The Multiple Impacts of Climate Change and Human Activities on Vegetation Dynamics in Yunnan Province, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data
2.3. Methods
2.3.1. Trend Analysis
2.3.2. Geographical Detector
2.3.3. Time-Lagged Effects of Meteorological Factors on Vegetation Changes
2.3.4. Residual Analysis
3. Result
3.1. Spatiotemporal Patterns of NDVI
3.2. Spatial Heterogeneity Detection of NDVI
3.3. Time Lag Effect of Meteorological Indicators on NDVI Changes
3.4. The Contribution of Climate Change and Human Activities to NDVI Changes
4. Discussions
4.1. Comparison with Previous Studies
4.2. Reflection on Regional Ecological Protection and Management Strategies
4.3. Limitations and Uncertainties
5. Conclusions
- (1)
- From 2001 to 2023, the multi-year average NDVI in Yunnan Province was 0.80, with 98% of the regions having an annual average maximum NDVI > 0.6. Spatially, NDVI decreased from the southwest to the southeast. The annual maximum NDVI for the entire province increased at a rate of 0.025 per decade. Meanwhile, the annual maximum NDVI in all 16 prefecture-level cities showed an increasing trend, with QJ city experiencing the fastest growth rate (0.036 per decade) and DQ city the slowest (0.012 per decade). The decrease in NDVI was primarily concentrated in the central cities of Yunnan.
- (2)
- In multi-spatial scale analysis, land use type is the primary determinant of NDVI spatial heterogeneity. The interaction between land use type and precipitation was the strongest, explaining over 50% of the spatial distribution of NDVI. For the entire Yunnan Province, the highest annual average NDVI was observed when the aspect was north-facing, elevation ranged between 809.6 and 1522.2 m, slope was between 17.4 and 32.0°, soil type was leached soils, landform type was high-relief mountains, annual precipitation was between 1398.9 and 2011.1 mm, annual average temperature was between 19.9 and 24.6 °C, nighttime light was between 0 and 0.044, population density was between 0 and 4, and land use type was forest.
- (3)
- Precipitation showed significant positive associations with NDVI across 81% of Yunnan, which promoted plant development in northeastern zones. In contrast, 15% of the region showed a negative precipitation–NDVI relationship, concentrated in the northwest, southwest and southeast. In 83% of the regions, vegetation responded to precipitation with a lag of 1–3 months, averaging 1.5 months. Temperature conditions showed a positive correlation with NDVI in 74% of the province. A negative temperature–NDVI relationship was observed in 20% of the region. The temperature response delay lasted 1–3 months (mean 2.0 month) in 82% of the region. This analysis revealed different spatiotemporal patterns in climate–vegetation interactions.
- (4)
- Across the province, synergistic climate–anthropogenic influences drove NDVI increases in 73% of study area and decreases in 7%. Enhancement effects from climatic forces and human activities drivers dominated approximately 92% and 90% of vegetated areas respectively. From 2000 to 2023, human activities primarily promoted vegetation growth in Yunnan, with urbanization in the central region being more intense than in other areas. The inhibitory effects of human activities on NDVI were mainly concentrated in this region.
- (5)
- As critical ecological security barriers and biodiversity hotspots, northwestern and southwestern Yunnan should establish forest conservation strategies with designated protected areas, optimize ecological corridor networks to create biodiversity refugia, and implement elevation-specific climate adaptation measures. The central and eastern regions—characterized by intensive human activities—should develop urban greening initiatives to enhance coordinated urban–rural ecological resilience, while dynamically adjusting critical phases of ecological restoration projects.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. City|Factor Detection Results
City | Factor Detection Results |
---|---|
BS | Land use type > Population > Nighttime light > Slope > Soil type > Elevation > Landform type > Temperature > Precipitation |
CX | Land use type > Temperature > Precipitation > Elevation > Soil type > Landform type > Population > Slope > Nighttime light > Aspect |
DL | Land use type > Population > Temperature > Elevation > Landform type > Soil type > Nighttime light > Slope > Precipitation |
DH | Land use type > Population > Slope > Elevation > Temperature > Nighttime light > Landform type > Soil type > Precipitation |
DQ | Land use type > Temperature > Elevation > Soil type > Landform type > Precipitation > Population > Aspect > Slope |
HH | Landform type > Land use type > Slop > Precipitation > Nighttime light > Population > Soil type > Elevation > Temperature |
KM | Nighttime light > Land use type > Population > Landform type > Slope > Elevation > Temperature > Soil type > Precipitation |
LC | Land use type > Population > Nighttime light > Slope > Precipitation > Landform type > Soil type >Temperature > Elevation > Aspect |
LJ | Land use type > Temperature > Elevation > Soil type > Population > Slope > Nighttime light > Landform type > Aspect > Precipitation |
NJ | Land use type > Elevation > Temperature > Precipitation > Soil type > Landform type > Population > Slope > Aspect |
PE | Land use type > Population > Nighttime light > Slope > Landform type > Soil type > Temperature > Elevation > Precipitation > Aspect |
