Toward Resilience: Assessing Retail Location’s Complex Impact Mechanism Using PLS-SEM Aided by Machine Learning
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Area and Sample Data
2.2. Retail Space Resilience Assessment
2.2.1. Customer Footfall—Measurement of Vitality
2.2.2. Retail Lifespan—Measurement of Viability
2.3. Retail Location Attributes Assessment
2.3.1. Theoretical Background
2.3.2. Assessment Metric
- Accessibility
- 2.
- Amenity
- 3.
- Agglomeration
- 4.
- Scale
- 5.
- Socio-Demography
- 6.
- Publicity
2.4. Research Framework
3. Results
3.1. Database Collection
3.1.1. Explained Variable: Retail Space Resilience
3.1.2. Explanatory Variable: Location Attributes
3.2. Theoretical Framework Construction
3.2.1. Preliminary Variable Selection Using Random Forest
3.2.2. Theoretical Hypothesis
- Spatial Interaction Model
- Agglomeration Effects Theory
- Trip-Chaining Behavior
3.2.3. Theoretical Framework of Impact Pathways
3.3. Structural Equation Model Analysis of Complex Impact Mechanisms
3.3.1. Data Validity Testing
3.3.2. Verification of the Theoretical Framework of Impact: PLS-SEM Test Results
4. Discussion
4.1. Empirical Validation of Classical Location Attributes and the Emerging Primacy of Amenity in Retail Space Resilience
4.2. Constraints of Agglomeration Effects and the Growing Influence of Consumer Trip Chaining
4.3. Limited Influence of Mall Scale: Rethinking Spatial Interaction Models in Modern Retail Environments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | Min | 25% | Median | 75% | Max |
---|---|---|---|---|---|
Footfall | −2.23 | −0.70 | −0.12 | 0.55 | 5.48 |
Lifespan | −1.09 | −0.60 | −0.19 | 0.26 | 5.23 |
Floor Area | −1.56 | −0.86 | −0.16 | 0.89 | 1.59 |
Site Area | −1.56 | −0.87 | 0.00 | 0.87 | 1.57 |
KDE | −0.91 | −0.91 | −0.5 | 0.32 | 2.37 |
NNI | −3.84 | −0.60 | 0.22 | 0.80 | 1.55 |
Point Density | −1.21 | −0.77 | −0.26 | 0.37 | 3.09 |
Global Integration | −2.4 | −0.9 | −0.15 | 0.60 | 2.09 |
Public Transit | −1.64 | −0.70 | −0.19 | 0.51 | 7.12 |
Parking Facility | −2.31 | −0.78 | −0.01 | 0.66 | 3.57 |
Diversity | −4.15 | −0.62 | 0.11 | 0.66 | 3.19 |
Open-Space Ratio | −2.57 | −0.60 | −0.03 | 0.60 | 3.19 |
Visibility | −1.74 | −0.74 | −0.18 | 0.61 | 3.75 |
Consumer Review | −1.56 | −0.87 | 0.00 | 0.87 | 1.56 |
Social Media | −0.57 | −0.56 | −0.47 | 0.14 | 4.86 |
Residential Area | −4.00 | −0.57 | 0.17 | 0.76 | 2.05 |
Employment | −2.62 | −0.69 | 0.04 | 0.59 | 2.76 |
References
- Fernandes, J.R.; Chamusca, P. Urban Policies, Planning and Retail Resilience. Cities 2014, 36, 170–177. [Google Scholar] [CrossRef]
- Knox, P.; Mayer, H. Small Town Sustainability: Economic, Social, and Environmental Innovation; Knox, P.L., Mayer, H., Eds.; Birkhäuser: Basel, Switzerland; Boston, MA, USA, 2013; ISBN 978-3-03821-028-3. [Google Scholar]
- Parker, C.; Ntounis, N.; Quin, S.; Millington, S. Identifying Factors That Influence Vitality and Viability. 2016. Available online: https://people-places.net/wp-content/uploads/HSUK2020-End-of-Project-Report-compressed.pdf (accessed on 6 August 2025).
