in Drinking Water Distribution Lines and Assessment of Their Carcinogenic Risk Potentials. Sustainability 2025, 17, 7618. https://doi.org/10.3390/su17177618
Özdemir K, Özdoğan N. Analysis of Trihalomethanes in Drinking Water Distribution Lines and Assessment of Their Carcinogenic Risk Potentials. Sustainability. 2025; 17(17):7618. https://doi.org/10.3390/su17177618
Chicago/Turabian StyleÖzdemir, Kadir, and Nizamettin Özdoğan. 2025. "Analysis of Trihalomethanes in Drinking Water Distribution Lines and Assessment of Their Carcinogenic Risk Potentials" Sustainability 17, no. 17: 7618. https://doi.org/10.3390/su17177618
APA StyleÖzdemir, K., & Özdoğan, N. (2025). Analysis of Trihalomethanes in Drinking Water Distribution Lines and Assessment of Their Carcinogenic Risk Potentials. Sustainability, 17(17), 7618. https://doi.org/10.3390/su17177618