QJ | Land use type > Nighttime light > Landform type > Population > Slope > Precipitation > Temperature > Elevation > Soil type |
WS | Land use type > Landform type > Slope > Population > Nighttime light > Elevation > Temperature > Soil type > Precipitation |
XSBN | Land use type > Slope > Population > Landform type > Nighttime light > Soil type > Elevation > Temperature > Precipitation |
YX | Land use type > Population > Landform type > Nighttime light > Slope > Precipitation > Soil type > Elevation > Temperature |
ZT | Land use type > Temperature > Elevation > Nighttime light > Precipitation > Landform type > Slope > Population > Soil type > Aspect |
Appendix A.2. City|Range or Type of Suitable Driving Factors with the Highest NDVI Results
Factors | Aspect | Elevation | Slope | Soil Type | Landform Type | Precipitation | Temperature | Nighttime Light | Population Density | Land Use Type |
---|---|---|---|---|---|---|---|---|---|---|
YN | North | (809.6, 1522.2] | (17.4, 32.0] | Leached soils | High-relief mountains | (1398.9, 2011.1] | (19.9, 24.6] | [0, 0.044] | [0, 4.0] | Forest |
BS | North | (2338, 2719] | (28.0, 49.8] | Leached soils | High-relief mountains | (1469.0, 1729.8] | (11.8, 13.9] | (0, 0.042] | (0.3, 4.1] | Forest |
CX | North | (2683, 3628] | (22.2, 48.8] | Leached soils | High-relief mountains | (890.5, 1093.4] | (6.8, 12.0] | (0, 0.044] | (6.1, 8.8] | Forest |
DL | North | (2563, 2843] | (29.0, 51.9] | Leached soils | High-relief mountains | (1001.6, 1098.9] | (11.2, 13.0] | (0, 0.044] | (0, 3.5] | Forest |
DH | Northeast | (1731, 1972] | (21.5, 40.8] | Ferralsols | High-relief mountains | (1762.3, 1966.2] | (17.2, 18.4] | (0, 0.034] | (0, 3.3] | Forest |
DQ | North | (3462.8, 3809.6] | (28.3,56.7] | Leached soils | High-relief mountains | (769.1, 844.2] | (2.2, 4.8] | (0, 0.044] | (0, 0.52] | Forest |
HH | North | (611.0, 963.0] | (29.1, 52.0] | Leached soils | High-relief mountains | (1491.8, 1842.6] | (19.9, 22.2] | (0, 0.044] | (0, 3.2] | Forest |
KM | North | (2189.3, 2382] | (8.8, 16.3] | Leached soils | Moderate-relief mountains | (891.5, 929.1] | (13.5, 14.6] | (0, 0.045] | (0, 4.0] | Forest |
LC | North | (2420.0, 3436.0] | (27.6, 49.1] | Alpine Soils | High-relief mountains | (1368.0, 1445.6] | (22.8, 24.0] | (0, 0.044] | (0, 7.0] | Forest |
LJ | Flat | (2616, 3145] | (28.1, 56.2] | Leached soils | High-relief mountains | (786.9, 814.6] | (11.4, 14.9] | (0, 0.044] | (0, 1.2] | Forest |
NJ | North | (1766.5, 2266.3] | (38.1, 53.6] | Ferralsols | High-relief mountains | (1227.8, 1328.1] | (8.3, 13.6] | (0, 0.038] | (2.8, 13.2] | Forest |
PE | North | (2309, 3315] | (27.4, 48.7] | Alpine Soils | High-relief mountains | (1214.6, 1299.4] | (9.4, 14.7] | (0, 0.044] | (0, 3.8] | Forest |
QJ | North | (754, 1812] | (9.1, 17.1] | Semi-Luvisols | Moderate-relief mountains | (1104.7, 1190.7) | (15.9, 21.8] | (0, 0.429] | (0, 3.3] | Forest |
WS | West | (134, 940] | (26.6, 46.9] | Leached soils | Extreme-relief mountains | (1471.0, 1972.0] | (19.5, 23.3] | (0, 0.044] | (0, 3.1] | Forest |
XSBN | North | (945.1, 1098.8] | (25.1, 43.7] | Leached soils | High-relief mountains | (1572.0, 1608.5] | (21.7, 22.4] | (0, 0.044] | (0, 2.9] | Forest |
YX | North | (2407, 3047] | (27.2, 48.2] | Leached soils | Extreme-relief mountains | (1024.2, 1081.9] | (9.6, 11.7] | (0, 0.044] | (0, 3.5] | Forest |
ZT | North | (1237.8, 1824.1] | (17.4, 32.0] | Semi-Luvisols | Moderate-relief mountains | (936.7, 990.2] | (14.5, 15.9] | (0, 0.044] | (0.1, 4.1] | Forest |
References
- Higgins, S.I.; Conradi, T.; Muhoko, E. Shifts in Vegetation Activity of Terrestrial Ecosystems Attributable to Climate Trends. Nat. Geosci. 2023, 16, 147–153. [Google Scholar] [CrossRef]
- Miguez-Macho, G.; Fan, Y. Spatiotemporal Origin of Soil Water Taken up by Vegetation. Nature 2021, 598, 624–628. [Google Scholar] [CrossRef]
- Gong, H.; Wang, G.; Wang, X.; Kuang, Z.; Cheng, T. Trajectories of Terrestrial Vegetation Productivity and Its Driving Factors in China’s Drylands. Geophys. Res. Lett. 2024, 51, e2024GL111391. [Google Scholar] [CrossRef]
- Zhao, Z.; Dai, E. Vegetation Cover Dynamics and Its Constraint Effect on Ecosystem Services on the Qinghai-Tibet Plateau under Ecological Restoration Projects. J. Environ. Manag. 2024, 356, 120535. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, Drivers and Feedbacks of Global Greening. Nat. Rev. Earth Environ. 2019, 1, 14–27. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Bevacqua, E.; Zscheischler, J.; Keenan, T.F.; Lian, X.; Zhou, S.; Zhang, H.; He, M.; Piao, S. Future Increase in Compound Soil Drought-Heat Extremes Exacerbated by Vegetation Greening. Nat. Commun. 2024, 15, 10875. [Google Scholar] [CrossRef]
- Feng, A.; Zhu, Z.; Zhu, X.; Zhang, Q.; Yan, F.; Li, Z.; Guo, Y.; Singh, V.P.; Zhang, K.; Wang, G. Impacts of Water Diversion Projects on Vegetation Coverage in Central Yunnan Province, China (2017–2022). Remote Sens. 2024, 16, 2373. [Google Scholar] [CrossRef]
- Li, X.; Xu, J.; Jia, Y.; Liu, S.; Jiang, Y.; Yuan, Z.; Du, H.; Han, R.; Ye, Y. Spatio-Temporal Dynamics of Vegetation over Cloudy Areas in Southwest China Retrieved from Four NDVI Products. Ecol. Inform. 2024, 81, 102630. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Y.; Kang, W. Employing NDVI as Vegetation Correction Variable to Improve Soil Moisture Measurements of Mobile Cosmic-Ray Neutron Sensor near the Qilian Mountains. Geoderma 2024, 441, 116764. [Google Scholar] [CrossRef]