- Baker, R.G.V.; Wood, S. Towards Robust Development of Retail Planning Policy: Maintaining the Viability and Vitality of Main Street Shopping Precincts. Geogr. Res. 2010, 48, 65–74. [Google Scholar] [CrossRef]
- Chen, Y.; Xue, C.Q.L.; Sun, C. American Shopping Malls in China: A Mosaic Analysis of Databases. J. Asian Archit. Build. Eng. 2023, 22, 3224–3243. [Google Scholar] [CrossRef]
- Ai, L. Lessons for Chinese Mega-Mall Development: A Case Study of the South China Mall. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2007. [Google Scholar]
- Barata-Salgueiro, T.; Erkip, F. Retail Planning and Urban Resilience—An Introduction to the Special Issue. Cities 2014, 36, 107–111. [Google Scholar] [CrossRef]
- Gasnier, A.; Desse, R.-P.; Guillemot, L.; Grelier, A.; Soumagne, J. Retail Planning for Cities Sustainability (Replacis); Lund University: Lund, Sweden, 2009; 222p. [Google Scholar]
- Schiller, R. Vitality and Viability: Challenge to the Town Centre. Int. J. Retail Distrib. Manag. 1994, 22, 46–50. [Google Scholar] [CrossRef]
- Sommella, R.; D’Alessandro, L. Retail Policies and Urban Change in Naples City Center: Challenges to Resilience and Sustainability from a Mediterranean City. Sustainability 2021, 13, 7620. [Google Scholar] [CrossRef]
- Guy, C. Is ‘Demonstration of Need’ Necessary in Retail Planning Policy? Reg. Stud. 2007, 41, 131–137. [Google Scholar] [CrossRef]
- Rao, F.; Summers, R.J. Planning for Retail Resilience: Comparing Edmonton and Portland. Cities 2016, 58, 97–106. [Google Scholar] [CrossRef]
- Barata-Salgueiro, T.; Guimarães, P. Public Policy for Sustainability and Retail Resilience in Lisbon City Center. Sustainability 2020, 12, 9433. [Google Scholar] [CrossRef]
- Cachinho, H. Consumerscapes and the Resilience Assessment of Urban Retail Systems. Cities 2014, 36, 131–144. [Google Scholar] [CrossRef]
- Kärrholm, M.; Nylund, K.; Prieto De La Fuente, P. Spatial Resilience and Urban Planning: Addressing the Interdependence of Urban Retail Areas. Cities 2014, 36, 121–130. [Google Scholar] [CrossRef]
- Leal Filho, W.; Marisa Azul, A.; Brandli, L.; Gökçin Özuyar, P.; Wall, T. (Eds.) Sustainable Cities and Communities; Encyclopedia of the UN Sustainable Development Goals; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-319-95716-6. [Google Scholar]
- Formánek, T.; Sokol, O. Location Effects: Geo-Spatial and Socio-Demographic Determinants of Sales Dynamics in Brick-and-Mortar Retail Stores. J. Retail. Consum. Serv. 2022, 66, 102902. [Google Scholar] [CrossRef]
- Kickert, C.; Vom Hofe, R.; Haas, T.; Zhang, W.; Mahato, B. Spatial Dynamics of Long-Term Urban Retail Decline in Three Transatlantic Cities. Cities 2020, 107, 102918. [Google Scholar] [CrossRef] [PubMed]
- Sung, H. Estimating the Spatial Impact of Neighboring Physical Environments on Retail Sales. Cities 2022, 123, 103579. [Google Scholar] [CrossRef]
- Colaço, R.; de Abreu e Silva, J. Commercial Classification and Location Modelling: Integrating Different Perspectives on Commercial Location and Structure. Land 2021, 10, 567. [Google Scholar] [CrossRef]
- Parker, C. Multifunctional Centres: A Sustainable Role for Town and City Centres; Institute of Place Management: Manchester, UK, 2015; Available online: https://www.researchgate.net/publication/299337316_Multifunctional_Centres_a_sustainable_role_for_town_and_city_centres (accessed on 6 August 2025).
