Integrating Environmental and Social Life Cycle Assessment for Sustainable University Mobility Strategies
Abstract
1. Introduction
2. Materials and Methods
2.1. Goal and Scope Definition
2.2. System Boundary and Functional Units
2.3. Life Cycle Inventory (LCI)
2.3.1. Operation Phase
2.3.2. Maintenance Phase
2.3.3. Pedigree Matrix for LCI
2.4. Life Cycle Impact Assessment
2.5. Interpretation
2.6. Social Life Cycle Assessment (S-LCA)
Color * | Original Scale | New Scale | Label | |
---|---|---|---|---|
Continuous | Discrete | Continuous | ||
1.0–0.81 | 5 | 5.0–4.3 | Very positive | |
0.8–0.61 | 4 | 4.2–3.4 | Positive | |
0.6–0.41 | 3 | 3.3–2.6 | Neutral | |
0.4–0.21 | 2 | 2.5–1.8 | Negative | |
0.2–0 | 1 | 1.7–1.0 | Very negative |
3. Results and Discussion
3.1. Life Cycle Assessment: University Transport
3.2. Sensitivity Analysis (E-LCA)
3.3. Social Impact Assessment: Users Stakeholder
3.4. Integrating Sustainable Transport Strategies into a University Mobility Plan
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASPI | Aggregated Social Performance Index |
CNG | compressed natural gas |
CO | carbon monoxide |
CO2 | carbon dioxide |
E-LCA | Environmental Life Cycle Assessment |
FPmf | Fine Particulate Matter Formation |
GHG | greenhouse gas |
GWP | Global Warming Potential |
HEIs | higher education institutions |
HUTP | Home University Travel Plan |
ICE | internal combustion engines |
ISO | International Organization for Standardization |
LCI | Life Cycle Inventory |
MaaS | Mobility as a Service |
NO | nitrogen monoxide |
NO2 | nitrogen dioxides |
NOx | nitrogen oxides |
OfHh | Ozone Formation, Human Health |
OfTe | Ozone Formation, Terrestrial Ecosystem |
pkm | person-kilometer |
PM2.5 | particulate matter 2.5 |
PSIA | Product Social Impact Assessment |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus 2 |
SDGs | Sustainable Development Goals |
S-LCA | Social Life Cycle Assessment |
SPIs | Social Performance Indexes |
SUMP | Sustainable University Mobility Plan |
TA | Terrestrial Acidification |
UAEMEX | Autonomous University of Mexico State |
References
- Lozano, R.; Ceulemans, K.; Alonso-Almeida, M.; Huisingh, D.; Lozano, F.J.; Waas, T.; Lambrechts, W.; Lukman, R.; Hugé, J. A Review of Commitment and Implementation of Sustainable Development in Higher Education: Results from a Worldwide Survey. J. Clean. Prod. 2015, 108, 1–18. [Google Scholar] [CrossRef]
- Shahpar, A.; Faghri, A.; Li, M. Emission and Life-Cycle Assessment of Alternative-Fuel Buses: A Case Study of the Delaware Authority of Regional Transit. Int. J. Sustain. Dev. World Ecol. 2018, 25, 290–302. [Google Scholar] [CrossRef]
- Council the European Union. Renewed EU Sustainable Development Strategy; Council the European Union: Brussels, Belgium, 2006. [Google Scholar]
- Gallo, M.; Marinelli, M. Sustainable Mobility: A Review of Possible Actions and Policies. Sustainability 2020, 12, 7499. [Google Scholar] [CrossRef]
- Cruz-Rodríguez, J.; Luque-Sendra, A.; de las Heras, A.; Zamora-Polo, F. Analysis of Interurban Mobility in University Students: Motivation and Ecological Impact. Int. J. Environ. Res. Public Health 2020, 17, 9348. [Google Scholar] [CrossRef]
- Burchart, D.; Przytuła, I. Sustainability Assessment Methods for the Transport Sector Considering the Life Cycle Concept—A Review. Sustainability 2024, 16, 8148. [Google Scholar] [CrossRef]
- Tetteh, F.K.; Owusu Kwateng, K.; Mensah, J. Transport Sustainability—A Bibliometric, Systematic Methodological Review and Future Research Opportunities. Smart Resilient Transp 2024. Available online: https://www.emerald.com/srt/article/doi/10.1108/SRT-09-2024-0013/1256163/Transport-sustainability-a-bibliometric-systematic (accessed on 23 April 2025). [CrossRef]