- Fensholt, R.; Sandholt, I.; Stisen, S. Evaluating MODIS, MERIS, and VEGETATION Vegetation Indices Using in Situ Measurements in a Semiarid Environment. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1774–1786. [Google Scholar] [CrossRef]
- Jeong, S.; Ryu, Y.; Gentine, P.; Lian, X.; Fang, J.; Li, X.; Dechant, B.; Kong, J.; Choi, W.; Jiang, C.; et al. Persistent Global Greening over the Last Four Decades Using Novel Long-Term Vegetation Index Data with Enhanced Temporal Consistency. Remote Sens. Environ. 2024, 311, 114282. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Wang, Z.; Li, D.; Zhang, Y.; Qin, D.; Li, S. Elevation-Dependent Decline in Vegetation Greening Rate Driven by Increasing Dryness Based on Three Satellite NDVI Datasets on the Tibetan Plateau. Ecol. Indic. 2019, 107, 105569. [Google Scholar] [CrossRef]
- Yan, Z.; Li, Z.; Li, P.; Zhao, C.; Xu, Y.; Cui, Z.; Sun, H. Spatial and Temporal Variation of NDVI and Its Driving Factors Based on Geographical Detector: A Case Study of Guanzhong Plain Urban Agglomeration. Remote Sens. Appl. Soc. Environ. 2023, 32, 101030. [Google Scholar] [CrossRef]
- Feldman, A.F.; Konings, A.G.; Gentine, P.; Cattry, M.; Wang, L.; Smith, W.K.; Biederman, J.A.; Chatterjee, A.; Joiner, J.; Poulter, B. Large Global-Scale Vegetation Sensitivity to Daily Rainfall Variability. Nature 2024, 636, 380–384. [Google Scholar] [CrossRef]
- Xu, H.; Chen, H.W.; Chen, D.; Wang, Y.; Yue, X.; He, B.; Guo, L.; Yuan, W.; Zhong, Z.; Huang, L.; et al. Global Patterns and Drivers of Post-Fire Vegetation Productivity Recovery. Nat. Geosci. 2024, 17, 874–881. [Google Scholar] [CrossRef]
- Wang, X.; Ge, Q.; Geng, X.; Wang, Z.; Gao, L.; Bryan, B.A.; Chen, S.; Su, Y.; Cai, D.; Ye, J.; et al. Unintended Consequences of Combating Desertification in China. Nat. Commun. 2023, 14, 1139. [Google Scholar] [CrossRef] [PubMed]
- Brandt, M.; Rasmussen, K.; Peñuelas, J.; Tian, F.; Schurgers, G.; Verger, A.; Mertz, O.; Palmer, J.R.B.; Fensholt, R. Human Population Growth Offsets Climate-Driven Increase in Woody Vegetation in Sub-Saharan Africa. Nat. Ecol. Evol. 2017, 1, 0081. [Google Scholar] [CrossRef]
- Li, X.; Wang, K.; Huntingford, C.; Zhu, Z.; Peñuelas, J.; Myneni, R.B.; Piao, S. Vegetation Greenness in 2023. Nat. Rev. Earth Environ. 2024, 5, 241–243. [Google Scholar] [CrossRef]
- Wei, Y.; Lu, H.; Wang, J.; Wang, X.; Sun, J. Dual Influence of Climate Change and Anthropogenic Activities on the Spatiotemporal Vegetation Dynamics over the Qinghai-Tibetan Plateau from 1981 to 2015. Earth’s Future 2022, 10, e2021EF002566. [Google Scholar] [CrossRef]
- Rahbek, C.; Borregaard, M.K.; Colwell, R.K.; Dalsgaard, B.; Holt, B.G.; Morueta-Holme, N.; Nogues-Bravo, D.; Whittaker, R.J.; Fjeldså, J. Humboldt’s Enigma: What Causes Global Patterns of Mountain Biodiversity? Science 2019, 365, 1108–1113. [Google Scholar] [CrossRef]
- Fu, X.; Zhou, W.; Zhou, X.; Li, F.; Hu, Y. Classifying Mountain Vegetation Types Using Object-Oriented Machine Learning Methods Based on Different Feature Combinations. Forests 2023, 14, 1624. [Google Scholar] [CrossRef]
- Cuni-Sanchez, A.; Aneseyee, A.B.; Baderha, G.K.R.; Batumike, R.; Bitariho, R.; Imani, G.; Jha, N.; Kaganzi, K.R.; Kaplin, B.A.; Klein, J.A.; et al. Perceived Climate Change Impacts and Adaptation Responses in Ten African Mountain Regions. Nat. Clim. Change 2025, 15, 153–161. [Google Scholar] [CrossRef]
- Xiao, H.; Shao, H.; Long, J.; Zhang, S.; He, S.; Wang, D. Spatial-Temporal Pattern Evolution and Geological Influence Factors Analysis of Ecological Vulnerability in Western Sichuan Mountain Region. Ecol. Indic. 2023, 155, 110980. [Google Scholar] [CrossRef]
- Chan, W.-P.; Lenoir, J.; Mai, G.-S.; Kuo, H.-C.; Chen, I.-C.; Shen, S.-F. Climate Velocities and Species Tracking in Global Mountain Regions. Nature 2024, 629, 114–120. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Yang, R.; Liu, F.; He, Y.; Cao, L.; Yang, J.; Zhang, J. Ecological Risk Assessment and Response Prediction Caused by LUCC in the Central Yunnan Province. Sci. Rep. 2025, 15, 2416. [Google Scholar] [CrossRef]
- Hua, Z.; Shuhui, P.; Yu, W.; Bo, W.; Yu, G.; Qin, L. Analysis of Geological Problems and Difficulties in Restoration and Treatment of Karst Environment on the Yunnan Plateau. CARSOLOGICA Sin. 2024, 43, 1235–1247. [Google Scholar] [CrossRef]
- Jiang, W.; Rao, P.; Cao, R.; Tang, Z.; Chen, K. Comparative Evaluation of Geological Disaster Susceptibility Using Multi-Regression Methods and Spatial Accuracy Validation. J. Geogr. Sci. 2017, 27, 439–462. [Google Scholar] [CrossRef]
- Zhao, R.; Zhan, L.; Yao, M.; Yang, L. A Geographically Weighted Regression Model Augmented by Geodetector Analysis and Principal Component Analysis for the Spatial Distribution of PM2.5. Sustain. Cities Soc. 2020, 56, 102106. [Google Scholar] [CrossRef]
- Zhu, M.; Yu, X.; Chen, K.; Tan, H.; Yuan, J. Spatiotemporal Characteristics and Driving Factors of Chemical Oxygen Demand Emissions in China’s Wastewater: An Analysis Based on Spatial Autocorrelation and Geodetector. Ecol. Indic. 2024, 166, 112308. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, Y.; Yu, Y.; Li, F.; Zhang, R.; Li, W. Using the Geodetector Method to Characterize the Spatiotemporal Dynamics of Vegetation and Its Interaction with Environmental Factors in the Qinba Mountains, China. Remote Sens. 2022, 14, 5794. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y. Impacts of Climate, Phenology, Elevation and Their Interactions on the Net Primary Productivity of Vegetation in Yunnan, China under Global Warming. Ecol. Indic. 2023, 154, 110533. [Google Scholar] [CrossRef]