- Brown, S. Retail Location Theory: Evolution and Evaluation. Int. Rev. Retail Distrib. Consum. Res. 1993, 3, 185–229. [Google Scholar] [CrossRef]
- Applebaum, W. Guidelines for a Store-Location Strategy Study. J. Mark. 1966, 30, 42–45. [Google Scholar] [CrossRef]
- Ghosh, A.; Craig, C.S. Formulating Retail Location Strategy in a Changing Environment. J. Mark. 1983, 47, 56–68. [Google Scholar] [CrossRef]
- Mitchell, M. (Ed.) Complexity: A Guided Tour; Oxford University Press: Oxford, UK; New York, NY, USA, 2009; ISBN 978-0-19-972457-4. [Google Scholar]
- Shi, Y.; Wu, J.; Wang, S. Spatio-Temporal Features and the Dynamic Mechanism of Shopping Center Expansion in Shanghai. Appl. Geogr. 2015, 65, 93–108. [Google Scholar] [CrossRef]
- Philp, S.; Dolega, L.; Singleton, A.; Green, M. Archetypes of Footfall Context: Quantifying Temporal Variations in Retail Footfall in Relation to Micro-Location Characteristics. Appl. Spat. Anal. Policy 2022, 15, 161–187. [Google Scholar] [CrossRef]
- Teller, C.; Wood, S.; Floh, A. Adaptive Resilience and the Competition between Retail and Service Agglomeration Formats: An International Perspective. J. Mark. Manag. 2016, 32, 1537–1561. [Google Scholar] [CrossRef]
- Mumford, C.; Parker, C.; Ntounis, N.; Dargan, E. Footfall Signatures and Volumes: Towards a Classification of UK Centres. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 1495–1510. [Google Scholar] [CrossRef]
- Correa, J.C.; Garzón, W.; Brooker, P.; Sakarkar, G.; Carranza, S.A.; Yunado, L.; Rincón, A. Evaluation of Collaborative Consumption of Food Delivery Services through Web Mining Techniques. J. Retail. Consum. Serv. 2019, 46, 45–50. [Google Scholar] [CrossRef]
- Pan, C.; Guo, J.; Li, H.; Wu, J.; Qiu, N.; Wu, S. Study on the Influence Mechanism of Machine-Learning-Based Built Environment on Urban Vitality in Macau Peninsula. Buildings 2025, 15, 1557. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, Y.; Wang, X.; Tian, G.; Zhang, S. Measuring the Correlation between Human Activity Density and Streetscape Perceptions: An Analysis Based on Baidu Street View Images in Zhengzhou, China. Land 2022, 11, 400. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Cadenasso, M.L.; Grove, J.M. Resilient Cities: Meaning, Models, and Metaphor for Integrating the Ecological, Socio-Economic, and Planning Realms. Landsc. Urban Plan. 2004, 69, 369–384. [Google Scholar] [CrossRef]
- Guimarães, P.P.C. The Resilience of Shopping Centres: An Analysis of Retail Resilience Strategies in Lisbon, Portugal. Morav. Geogr. Rep. 2018, 26, 160–172. [Google Scholar] [CrossRef]
- Coutinho Guimarães, P.P. Shopping Centres in Decline: Analysis of Demalling in Lisbon. Cities 2019, 87, 21–29. [Google Scholar] [CrossRef]
- Hassink, R. Regional Resilience: A Promising Concept to Explain Differences in Regional Economic Adaptability? Camb. J. Reg. Econ. Soc. 2010, 3, 45–58. [Google Scholar] [CrossRef]
- Holling, C.S. Foundations of Socio-Environmental Research; Cambridge University Press: Cambridge, UK, 1973; pp. 460–482. ISBN 978-1-009-17785-6. [Google Scholar]
- Christaller, W. Central Places in Southern Germany; Prentice-Hall: Englewood Cliffs, NJ, USA, 1933. [Google Scholar]
- Tinessa, F.; Pagliara, F.; Biggiero, L.; Delli Veneri, G. Walkability, Accessibility to Metro Stations and Retail Location Choice: Some Evidence from the Case Study of Naples. Res. Transp. Bus. Manag. 2021, 40, 100549. [Google Scholar] [CrossRef]