- Du, H.; Kommalapati, R.R. Environmental Sustainability of Public Transportation Fleet Replacement with Electric Buses in Houston, a Megacity in the USA. Int. J. Sustain. Eng. 2021, 14, 1858–1870. [Google Scholar] [CrossRef]
- García Sánchez, J.A.; López Martínez, J.M.; Lumbreras Martín, J.; Flores Holgado, M.N. Comparison of Life Cycle Energy Consumption and GHG Emissions of Natural Gas, Biodiesel and Diesel Buses of the Madrid Transportation System. Energy 2012, 47, 174–198. [Google Scholar] [CrossRef]
- McKenzie, E.C.; Durango-Cohen, P.L. Environmental Life-Cycle Assessment of Transit Buses with Alternative Fuel Technology. Transp. Res. Part D Transp. Environ. 2012, 17, 39–47. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.; Xie, P.; Chen, X. Life-Cycle Assessment of Carbon Footprint of Bike-Share and Bus Systems in Campus Transit. Sustainability 2021, 13, 158. [Google Scholar] [CrossRef]
- da Silva, A.N.R.; Tan, F.M.; de Sousa, P.B. Key Sustainable Mobility Indicators for University Campuses. Environ. Sustain. Indic. 2024, 22, 100371. [Google Scholar] [CrossRef]
- Razy-Yanuv, E.; Meron, N. Early Transition to Cleaner Bus Fleets: Benefits, Costs, and Policy Evaluation of Alternatives from a Life Cycle Perspective. Clean. Environ. Syst. 2024, 12, 100172. [Google Scholar] [CrossRef]
- Traffic 21. Which Alternative Fuel Technology Is Best for Transit Buses? Traffic 21: Pittsburgh, PA, USA, 2016. [Google Scholar]
- Chester, M.; Matute, J.; Bunje, P.; Eisenstein, W.; Pincetl, S.; Elizabeth, Z.; Cepeda, C. Life-Cycle Assessment for Transportation Decision Making; Trans-Portation Research Board: Washington, DC, USA, 2014; 16p. [Google Scholar]
- Bicer, Y.; Dincer, I. Life Cycle Environmental Impact Assessments and Comparisons of Alternative Fuels for Clean Vehicles. Resour. Conserv. Recycl. 2018, 132, 141–157. [Google Scholar] [CrossRef]
- DOF. Estrategia de Transición Para Promover El Uso de Tecnologías Y Más Limpios; DOF: Ciudad de México, Mexico, 2024. [Google Scholar]
- Erauskin-Tolosa, A.; Bueno, G.; Etxano, I.; Tamayo, U.; García, M.; de Blas, M.; Pérez-Iribarren, E.; Zuazo, I.; Torre-Pascual, E.; Akizu-Gardoki, O. Social Organisational LCA for the Academic Activity of the University of the Basque Country UPV/EHU. Int. J. Life Cycle Assess. 2021, 26, 1648–1669. [Google Scholar] [CrossRef]
- Gompf, K.; Traverso, M.; Hetterich, J. Towards Social Life Cycle Assessment of Mobility Services: Systematic Literature Review and the Way Forward. Int. J. Life Cycle Assess. 2020, 25, 1883–1909. [Google Scholar] [CrossRef]
- Osorio-Tejada, J.L.; Llera-Sastresa, E.; Scarpellini, S.; Hashim, A.H. An Integrated Social Life Cycle Assessment of Freight Transport Systems. Int. J. Life Cycle Assess. 2020, 25, 1088–1105. [Google Scholar] [CrossRef]
- Elagouz, N.; Onat, N.C.; Kucukvar, M.; Sen, B.; Kutty, A.A.; Kagawa, S.; Nansai, K.; Kim, D. Rethinking Mobility Strategies for Mega-Sporting Events: A Global Multiregional Input-Output-Based Hybrid Life Cycle Sustainability Assessment of Alternative Fuel Bus Technologies. Sustain. Prod. Consum. 2022, 33, 767–787. [Google Scholar] [CrossRef]
- Qiu, Y.; Dong, Y. Life Cycle Assessment of Campuses: A Systematic Review. Energy Build. 2024, 319, 114455. [Google Scholar] [CrossRef]
- Alanis, C.; Olayo, A.C.; Córdoba, L.I.Á. Social Perception of Transport Services: Case Study at the Autonomous University of Mexico State. Rev. CoPaLa Construyendo Paz Latinoam. 2025, 10, 1–29. [Google Scholar] [CrossRef]
- Le Pira, M.; Fazio, M.; Giuffrida, N.; Calabrò, G.; Inturri, G.; Ignaccolo, M. UaaS App—University as a Service App: Exploring the Acceptability of a MaaS-like Concept for a University Community. Eur. Transp. 2023, 90, 1–10. [Google Scholar] [CrossRef]