- Ding, W.R. Temporal and Spatial Evolution Characteristics of Vegetation NDVI and Its Driving Factors in Central Yunnan Province. Bull. Soil. Water Conserv. 2016, 36, 252–257. [Google Scholar]
- Ding, W.R. Temporal and Spatial Evolution Characteristics of Vegetation NDVI and Its Driving Factors in Karst Area of Southeast Yunnan, China. Res. Soil. Water Conserv. 2016, 23, 227–231, 237. [Google Scholar]
- Yan, W.; He, Y.; Cai, Y.; Qu, X.; Cui, X. Relationship between Extreme Climate Indices and Spatiotemporal Changes of Vegetation on Yunnan Plateau from 1982 to 2019. Glob. Ecol. Conserv. 2021, 31, e01813. [Google Scholar] [CrossRef]
- Chen, F.; Chen, H.; Yang, Y. Annual and Seasonal Changes in Means and Extreme Events of Precipitation and Their Connection to Elevation over Yunnan Province, China. Quat. Int. 2015, 374, 46–61. [Google Scholar] [CrossRef]
- Wang, L.; Yu, H.; Yang, M.; Yang, R.; Gao, R.; Wang, Y. A Drought Index: The Standardized Precipitation Evapotranspiration Runoff Index. J. Hydrol. 2019, 571, 651–668. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, W.; Tao, Y. Thermal Configuration of the Bay of Bengal–Tibetan Plateau Region and the May Precipitation Anomaly in Yunnan. J. Clim. 2017, 30, 9303–9319. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, D.; Su, Q.; Yang, R. Interannual Covariability of Summer Monsoon Precipitation in Yunnan, China, and Diabatic Heating Anomalies over the Arabian Sea–Bay of Bengal. Clim. Dyn. 2021, 57, 2063–2077. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, S.; Wu, Q.; Wang, J. Long-Term Changes in Surface Soil Moisture Based on CCI SM in Yunnan Province, Southwestern China. J. Hydrol. 2020, 588, 125083. [Google Scholar] [CrossRef]
- Qian, L.-S.; Chen, J.-H.; Deng, T.; Sun, H. Plant Diversity in Yunnan: Current Status and Future Directions. Plant Divers. 2020, 42, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Yu, H.; Sun, M.; Wang, Y. Coupled Impacts of Climate and Land Use Changes on Regional Ecosystem Services. J. Environ. Manag. 2023, 326, 116753. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, Z.; Chen, W.; Cannon, C.H.; Raes, N.; Slik, J.W.F. Major Declines of Woody Plant Species Ranges under Climate Change in Yunnan, China. Divers. Distrib. 2014, 20, 405–415. [Google Scholar] [CrossRef]
- Wang, R.; Bai, Y.; Huang, Z.; Fang, Z.; Alatalo, J.M.; Tao, L.; Guo, G. Drought Exacerbates the Trade-Offs and Distributional Imbalances of Regional Ecosystem Services: A Case Study in Yunnan Province, China. Reg. Environ. Change 2025, 25, 38. [Google Scholar] [CrossRef]
- Wang, C.; Chen, C.; Zhang, S.; Ma, Z.; Pang, Y. Variation Characteristics of Extreme Climate Events in Southwest China from 1961 to 2017. Heliyon 2023, 9, e19648. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Yang, R.; Cao, J.; Wang, L.; Cheng, J. A Strong High-Temperature Event in Late-Spring 2023 in Yunnan Province, Southwest China: Characteristics and Possible Causes. Atmos. Res. 2023, 295, 107017. [Google Scholar] [CrossRef]
- Cheng, Q.; Gao, L.; Zhong, F.; Zuo, X.; Ma, M. Spatiotemporal Variations of Drought in the Yunnan-Guizhou Plateau, Southwest China, during 1960–2013 and Their Association with Large-Scale Circulations and Historical Records. Ecol. Indic. 2020, 112, 106041. [Google Scholar] [CrossRef]
- Yang, H.; Luo, P.; Wang, J.; Mou, C.; Mo, L.; Wang, Z.; Fu, Y.; Lin, H.; Yang, Y.; Bhatta, L.D. Ecosystem Evapotranspiration as a Response to Climate and Vegetation Coverage Changes in Northwest Yunnan, China. PLoS ONE 2015, 10, e0134795. [Google Scholar] [CrossRef]
- Lin, Z.; Peng, S.; Yin, Y.; Ma, D.; Jin, R.; Zhu, J.; Zhu, Z.; Shi, S.; Zhu, Y. Coupled InVEST-GTWR Modeling Reveals Scale-Dependent Drivers of N and P Export in a Chinese Mountainous Region. Int. J. Appl. Earth Obs. Geoinf. 2025, 142, 104705. [Google Scholar] [CrossRef]
- Gao, X.; Zhuo, W.; Gonsamo, A. Humid, Warm and Treed Ecosystems Show Longer Time-Lag of Vegetation Response to Climate. Geophys. Res. Lett. 2024, 51, e2024GL111737. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, J.; Zhao, L.; Zhao, S.; Cui, G. The Positive Impact of Extreme Heat on Vegetation Growth in Northeast Asia. Agric. For. Meteorol. 2024, 347, 109918. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Wu, W.; Ao, X.; Chen, R. The Response of Vegetation Dynamics to Climate in Xinjiang from 1991 to 2018. Forests 2024, 15, 2065. [Google Scholar] [CrossRef]
- Jiang, P.; Ding, W.; Yuan, Y.; Ye, W.; Mu, Y. Interannual Variability of Vegetation Sensitivity to Climate in China. J. Environ. Manag. 2022, 301, 113768. [Google Scholar] [CrossRef]
- Beigaitė, R.; Tang, H.; Bryn, A.; Skarpaas, O.; Stordal, F.; Bjerke, J.W.; Žliobaitė, I. Identifying Climate Thresholds for Dominant Natural Vegetation Types at the Global Scale Using Machine Learning: Average Climate versus Extremes. Glob. Change Biol. 2022, 28, 3557–3579. [Google Scholar] [CrossRef]
- Zhong, F.; Xu, X.; Li, Z.; Zeng, X.; Yi, R.; Luo, W.; Zhang, Y.; Xu, C. Relationships between Lithology, Topography, Soil, and Vegetation, and Their Implications for Karst Vegetation Restoration. CATENA 2022, 209, 105831. [Google Scholar] [CrossRef]
- Mukhtar, H.; Yang, Y.; Xu, M.; Wu, J.; Abbas, S.; Wei, D.; Zhao, W. Elevation-Dependent Vegetation Greening and Its Responses to Climate Changes in the South Slope of the Himalayas. Geophys. Res. Lett. 2025, 52, e2024GL113276. [Google Scholar] [CrossRef]