- Hillier, B.; Hanson, J. The Social Logic of Space; Cambridge University Press: Cambridge, UK, 1984; ISBN 978-1-139-93914-0. [Google Scholar]
- Hillier, B. Space Is the Machine: A Configurational Theory of Architecture; Space Syntax: London, UK, 2007. [Google Scholar]
- Kang, C.-D. Spatial Access to Pedestrians and Retail Sales in Seoul, Korea. Habitat Int. 2016, 57, 110–120. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, Y. Transit-Based Accessibility and Urban Development: An Exploratory Study of Shenzhen Based on Big and/or Open Data. Cities 2021, 110, 102990. [Google Scholar] [CrossRef]
- Primerano, F.; Taylor, M.A.P.; Pitaksringkarn, L.; Tisato, P. Defining and Understanding Trip Chaining Behaviour. Transportation 2007, 35, 55–72. [Google Scholar] [CrossRef]
- O’Kelly, M.E. A Model of the Demand for Retail Facilities, Incorporating Multistop, Multipurpose Trips. Geogr. Anal. 1981, 13, 134–148. [Google Scholar] [CrossRef]
- Adler, T.; Ben-Akiva, M. A Theoretical and Empirical Model of Trip Chaining Behavior. Transp. Res. Part B Methodol. 1979, 13, 243–257. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Rao, F.; Dovey, K.; Pafka, E. Towards a Genealogy of Urban Shopping: Types, Adaptations and Resilience. J. Urban Des. 2018, 23, 544–557. [Google Scholar] [CrossRef]
- Long, F.; Shi, L. Growth in Surrounding Consumer Amenities: The Economic Externality of Urban Parks. Growth Change 2021, 52, 1062–1079. [Google Scholar] [CrossRef]
- Hotelling, H. Stability in Competition. Econ. J. 1929, 39, 41. [Google Scholar] [CrossRef]
- Hänninen, M.; Paavola, L. Managing Transformations in Retail Agglomerations: Case Itis Shopping Center. J. Retail. Consum. Serv. 2021, 59, 102370. [Google Scholar] [CrossRef]
- Park, S.; Seo, H.; Koo, H. Exploring the Spatio-Temporal Clusters of Closed Restaurants after the COVID-19 Outbreak in Seoul Using Relative Risk Surfaces. Sci. Rep. 2023, 13, 13889. [Google Scholar] [CrossRef]
- Clark, P.J.; Evans, F.C. Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations. Ecology 1954, 35, 445–453. [Google Scholar] [CrossRef]
- Reilly, W.J. The Law of Retail Gravitation, 2nd ed.; Pilsbury Publishers: New York, NY, USA, 1953. [Google Scholar]
- Huff, D.L. Defining and Estimating a Trading Area. J. Mark. 1964, 28, 34–38. [Google Scholar] [CrossRef]
- Myers, J.G. Determinants of Private Brand Attitude. J. Mark. Res. 1967, 4, 73–81. [Google Scholar] [CrossRef]
- Sheth, J.N. Demographics in Consumer Behavior. J. Bus. Res. 1977, 5, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Zwick, C. Demographic Variation: Its Impact on Consumer Behavior. Rev. Econ. Stat. 1957, 39, 451. [Google Scholar] [CrossRef]
- Sevtsuk, A. Path and Place: A Study of Urban Geometry and Retail Activity in Cambridge and Somerville, MA. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2010. [Google Scholar]
- Arnould, E.J.; Thompson, C.J. Consumer Culture Theory (CCT): Twenty Years of Research. J. Consum. Res. 2005, 31, 868–882. [Google Scholar] [CrossRef]
- Mumford, L. The Culture of Cities; Open Road Media: New York, NY, USA, 2016; ISBN 978-1-5040-3134-9. [Google Scholar]
- Miller, D. Shopping, Place, and Identity; Psychology Press: London, UK, 1998; ISBN 978-0-415-15460-4. [Google Scholar]
- Gruen, V.; Smith, L. Shopping Towns USA: The Planning of Shopping Centers; Progressive architecture library; Reinhold Publishing Corporation: New York, NY, USA, 1960. [Google Scholar]