- Kriswardhana, W.; Esztergár-Kiss, D. Exploring the Aspects of MaaS Adoption Based on College Students’ Preferences. Transp. Policy 2023, 136, 113–125. [Google Scholar] [CrossRef]
- Coppola, P.; Silvestri, F.; Pastorelli, L. Mobility as a Service (MaaS) for University Communities: Modeling Preferences for Integrated Public Transport Bundles. Travel Behav. Soc. 2025, 38, 100890. [Google Scholar] [CrossRef]
- Caballini, C.; Corazza, M.V.; Costa, V.; Delponte, I.; Olivari, E. Assessing the Feasibility of MaaS: A Contribution from Three Italian Case Studies. Sustainability 2022, 14, 16743. [Google Scholar] [CrossRef]
- Beil, D.; Putz, L.-M. Modal Shift Measures to Increase the Use of Eco-Friendly Transport Modes: A Literature Review. Transp. Res. Procedia 2023, 72, 4279–4286. [Google Scholar] [CrossRef]
- Guido, G.; Nalmpantis, D.; Pirri, P.; Zinno, R. Home–University Travel Plan for Sustainable Mobility: A Comparative Study Between the Aristotle University of Thessaloniki and the University of Calabria. Sustainability 2025, 17, 345. [Google Scholar] [CrossRef]
- Naaman, A.; Shiran, G.; Haghshenas, H.; Alavi, M. Application of Sustainable Transport at the University Campus Level in the Face of the COVID-19 Pandemic. Case Stud. Transp. Policy 2024, 15, 101133. [Google Scholar] [CrossRef]
- Nadimi, N.; Zamzam, A.; Litman, T. University Bus Services: Responding to Students’ Travel Demands? Sustainability 2023, 15, 8921. [Google Scholar] [CrossRef]
- Papantoniou, P.; Vlahogianni, E.; Yannis, G. On User Perception of Mobility Patterns, Problems and Efficient Measures for University Campuses in Mediterranean Countries. Ekistics New Habitat 2022, 80, 15–18. [Google Scholar] [CrossRef]
- Alshuwaikhat, H.M.; Abubakar, I. An Integrated Approach to Achieving Campus Sustainability: Assessment of the Current Campus Environmental Management Practices. J. Clean. Prod. 2008, 16, 1777–1785. [Google Scholar] [CrossRef]
- Leontev, M. Reasons of University Students’ Susceptibility to Intelligent Mobility and the Use of Mobility-As-A-Service Schemes. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2023; Volume 376. [Google Scholar]
- Boni, A.; Lopez-Fogues, A.; Walker, M. Higher Education and the Post-2015 Agenda: A Contribution from the Human Development Approach. J. Glob. Ethics 2016, 12, 17–28. [Google Scholar] [CrossRef]
- Assi, K.; Gazder, U.; Al-Sghan, I.; Reza, I.; Almubarak, A. A Nested Ensemble Approach with ANNs to Investigate the Effect of Socioeconomic Attributes on Active Commuting of University Students. Int. J. Environ. Res. Public Health 2020, 17, 3549. [Google Scholar] [CrossRef]
- Zamora-Polo, F.; Sánchez-Martín, J.; Corrales-Serrano, M.; Espejo-Antúnez, L. What Do University Students Know about Sustainable Development Goals? A Realistic Approach to the Reception of This UN Program Amongst the Youth Population. Sustainability 2019, 11, 3533. [Google Scholar] [CrossRef]
- Herrera Almanza, A.M.; Corona, B. Using Social Life Cycle Assessment to Analyze the Contribution of Products to the Sustainable Development Goals: A Case Study in the Textile Sector. Int. J. Life Cycle Assess. 2020, 25, 1833–1845. [Google Scholar] [CrossRef]
- Bakioglu, G. Selection of Sustainable Transportation Strategies for Campuses Using Hybrid Decision-Making Approach under Picture Fuzzy Sets. Technol. Forecast. Soc. Chang. 2024, 206, 123567. [Google Scholar] [CrossRef]
- PRDI. Plan Rector de Desarrollo Institucional de La UAEMEX (2021–2025); PRDI: New York, NY, USA, 2021. [Google Scholar]
- DPA. Dirección de Protección al Ambiente—Movilidad. Available online: https://proteccionalambiente.uaemex.mx/programas-ambientales/movilidad.html (accessed on 23 April 2025).