- Wan, J.-Z.; Yu, J.-H.; Yin, G.-J.; Song, Z.-M.; Wei, D.-X.; Wang, C.-J. Effects of Soil Properties on the Spatial Distribution of Forest Vegetation across China. Glob. Ecol. Conserv. 2019, 18, e00635. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, X. Human Disturbance Caused Stronger Influences on Global Vegetation Change than Climate Change. PeerJ 2019, 7, e7763. [Google Scholar] [CrossRef]
- Ding, Y.; Peng, S. Spatiotemporal Trends and Attribution of Drought across China from 1901–2100. Sustainability 2020, 12, 477. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 Km Monthly Temperature and Precipitation Dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Peng, S.; Gang, C.; Cao, Y.; Chen, Y. Assessment of Climate Change Trends over the Loess Plateau in China from 1901 to 2100. Int. J. Climatol. 2018, 38, 2250–2264. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Wen, Z.; Chen, Y.; Cao, Y.; Ren, J. Spatiotemporal Change and Trend Analysis of Potential Evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Yang, C.; Zhou, Y.; Yao, S.; Qian, X.; Wang, C.; Wu, B.; Wu, J. An Extended Time Series (2000–2018) of Global NPP-VIIRS-like Nighttime Light Data from a Cross-Sensor Calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Ding, K.; Zhao, X.; Cheng, J.; Yu, Y.; Luo, Y.; Couchot, J.; Zheng, K.; Lin, Y.; Wang, Y. GRACE/ML-Based Analysis of the Spatiotemporal Variations of Groundwater Storage in Africa. J. Hydrol. 2025, 647, 132336. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, X.-D.; Yang, X.-L.; Li, Y.-X.; Wang, Y.-L.; Liang, T.-G. Mapping Snow Depth Distribution from 1980 to 2020 on the Tibetan Plateau Using Multi-Source Remote Sensing Data and Downscaling Techniques. ISPRS J. Photogramm. Remote Sens. 2023, 205, 246–262. [Google Scholar] [CrossRef]
- Wan, H.; Xie, Y.; Li, B.; Cai, Y.; Yang, Z. An Integrated Method to Identify and Evaluate the Impact of Hydropower Development on Terrestrial Ecosystem. Environ. Impact Assess. Rev. 2023, 99, 107042. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Guo, P.; Wan, H. VDCALC Framework: A Comprehensive Approach for Assessing Vegetation Dynamics. Ecol. Indic. 2024, 165, 112167. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Zhang, Q.; Gu, X.; Singh, V.P.; Kong, D.; Chen, X. Spatiotemporal Behavior of Floods and Droughts and Their Impacts on Agriculture in China. Glob. Planet. Change 2015, 131, 63–72. [Google Scholar] [CrossRef]
- Yan, M.; Lu, J.; Ma, Y.; Ma, C. A Remote Sensing Evidence on the Marginality, Stagementation and Spatiotemporal Heterogeneity of Vegetation Evolution Characteristics in the Yinshan Mountains, China: Based on PKU GIMMS NDVI (1984–2022). Ecol. Indic. 2025, 171, 113193. [Google Scholar] [CrossRef]
- Yuan, L.H.; Jiang, W.G.; Shen, W.M.; Liu, Y.H.; Wang, W.J.; Tao, L.L.; Zheng, H.; Liu, X.F. The Spatio-Temporal Variations of Vegetation Cover in the Yellow River Basin from 2000 to 2010. Acta Ecol. Sin. 2013, 33, 7798–7806. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and Prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Liu, C.; Li, W.; Wang, W.; Zhou, H.; Liang, T.; Hou, F.; Xu, J.; Xue, P. Quantitative Spatial Analysis of Vegetation Dynamics and Potential Driving Factors in a Typical Alpine Region on the Northeastern Tibetan Plateau Using the Google Earth Engine. CATENA 2021, 206, 105500. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, C. Knowledge Diffusion of Geodetector: A Perspective of the Literature Review and Geotree. Heliyon 2023, 9, e19651. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Wang, Z.; Wang, S.; Liu, X.; Jiao, W.; Zhang, Y. Determining the Impacts of Climate Change and Human Activities on Vegetation Change on the Chinese Loess Plateau Considering Human-Induced Vegetation Type Change and Time-Lag Effects of Climate on Vegetation Growth. Int. J. Digit. Earth 2024, 17, 2336075. [Google Scholar] [CrossRef]
- Zhao, X.; Tan, S.; Li, Y.; Wu, H.; Wu, R. Quantitative Analysis of Fractional Vegetation Cover in Southern Sichuan Urban Agglomeration Using Optimal Parameter Geographic Detector Model, China. Ecol. Indic. 2024, 158, 111529. [Google Scholar] [CrossRef]
- Ren, K.; Song, Y.; Li, L.; Mancini, F.; Xiao, Z.; Zhang, X.; Qu, R.; Yu, Q. Identifying Climate and Environmental Determinants of Spatial Disparities in Wheat Production Using a Geospatial Machine Learning Model. GIScience Remote Sens. 2025, 62, 2533487. [Google Scholar] [CrossRef]
- Yang, L.; Ji, X.; Li, M.; Yang, P.; Jiang, W.; Chen, L.; Yang, C.; Sun, C.; Li, Y. A Comprehensive Framework for Assessing the Spatial Drivers of Flood Disasters Using an Optimal Parameter-Based Geographical Detector–Machine Learning Coupled Model. Geosci. Front. 2024, 15, 101889. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Y.; Ma, W.; Li, M.; Zhao, Y.; Wang, W.; Jia, Y.; Fan, J.; Kong, L.; Hou, K.; et al. Identifying the Determinants of Natural, Anthropogenic Factors and Precursors on PM1 Pollution in Urban Agglomerations in China: Insights from Optimal Parameter-Based Geographic Detector and Robust Geographic Weighted Regression Models. Environ. Res. 2025, 279, 121817. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, R.; Chen, S.; Li, Z.; Gao, L.; Li, Y.; Wei, C. Spatiotemporal Evolution and Influencing Factors of Flood Resilience in Beibu Gulf Urban Agglomeration. Int. J. Disaster Risk Reduct. 2024, 114, 104905. [Google Scholar] [CrossRef]