- Kim, G.; Kim, A.; Kim, Y. A New 3D Space Syntax Metric Based on 3D Isovist Capture in Urban Space Using Remote Sensing Technology. Comput. Environ. Urban Syst. 2019, 74, 74–87. [Google Scholar] [CrossRef]
- Breek, P.; Hermes, J.; Eshuis, J.; Mommaas, H. The Role of Social Media in Collective Processes of Place Making: A Study of Two Neighborhood Blogs in Amsterdam. City Community 2018, 17, 906–924. [Google Scholar] [CrossRef]
- Ramanathan, U.; Subramanian, N.; Parrott, G. Role of Social Media in Retail Network Operations and Marketing to Enhance Customer Satisfaction. Int. J. Oper. Prod. Manag. 2017, 37, 105–123. [Google Scholar] [CrossRef]
- Anderson, J.C.; Gerbing, D.W. Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach. Psychol. Bull. 1988, 103, 411–423. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Saunders, C. (Ed.) Subspace, Latent Structure and Feature Selection: Statistical and Optimization Perspectives Workshop, SLSFS 2005, Bohinj, Slovenia, February 23–25, 2005: Revised Selected Papers; Lecture notes in computer science; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2006; ISBN 978-3-540-34137-6. [Google Scholar]
- He, X.; Lei, X.; Xu, Q.; Lan, J.; Wu, B.; Guo, H.; Gao, W.; Liu, D. Combining Multiple Feature Selection Methods and Structural Equation Modelling for Exploring Factors Affecting Stand Biomass of Natural Coniferous-Broad Leaved Mixed Forests. Sci. Total Environ. 2024, 954, 176669. [Google Scholar] [CrossRef]
- Zhu, Y.; Guo, Y.; Chen, Y.; Ma, J.; Zhang, D. Factors Influencing Carbon Emission and Low-Carbon Development Levels in Shandong Province: Method Analysis Based on Improved Random Forest Partial Least Squares Structural Equation Model and Entropy Weight Method. Sustainability 2024, 16, 8488. [Google Scholar] [CrossRef]
- Kaur, H.; Nori, H.; Jenkins, S.; Caruana, R.; Wallach, H.; Wortman Vaughan, J. Interpreting Interpretability: Understanding Data Scientists’ Use of Interpretability Tools for Machine Learning. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–14. [Google Scholar]
- Hair, F.J., Jr.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial Least Squares Structural Equation Modeling (PLS-SEM): An Emerging Tool in Business Research. Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Overman, H.G. Regional Science. In International Encyclopedia of Human Geography; Elsevier: Amsterdam, The Netherlands, 2009; pp. 279–285. ISBN 978-0-08-044910-4. [Google Scholar]
- Fotheringham, A.S. Spatial Interaction Models. In International Encyclopedia of the Social & Behavioral Sciences; Elsevier: Amsterdam, The Netherlands, 2001; pp. 14794–14800. ISBN 978-0-08-043076-8. [Google Scholar]
- Olsson, G. Explanation, Prediction, and Meaning Variance: An Assessment of Distance Interaction Models. Econ. Geogr. 1970, 46, 223. [Google Scholar] [CrossRef]
- Wilson, A.G. A Family of Spatial Interaction Models, and Associated Developments t. Environ. Plan. 1971, 3, 1–32. [Google Scholar] [CrossRef]
- Andris, C. Integrating Social Network Data into GISystems. Int. J. Geogr. Inf. Sci. 2016, 30, 2009–2031. [Google Scholar] [CrossRef]
- Wei, X.; Yao, X.A. Constructing and Analyzing Spatial-Social Networks from Location-Based Social Media Data. Cartogr. Geogr. Inf. Sci. 2021, 48, 258–274. [Google Scholar] [CrossRef]
- Ye, X.; Li, S.; Peng, Q. Measuring Interaction among Cities in China: A Geographical Awareness Approach with Social Media Data. Cities 2021, 109, 103041. [Google Scholar] [CrossRef]