- ISO 14040:2006; Gestión Ambiental. Ánálisis de Ciclo de Vida. Principios y Marco de Referencia. AENOR: Ciudad de México, Mexico, 2007.
- ISO 14044:2006; Environmental Management. Life Cycle Assessment. Requirements and Guidelines. The International Organization for Standardization: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/38498.html (accessed on 13 May 2025).
- Williams, M.; Minjares, R. A Technical Summary of Euro 6/VI Vehicle Emission Standards; ICCT: Washington, DC, USA, 2016. [Google Scholar]
- Ghate, A.T.; Qamar, S. Carbon Footprint of Urban Public Transport Systems in Indian Cities. Case Stud. Transp. Policy 2020, 8, 245–251. [Google Scholar] [CrossRef]
- SEMARNAT & INECC. Análisis de Ciclo de Vida Para Tecnologías de Transporte Seleccionadas Bajas En Carbono; SEMARNAT & INECC: Ciudad de México, Mexico, 2017. [Google Scholar]
- EPA. Transportation, Air Pollution and Climate Change_US EPA. Available online: https://www.epa.gov/transportation-air-pollution-and-climate-change (accessed on 20 January 2025).
- Prati, M.V.; Costagliola, M.A.; Unich, A.; Mariani, A. Emission Factors and Fuel Consumption of CNG Buses in Real Driving Conditions. Transp. Res. D Transp. Environ. 2022, 113, 103534. [Google Scholar] [CrossRef]
- Wardekker, J.A.; van der Sluijs, J.P.; Janssen, P.H.M.; Kloprogge, P.; Petersen, A.C. Uncertainty Communication in Environmental Assessments: Views from the Dutch Science-Policy Interface. Environ. Sci. Policy 2008, 11, 627–641. [Google Scholar] [CrossRef]
- Qin, Y.; Cucurachi, S.; Suh, S. Perceived Uncertainties of Characterization in LCA: A Survey. Int. J. Life Cycle Assess. 2020, 25, 1846–1858. [Google Scholar] [CrossRef]
- PRé Sustainability SimaPro 2025. Available online: https://pre-sustainability.com/ (accessed on 22 March 2025).
- Huijbregts, M.; Steinmann, Z.J.N.; Elshout, P.M.F.M.; Stam, G.; Verones, F.; Vieira, M.D.M.; Zijp, M.; van Zelm, R. ReCiPe 2016-A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level; Rijksinstituut voor Volksgezondheid en Milieu RIVM: Bilthoven, The Netherlands, 2016. [Google Scholar]
- Al-Thawadi, F.E.; Al-Ghamdi, S.G. Evaluation of Sustainable Urban Mobility Using Comparative Environmental Life Cycle Assessment: A Case Study of Qatar. Transp. Res. Interdiscip. Perspect. 2019, 1, 100003. [Google Scholar] [CrossRef]
- Ecoinvent. Ecoinvent; Ecoinvent: Zürich, Switzerland, 2024. [Google Scholar]
- Lai, R.; Ma, X.; Zhang, F.; Ji, Y. Life Cycle Assessment of Free-Floating Bike Sharing on Greenhouse Gas Emissions: A Case Study in Nanjing, China. Appl. Sci. 2021, 11, 11307. [Google Scholar] [CrossRef]
- Jakub, S.; Adrian, L.; Mieczysław, B.; Ewelina, B.; Katarzyna, Z. Life Cycle Assessment Study on the Public Transport Bus Fleet Electrification in the Context of Sustainable Urban Development Strategy. Sci. Total Environ. 2022, 824, 153872. [Google Scholar] [CrossRef]
- SENER. Balance Nacional de Energía 2022; SENER: Ciudad de México, Mexico, 2022. [Google Scholar]
- Lubecki, A.; Szczurowski, J.; Zarębska, K. The Importance of Uncertainty Sources in LCA for the Reliability of Environmental Comparisons: A Case Study on Public Bus Fleet Electrification. Appl. Energy 2025, 377, 124593. [Google Scholar] [CrossRef]
- Lubecki, A.; Szczurowski, J.; Zarębska, K. Uncertainty Management in Life Cycle Assessment Using the Beta-DQR Method: E-Mobility Case Study on Bicycles Production. J. Clean. Prod. 2025, 492, 144857. [Google Scholar] [CrossRef]
- Barahmand, Z.; Eikeland, M.S. Life Cycle Assessment under Uncertainty: A Scoping Review. World 2022, 3, 692–717. [Google Scholar] [CrossRef]