- Gao, C.; Hu, B.; Wang, Z.; Huang, S.; Zhang, L. Study on Spatiotemporal Changes of Ecosystem Service Trade-Offs/Synergies and Driving Mechanisms in the Key Zone of Mountain-River-Sea Coupling: A Case Study of the Southwest Guangxi Karst-Beibu Gulf. Ecol. Indic. 2024, 169, 112892. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Liu, Y.; Wang, F.; Deng, W.; Rao, P. Spatiotemporal Characteristics and Natural Forces of Grassland NDVI Changes in Qilian Mountains from a Sub-Basin Perspective. Ecol. Indic. 2023, 157, 111186. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, F.; Zong, Q.; Jin, K.; Liu, C.; Qin, P. Spatial Patterns and Driving Forces of Urban Vegetation Greenness in China: A Case Study Comprising 289 Cities. Geogr. Sustain. 2024, 5, 370–381. [Google Scholar] [CrossRef]
- Liu, C.; Dong, X.; Liu, Y. Changes of NPP and Their Relationship to Climate Factors Based on the Transformation of Different Scales in Gansu, China. CATENA 2015, 125, 190–199. [Google Scholar] [CrossRef]
- Bai, X.; Zhao, W.; Luo, W.; An, N. Effect of Climate Change on the Seasonal Variation in Photosynthetic and Non-Photosynthetic Vegetation Coverage in Desert Areas, Northwest China. CATENA 2024, 239, 107954. [Google Scholar] [CrossRef]
- Lu, D.; Ning, X.; Zheng, Y.; Xiao, H.; Wan, X.; Chang, J. Integrating Landsat and MODIS Data to Assess Long-Term Inundation Patterns and Vegetation Response in Wetland Ecosystems. J. Hydrol. 2025, 661, 133741. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, W.; Jin, S.; Li, H.; Liu, B.; Gong, W.; Fan, R.; Li, H. Spatiotemporal Variation of LAI in Different Vegetation Types and Its Response to Climate Change in China from 2001 to 2020. Ecol. Indic. 2023, 156, 111101. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-lag Effects of Global Vegetation Responses to Climate Change. Glob. Change Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Q.; Yang, M. Spatio-Temporal Patterns and Driving Factors of Vegetation Change in the Pan-Third Pole Region. Remote Sens. 2022, 14, 4402. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, A.; Liu, C.; Zhao, Y.; Zhao, A.; Wang, D. Analysis of the Time-Lag Effects of Climate Factors on Grassland Productivity in Inner Mongolia. Glob. Ecol. Conserv. 2021, 30, e01751. [Google Scholar] [CrossRef]
- Wang, H.J.; Guo, Y.C.; Bai, Y.B.; Wang, N.; Wei, X.; Zhou, M.T. Dynamic Pattern of Vegetation in Xinjiang and Its Time-Lag Effect on Climate. Trans. Chin. Soc. Agric. Eng. 2023, 39, 137–145. [Google Scholar]
- Gu, Y.; Pang, B.; Qiao, X.; Xu, D.; Li, W.; Yan, Y.; Dou, H.; Ao, W.; Wang, W.; Zou, C.; et al. Vegetation Dynamics in Response to Climate Change and Human Activities in the Hulun Lake Basin from 1981 to 2019. Ecol. Indic. 2022, 136, 108700. [Google Scholar] [CrossRef]
- Ge, W.; Deng, L.; Wang, F.; Han, J. Quantifying the Contributions of Human Activities and Climate Change to Vegetation Net Primary Productivity Dynamics in China from 2001 to 2016. Sci. Total Environ. 2021, 773, 145648. [Google Scholar] [CrossRef]
- Xu, Y.; Dai, Q.-Y.; Lu, Y.-G.; Zhao, C.; Huang, W.-T.; Xu, M.; Feng, Y.-X. Identification of Ecologically Sensitive Zones Affected by Climate Change and Anthropogenic Activities in Southwest China through a NDVI-Based Spatial-Temporal Model. Ecol. Indic. 2024, 158, 111482. [Google Scholar] [CrossRef]
- Chu, H.; Venevsky, S.; Wu, C.; Wang, M. NDVI-Based Vegetation Dynamics and Its Response to Climate Changes at Amur-Heilongjiang River Basin from 1982 to 2015. Sci. Total Environ. 2019, 650, 2051–2062. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Zhao, Y.; Zhai, J.; Liu, Y.; Han, S.; Liu, K. Research on the Impact of Climate Change and Human Activities on the NDVI of Arid Areas—A Case Study of the Shiyang River Basin. Land 2024, 13, 533. [Google Scholar] [CrossRef]
- Xu, Y.; Dai, Q.-Y.; Zou, B.; Xu, M.; Feng, Y.-X. Tracing Climatic and Human Disturbance in Diverse Vegetation Zones in China: Over 20 Years of NDVI Observations. Ecol. Indic. 2023, 156, 111170. [Google Scholar] [CrossRef]
- Shi, S.; Zheng, W.; Han, J.; Zhan, X.; Wang, F. Dominance of Human Activities in Reducing Soil Erosion on the Loess Plateau. J. Hydrol. 2025, 662, 133835. [Google Scholar] [CrossRef]
- Jin, K.; Wang, F.; Han, J.Q.; Shi, S.Y.; Ding, W.B. Contribution of Climatic Change and Human Activities to Vegetation NDVI Change over China during 1982–2015. Acta Geogr. Sin. 2020, 75, 961–974. [Google Scholar]
- Ding, X.; Shao, X.; Deng, R.F.; Peng, S.Y.; Wang, J.L. Spatiotemporal Dynamics and Driving Forces of Impervious Surfaces in the Central Yunnan Urban Agglomeration from 2000 to 2020. Res. Soil. Water Conserv. 2024, 31, 364–373. [Google Scholar]
- Yang, K.; Sun, W.; Luo, Y.; Zhao, L. Impact of Urban Expansion on Vegetation: The Case of China (2000–2018). J. Environ. Manag. 2021, 291, 112598. [Google Scholar] [CrossRef]
- Peng, S.F.; Lin, Y.L.; Zhao, J.S.; Chen, G.P.; Zhang, L.J.; Liu, F.R. Land Use Optimization and Conflict in the Central Yunnan Urban Agglomeration from the Perspective of Construction Control. Prog. Geogr. 2025, 44, 993–1007. [Google Scholar]
- Fan, Z.; Bräuning, A.; Thomas, A.; Li, J.; Cao, K. Spatial and Temporal Temperature Trends on the Yunnan Plateau (Southwest China) during 1961–2004. Int. J. Climatol. 2011, 31, 2078–2090. [Google Scholar] [CrossRef]
- Bai, X.; Fan, Z.; Yue, T. Dynamic Pattern-Effect Relationships between Precipitation and Vegetation in the Semi-Arid and Semi-Humid Area of China. CATENA 2023, 232, 107425. [Google Scholar] [CrossRef]