- Ellison, G.; Glaeser, E.L. The Geographic Concentration of Industry: Does Natural Advantage Explain Agglomeration? Am. Econ. Rev. 1999, 89, 311–316. [Google Scholar] [CrossRef]
- Giersch, H. Urban Agglomeration and Economic Growth; Publications of the Egon-Sohmen-Foundation; Springer: Berlin/Heidelberg, Germany, 1995; ISBN 978-3-642-79399-8. [Google Scholar]
- Seevers, M.T.; Skinner, S.J.; Dahlstrom, R. Performance Implications of a Retail Purchasing Network: The Role of Social Capital. J. Retail. 2010, 86, 310–321. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Kallal, H.D.; Scheinkman, J.A.; Shleifer, A. Growth in Cities. J. Polit. Econ. 1992, 100, 1126–1152. [Google Scholar] [CrossRef]
- Teller, C.; Schnedlitz, P. Drivers of Agglomeration Effects in Retailing: The Shopping Mall Tenant’s Perspective. J. Mark. Manag. 2012, 28, 1043–1061. [Google Scholar] [CrossRef]
- Warnaby, G.; Bennison, D.; Davies, B.J.; Hughes, H. Marketing UK Towns and Cities as Shopping Destinations. J. Mark. Manag. 2002, 18, 877–904. [Google Scholar] [CrossRef]
- Teller, C.; Alexander, A.; Floh, A. The Impact of Competition and Cooperation on the Performance of a Retail Agglomeration and Its Stores. Ind. Mark. Manag. 2016, 52, 6–17. [Google Scholar] [CrossRef]
- Adler, T.J.; Ben-Akiva, M. Joint-Choice Model for Frequency, Destination, and Travel Mode for Shopping Trips. In Proceedings of the Transportation Research Record, Washington, DC, USA, 13–17 January 1975. [Google Scholar]
- Westelius, O. The Individual’s Pattern of Travel in an Urban Area; National Technical Information Service: Springfield, VA, USA, 1972. [Google Scholar]
- Byrne, B.M. Structural Equation Modeling with Mplus: Basic Concepts, Applications, and Programming; Routledge: New York, NY, USA, 2013; ISBN 978-0-203-80764-4. [Google Scholar]
- Chin, W.W. The Partial Least Squares Approach to Structural Equation Modeling. In Modern Methods for Business Research; Psychology Press: London, UK, 1998; ISBN 978-1-4106-0438-5. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The Use of Partial Least Squares Path Modeling in International Marketing. In New Challenges to International Marketing; Sinkovics, R.R., Ghauri, P.N., Eds.; Emerald Group Publishing Limited: Leeds, UK, 2009; Volume 20, ISBN 978-1-84855-468-9. [Google Scholar]
- Cheung, M.W.L. Comparison of Methods for Constructing Confidence Intervals of Standardized Indirect Effects. Behav. Res. Methods 2009, 41, 425–438. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Folke, C. Resilience: The Emergence of a Perspective for Social–Ecological Systems Analyses. Glob. Environ. Change 2006, 16, 253–267. [Google Scholar] [CrossRef]
- Zhou, L.; Xiao, W.; Zheng, Z.; Zhang, H. Commercial Dynamics in Urban China during the COVID-19 Recession: Vulnerability and Short-Term Adaptation of Commercial Centers in Shanghai. Appl. Geogr. 2023, 152, 102889. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, Z.; Zhu, D. Exploring the Impact of Urban Amenities on Business Circle Vitality Using Multi-Source Big Data. Land 2024, 13, 1616. [Google Scholar] [CrossRef]
- Pine, B.J.; Gilmore, J.H. The Experience Economy; Harvard Business Press: Brighton, MA, USA, 2011; ISBN 978-1-4221-6197-5. [Google Scholar]