- Peng, W.; Kuang, T.; Tao, S. Quantifying Influences of Natural Factors on Vegetation NDVI Changes Based on Geographical Detector in Sichuan, Western China. J. Clean. Prod. 2019, 233, 353–367. [Google Scholar] [CrossRef]
- Del-Toro-Guerrero, F.J.; Kretzschmar, T.; Bullock, S.H. Precipitation and Topography Modulate Vegetation Greenness in the Mountains of Baja California, México. Int. J. Biometeorol. 2019, 63, 1425–1435. [Google Scholar] [CrossRef]
- Mao, J.; Shi, X.; Thornton, P.E.; Piao, S.; Wang, X. Causes of Spring Vegetation Growth Trends in the Northern Mid–High Latitudes from 1982 to 2004. Environ. Res. Lett. 2012, 7, 014010. [Google Scholar] [CrossRef]
- Antonio Chaparro Torres, R.; Wang, J.; Zhang, J.; Liu, L.; Lan, Y. Temporal Analysis of Land Degradation and Urban Expansion in Central Yunnan Province Using Remote Sensing for Supporting Sustainable Development Goals 11/15. Ecol. Indic. 2024, 163, 112058. [Google Scholar] [CrossRef]
- Chen, C.; Yang, D.; Wang, J.; Li, Y.; Xin, J. Analysis on Dynamic Change Characteristics and Driving Forces of Vegetation Coverage in Southwestern Yunnan. Res. Soil. Water Conserv. 2022, 29, 198–206. [Google Scholar]
- Zhou, X.; Wen, H.; Zhang, Y.; Xu, J.; Zhang, W. Landslide Susceptibility Mapping Using Hybrid Random Forest with GeoDetector and RFE for Factor Optimization. Geosci. Front. 2021, 12, 101211. [Google Scholar] [CrossRef]
- Zhu, L.; Meng, J.; Zhu, L. Applying Geodetector to Disentangle the Contributions of Natural and Anthropogenic Factors to NDVI Variations in the Middle Reaches of the Heihe River Basin. Ecol. Indic. 2020, 117, 106545. [Google Scholar] [CrossRef]
- Ren, Z.; Tian, Z.; Wei, H.; Liu, Y.; Yu, Y. Spatiotemporal Evolution and Driving Mechanisms of Vegetation in the Yellow River Basin, China during 2000–2020. Ecol. Indic. 2022, 138, 108832. [Google Scholar] [CrossRef]
- Huo, H.; Sun, C. Spatiotemporal Variation and Influencing Factors of Vegetation Dynamics Based on Geodetector: A Case Study of the Northwestern Yunnan Plateau, China. Ecol. Indic. 2021, 130, 108005. [Google Scholar] [CrossRef]
- Yang, Y.; Jun, Z.; Sui, X.; He, X. Study of the Spatial Connection between Urbanization and the Ecosystem—A Case Study of Central Yunnan (China). PLoS ONE 2020, 15, e0238192. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, X.; Smettem, K.; Wang, T. Climate and Land Use Influences on Changing Spatiotemporal Patterns of Mountain Vegetation Cover in Southwest China. Ecol. Indic. 2021, 121, 107193. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, Y.; Zhou, Z.; Han, N. The Spatio-Temporal Variability of Droughts Using the Standardized Precipitation Index in Yunnan, China. Nat. Hazards 2017, 88, 1023–1042. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, F.; Duan, P.; Jim, C.Y.; Chan, N.W.; Shi, J.; Liu, C.; Wang, J.; Bahtebay, J.; Ma, X. Vegetation Cover Changes in China Induced by Ecological Restoration-Protection Projects and Land-Use Changes from 2000 to 2020. Catena 2022, 217, 106530. [Google Scholar] [CrossRef]
- Shen, C.; Wu, R. Analyzing Nonlinear Contributions from Climate Change and Anthropogenic Activity to the Normalized Difference Vegetation Index across China Using a Locally Weighted Regression Approach. Heliyon 2023, 9, e16694. [Google Scholar] [CrossRef]
- He, Y.; Xiong, Q.; Yu, L.; Qu, X.; Yan, W. Adaptability of Vegetation Ecosystem to Climate Change Based on the NDVI in Yunnan Province, China. Ecol. Sci. 2019, 38, 165–172. [Google Scholar]
- Li Jiashun; Liu Li Analysis of the Spatiotemporal Change and Influencing Factors of Vegetation in Yunnan Province from 2000 to 2020. Acta Agrestia Sin. 2023, 31, 3503–3513.
- Wang, Y.; Chen, X.; Gao, M.; Dong, J. The Use of Random Forest to Identify Climate and Human Interference on Vegetation Coverage Changes in Southwest China. Ecol. Indic. 2022, 144, 109463. [Google Scholar] [CrossRef]
- Wang, M.; An, Z.; Wang, S. The Time Lag Effect Improves Prediction of the Effects of Climate Change on Vegetation Growth in Southwest China. Remote Sens. 2022, 14, 5580. [Google Scholar] [CrossRef]
- Han, Y.; Lin, Y.; Zhou, P.; Duan, J.; Cao, Z. Dynamic Change, Driving Mechanism and Spatiotemporal Prediction of the Normalized Vegetation Index: A Case Study from Yunnan Province, China. Front. Ecol. Evol. 2023, 11, 1177849. [Google Scholar] [CrossRef]
- Correa-Díaz, A.; Romero-Sánchez, M.E.; Villanueva-Díaz, J. The Greening Effect Characterized by the Normalized Difference Vegetation Index Was Not Coupled with Phenological Trends and Tree Growth Rates in Eight Protected Mountains of Central Mexico. For. Ecol. Manag. 2021, 496, 119402. [Google Scholar] [CrossRef]
- Li, X.; Wu, P.; Guo, F.; Hu, X. A Geographically Weighted Regression Approach to Detect Divergent Changes in the Vegetation Activity along the Elevation Gradients over the Last 20 Years. For. Ecol. Manag. 2021, 490, 119089. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, X.; Xin, Q.; Wu, J.; Xu, X.; Pei, F.; Li, X.; Du, G.; Cai, Y.; Lin, K.; et al. Cumulative Effects of Climatic Factors on Terrestrial Vegetation Growth. JGR Biogeosci. 2019, 124, 789–806. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, G.; Shao, Y.; Dai, W.; Liu, Q.; Wang, S.; Costa, A.C.; Cabral, P. Disentangling Gross Primary Productivity Drivers of Forested Areas in China and Its Climate Zones from 1990 to 2018. J. Clean. Prod. 2025, 509, 145616. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Shen, H.; Han, Y.; Pan, Y. Vegetation Coverage Change and Associated Driving Forces in Mountain Areas of Northwestern Yunnan, China Using RS and GIS. Environ. Monit. Assess. 2012, 184, 4787–4798. [Google Scholar] [CrossRef]
- Guo, X.; Yuan, L.; Chen, X. Spatial-Temporal Variations and Influencing Factors of Vegetation Net Primary Productivity: A Case Study of Yunnan Province, China. Pol. J. Environ. Stud. 2025, 34, 2141–2156. [Google Scholar] [CrossRef]
- Liu, S.; An, N.; Yang, J.; Dong, S.; Wang, C.; Yin, Y. Prediction of Soil Organic Matter Variability Associated with Different Land Use Types in Mountainous Landscape in Southwestern Yunnan Province, China. CATENA 2015, 133, 137–144. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Chen, A.; Gao, M.; Slette, I.J.; Piao, S. The Impact of the 2009/2010 Drought on Vegetation Growth and Terrestrial Carbon Balance in Southwest China. Agric. For. Meteorol. 2019, 269–270, 239–248. [Google Scholar] [CrossRef]
- Ding, G.; Yi, D.; Yi, J.; Guo, J.; Ou, M.; Ou, W.; Tao, Y.; Pueppke, S.G. Protecting and Constructing Ecological Corridors for Biodiversity Conservation: A Framework That Integrates Landscape Similarity Assessment. Appl. Geogr. 2023, 160, 103098. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, R.; Wang, J.; Li, Q.; Wang, R.; Li, Y.; Zhang, L. Identification and Optimization of Ecological Corridors in the Middle Reaches of the Yellow River Basin. J. Clean. Prod. 2025, 512, 145676. [Google Scholar] [CrossRef]
- Sun, M.; Sun, P.; Liu, N.; Zhang, L.; Yu, Z.; Feng, Q.; Smettem, K.; Liu, S. Alternating Dominant Effects of Temperature and Precipitation along Elevational Gradient on the Alpine and Subalpine Vegetation Activities in Southwestern China. For. Ecol. Manag. 2024, 554, 121668. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, S.; Luo, X.; Keenan, T.F.; Fu, L.; Xiao, C.; Zhang, Y.; Gong, P. Incorporating Site Suitability and Carbon Sequestration of Tree Species into China’s Climate-Adaptive Forestation. Sci. Bull. 2025, 70, 1834–1845. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Cheng, K.Y.; Amati, M.; Jim, C.Y.; Hua, C.; Yokohari, M.; Cameron, R.; Ng, E. Creating a Thermally Comfortable City through Urban Green Infrastructure: An International Review of Greening Policies. Urban For. Urban Green. 2025, 105, 128713. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Fang, S.; Tian, Y.; Zhu, Y.; Han, L. The Synergistic Effect of Urban and Rural Ecological Resilience: Dynamic Trends and Drivers in Yunnan. Sustainability 2024, 16, 8285. [Google Scholar] [CrossRef]
- Tong, X.; Wang, K.; Yue, Y.; Brandt, M.; Liu, B.; Zhang, C.; Liao, C.; Fensholt, R. Quantifying the Effectiveness of Ecological Restoration Projects on Long-Term Vegetation Dynamics in the Karst Regions of Southwest China. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 105–113. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Chen, X.; Zhang, R.; Yang, J. Temporal-Spatial Variations and Influencing Factors of Vegetation Cover in Xinjiang from 1982 to 2013 Based on GIMMS-NDVI3g. Glob. Planet. Change 2018, 169, 145–155. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, G.; Ling, H.; Han, F. Comparison of Time-Integrated NDVI and Annual Maximum NDVI for Assessing Grassland Dynamics. Ecol. Indic. 2022, 136, 108611. [Google Scholar] [CrossRef]
Type | Data Name | Spatial/Temporal Resolution | Time Range | Data Source |
---|---|---|---|---|
Vegetation index | NDVI | 250 × 250 m/monthly | 2001–2023 | https://data.tpdc.ac.cn/ |
Meteorological factors [58,59,60,61] | Temperature | 1 × 1 km/monthly | 2001–2023 | https://data.tpdc.ac.cn/ |
precipitation | 1 × 1 km/monthly | 2001–2023 | https://data.tpdc.ac.cn/ | |
Topographical factors | Elevation | 250 × 250 m | - | https://www.resdc.cn/ |
Slope | 250 × 250 m | - | https://www.resdc.cn/ | |
Aspect | 250 × 250 m | - | https://www.resdc.cn/ | |
Geomorphology factors | Landform type | 1 × 1 km | - | https://www.resdc.cn/ |
Soil factor | Soil type | 1 × 1 km | - | https://www.resdc.cn/ |
Human factors | Population | 1 × 1 km/yearly | 2001–2023 | https://landscan.ornl.gov |
Land use [62] | 30 × 30 m/yearly | 2023 | https://zenodo.org/records/4417810 (accessed on 2 December 2024) | |
Nighttime light [63] | 500 × 500 m/yearly | 2001–2023 | http://www.geodata.cn |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, A.; Zhu, Z.; Zhu, X.; Zhang, Q.; Wang, M.; Li, H.; Wang, Y.; Wang, Z.; Sun, P.; Wang, G. The Multiple Impacts of Climate Change and Human Activities on Vegetation Dynamics in Yunnan Province, China. Sustainability 2025, 17, 7544. https://doi.org/10.3390/su17167544
Feng A, Zhu Z, Zhu X, Zhang Q, Wang M, Li H, Wang Y, Wang Z, Sun P, Wang G. The Multiple Impacts of Climate Change and Human Activities on Vegetation Dynamics in Yunnan Province, China. Sustainability. 2025; 17(16):7544. https://doi.org/10.3390/su17167544
Chicago/Turabian StyleFeng, Anlan, Zhenya Zhu, Xiudi Zhu, Qiang Zhang, Meng Wang, Hongqing Li, Ying Wang, Zhiming Wang, Peng Sun, and Gang Wang. 2025. "The Multiple Impacts of Climate Change and Human Activities on Vegetation Dynamics in Yunnan Province, China" Sustainability 17, no. 16: 7544. https://doi.org/10.3390/su17167544
APA StyleFeng, A., Zhu, Z., Zhu, X., Zhang, Q., Wang, M., Li, H., Wang, Y., Wang, Z., Sun, P., & Wang, G. (2025). The Multiple Impacts of Climate Change and Human Activities on Vegetation Dynamics in Yunnan Province, China. Sustainability, 17(16), 7544. https://doi.org/10.3390/su17167544