- Ozuduru, B.H.; Varol, C.; Yalciner Ercoskun, O. Do Shopping Centers Abate the Resilience of Shopping Streets? The Co-Existence of Both Shopping Venues in Ankara, Turkey. Cities 2014, 36, 145–157. [Google Scholar] [CrossRef]
- White, J.T.; Orr, A.; Jackson, C.; Gardner, A.; Hickie, J.; Richardson, R.; Stewart, J. Averting Dead Mall Syndrome: De-Malling and the Future of the Purpose-Built Shopping Center in Large UK Cities. J. Urban Aff. 2025, 47, 1523–1539. [Google Scholar] [CrossRef]
- Rao, F.; Dovey, K. Shopping and Urbanity: Emerging Assemblages of Main Street, Mall, and Power Centre. Plan. Theory Pract. 2021, 22, 747–764. [Google Scholar] [CrossRef]
- Yan, Y.; Xu, L. Study on the Guidance and Control Value Range of Public Space in Coordination between Efficiency and Fairness—Taking the Public Space Supply Index of TOD Plots as an Example. New Constr. 2021, 4, 40–47. [Google Scholar]
- Zou, Y. Study on the impact of subway on commercial district development under the Tod model. Mod. Econ. Inf. 2019, 3, 399. [Google Scholar]
- Li, Z.; Han, Z.; Xin, J.; Luo, X.; Su, S.; Weng, M. Transit Oriented Development among Metro Station Areas in Shanghai, China: Variations, Typology, Optimization and Implications for Land Use Planning. Land Use Policy 2019, 82, 269–282. [Google Scholar] [CrossRef]
- Helm, S.; Kim, S.H.; Van Riper, S. Navigating the ‘Retail Apocalypse’: A Framework of Consumer Evaluations of the New Retail Landscape. J. Retail. Consum. Serv. 2020, 54, 101683. [Google Scholar] [CrossRef]
- Veloso, C.M.; Sousa, B.B. Drivers of Customer Behavioral Intentions and the Relationship with Service Quality in Specific Industry Contexts. Int. Rev. Retail Distrib. Consum. Res. 2022, 32, 43–58. [Google Scholar] [CrossRef]
- Teller, C.; Reutterer, T. The Evolving Concept of Retail Attractiveness: What Makes Retail Agglomerations Attractive When Customers Shop at Them? J. Retail. Consum. Serv. 2008, 15, 127–143. [Google Scholar] [CrossRef]
- Du, R.; Liu, K.; Zhao, D.; Fang, Q. Urban Amenity and Urban Economic Resilience: Evidence from China. Front. Public Health 2024, 12, 1392908. [Google Scholar] [CrossRef]
- Li, H.; Wei, Y.D.; Wu, Y. Urban Amenity, Human Capital and Employment Distribution in Shanghai. Habitat Int. 2019, 91, 102025. [Google Scholar] [CrossRef]
- Teller, C. Shopping Streets versus Shopping Malls—Determinants of Agglomeration Format Attractiveness from the Consumers’ Point of View. Int. Rev. Retail Distrib. Consum. Res. 2008, 18, 381–403. [Google Scholar] [CrossRef]
- Ferreira, D.; Paiva, D. The Death and Life of Shopping Malls: An Empirical Investigation on the Dead Malls in Greater Lisbon. Int. Rev. Retail Distrib. Consum. Res. 2017, 27, 317–333. [Google Scholar] [CrossRef]
- Gilboa, S. Shopping Mall Detachment: Why Do Some Consumers Avoid Malls? J. Retail. Consum. Serv. 2024, 78, 103740. [Google Scholar] [CrossRef]
- Erkip, F.; Ozuduru, B.H. Retail Development in Turkey: An Account after Two Decades of Shopping Malls in the Urban Scene. Prog. Plan. 2015, 102, 1–33. [Google Scholar] [CrossRef]
- Wrigley, N.; Dolega, L. Resilience, Fragility, and Adaptation: New Evidence on the Performance of UK High Streets during Global Economic Crisis and Its Policy Implications. Environ. Plan. Econ. Space 2011, 43, 2337–2363. [Google Scholar] [CrossRef]
- Enoch, M.; Monsuur, F.; Palaiologou, G.; Quddus, M.A.; Ellis-Chadwick, F.; Morton, C.; Rayner, R. When COVID-19 Came to Town: Measuring the Impact of the Coronavirus Pandemic on Footfall on Six High Streets in England. Environ. Plan. B Urban Anal. City Sci. 2022, 49, 1091–1111. [Google Scholar] [CrossRef]
- Escudero-Gómez, L.A. Shopping Centers Challenging Decline: Competitive Strategies in Three Case Studies from Madrid’s Urban Area. J. Retail. Consum. Serv. 2024, 79, 103826. [Google Scholar] [CrossRef]
Hyperparameter | Value | Description |
---|---|---|
n_estimators | 100 | The model uses 100 trees, ensuring robust learning. |
max_depth | 10 | Maximum depth of each tree that limits how deep the tree can grow |
min_samples_split | 1 | Minimum samples required to split an internal node. |
min_samples_leaf | 5 | Minimum samples required at a leaf node to contain enough data. |
Items | Factor Load | Cronbach’s Alpha | CR | AVE |
---|---|---|---|---|
Publicity | - | 0.701 | 0.862 | 0.759 |
Social Media | 0.974 | - | - | - |
Visibility | 0.724 | - | - | - |
Scale | - | 0.742 | 0.886 | 0.795 |
Floor Area | 0.886 | - | - | - |
Site Area | 0.898 | - | - | - |
Accessibility | - | 0.822 | 0.918 | 0.849 |
Parking Facility | 0.919 | - | - | - |
Public Transit | 0.923 | - | - | - |
Socio-Demography | - | 0.843 | 0.927 | 0.864 |
Employment | 0.923 | - | - | - |
Residential Settlement | 0.936 | - | - | - |
Agglomeration | - | 0.784 | 0.902 | 0.821 |
NNI | 0.920 | - | - | - |
Point Density | 0.893 | - | - | - |
Amenity | - | 0.798 | 0.904 | 0.825 |
Diversity | 0.949 | - | - | - |
Open-Space Ratio | 0.865 | - | - | - |
Impact Path | Path Coefficient (β) | t-Value | p-Value | Effect Size | |
---|---|---|---|---|---|
H1 | Accessibility → RSR | 0.291 | 4.995 | *** | Large |
H2 | Accessibility → Publicity | 0.345 | 6.922 | *** | Large |
H3 | Scale → Publicity | −0.150 | 3.371 | ** | Medium |
H4 | Agglomeration → RSR | 0.294 | 4.511 | *** | Large |
H5 | Accessibility → Agglomeration | 0.421 | 5.919 | *** | Large |
H6 | Publicity → Agglomeration | 0.371 | 8.328 | *** | Large |
H7 | Amenity → RSR | 0.383 | 8.677 | *** | Large |
H8 | Socio-demography → Amenity | 0.473 | 9.811 | *** | Large |
Impact Path | β | LLCI | ULCI | t-Value | p-Value | |
---|---|---|---|---|---|---|
H9 | Socio-Demography → Amenity → Footfall | 0.181 | 0.127 | 0.237 | 6.529 | *** |
H10 | Scale → Publicity →Agglomeration → Footfall | −0.016 | −0.032 | −0.006 | 2.423 | * |
H11 | Scale → Publicity → Agglomeration | −0.056 | −0.094 | −0.025 | 3.116 | ** |
H12 | Publicity → Agglomeration → RSR | 0.109 | 0.052 | 0.168 | 3.562 | *** |
H13 | Accessibility → Agglomeration → RSR | 0.124 | 0.018 | 0.059 | 4.489 | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Song, J.; Zeng, J. Toward Resilience: Assessing Retail Location’s Complex Impact Mechanism Using PLS-SEM Aided by Machine Learning. Sustainability 2025, 17, 7461. https://doi.org/10.3390/su17167461
Zhang J, Song J, Zeng J. Toward Resilience: Assessing Retail Location’s Complex Impact Mechanism Using PLS-SEM Aided by Machine Learning. Sustainability. 2025; 17(16):7461. https://doi.org/10.3390/su17167461
Chicago/Turabian StyleZhang, Jingyuan, Jusheng Song, and Jiaming Zeng. 2025. "Toward Resilience: Assessing Retail Location’s Complex Impact Mechanism Using PLS-SEM Aided by Machine Learning" Sustainability 17, no. 16: 7461. https://doi.org/10.3390/su17167461
APA StyleZhang, J., Song, J., & Zeng, J. (2025). Toward Resilience: Assessing Retail Location’s Complex Impact Mechanism Using PLS-SEM Aided by Machine Learning. Sustainability, 17(16), 7461. https://doi.org/10.3390/su17167461