- UNEP. Guidelines for Social Life Cycle Assessment of Products; United Nations Environment Programme: Nairobi, Kenya, 2020; Volume 15, 104p. [Google Scholar]
- UAEMéx. Agenda Estadística 2020, Universidad Autónoma Del Estado de México; UAEMéx: Toluca, Mexico, 2021. [Google Scholar]
- Goedkoop, M.J.; de Beer, I.M.; Harmens, R.; Saling, P. Handbook for Product Social Impact Assessment 2020; PRé Sustainability: Amersfoort, The Netherlands, 2020. [Google Scholar]
- Ostovar, M. Environmental and Social Life Cycle Assessment (LCA) in Transport Infrastructure. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2023. [Google Scholar]
- Friman, M.; Lättman, K.; Olsson, L.E. Public Transport Quality, Safety, and Perceived Accessibility. Sustainability 2020, 12, 3563. [Google Scholar] [CrossRef]
- Gompf, K.; Traverso, M.; Hetterich, J. Applying Social Life Cycle Assessment to Evaluate the Use Phase of Mobility Services: A Case Study in Berlin. Int. J. Life Cycle Assess. 2022, 27, 603–622. [Google Scholar] [CrossRef]
- Carrales, J.C.F. Mobility Regulations and Urban Projects in Mexico City: An Accessibility Focus on Territorial Inequalities. Case Stud. Transp. Policy 2023, 11, 100939. [Google Scholar] [CrossRef]
- Figueirôa-Ferreira, V.G.; Borchers, T.; Ribeiro, R.A.; Fernandes, R.A.S. Citizens’ Perception Analysis of Public Transport and Smart Technologies in the Brazilian Capitals during the SARS-CoV-2 Pandemic. Acta Sci. Technol. 2023, 45, e61329. [Google Scholar] [CrossRef]
- Loubser, J.; Marnewick, A.L.; Joseph, N. Framework for the Potential Userbase of Mobility as a Service. Res. Transp. Bus. Manag. 2021, 39, 100583. [Google Scholar] [CrossRef]
- Andrade, A.; Escudero, M.; Parker, J.; Bartolucci, C.; Seriani, S.; Aprigliano, V. Perceptions of People with Reduced Mobility Regarding Universal Accessibility at Bus Stops: A Pilot Study in Santiago, Chile. Case Stud. Transp. Policy 2024, 16, 101190. [Google Scholar] [CrossRef]
- Yang, F.; Yu, J.; Li, X.; Qiu, W. An SLCA Method Based Framework of Large-Scale Transportation Infrastructure in China. Environ. Impact Assess. Rev. 2022, 93, 106716. [Google Scholar] [CrossRef]
- Manohar, V.J.; Godihal, J.H.; Biswas, P.K. Intelligent Transport System (ITS) with EV Infrastructure for Sustainable Mobility. In International Conference on Interdisciplinary Approaches in Civil Engineering for Sustainable Development; Springer: Singapore, 2024; pp. 485–495. [Google Scholar]
- Obregón Biosca, S.A. College Student Mobility in Emerging Countries: Case Study on Universidad Autónoma de Querétaro, México. Transp. Res. Interdiscip. Perspect. 2020, 6, 100155. [Google Scholar] [CrossRef]
- Santos, G.; Nikolaev, N. Mobility as a Service and Public Transport: A Rapid Literature Review and the Case of Moovit. Sustainability 2021, 13, 3666. [Google Scholar] [CrossRef]
- Rudnicki, A. Measures of Regularity and Punctuality in Public Transport Operation. IFAC Proc. Vol. 1997, 30, 661–666. [Google Scholar] [CrossRef]
- Feres, F.; Basso, F.; Pezoa, R.; Varas, M.; Vargas-Estrada, E. The Impact of Bus Punctuality on Users’ Decisions and Welfare. Transp. Lett. 2023, 15, 1154–1173. [Google Scholar] [CrossRef]
- APEC. Improving the Accessibility and Inclusivity of Public Transport through New and Emerging Transport Technologies; APEC: Singapore, 2024. [Google Scholar]
- Chan, S.; Miranda-Moreno, L.F.; Alam, A.; Hatzopoulou, M. Assessing the Impact of Bus Technology on Greenhouse Gas Emissions along a Major Corridor: A Lifecycle Analysis. Res. Part D Transp. Environ. 2013, 20, 7–11. [Google Scholar] [CrossRef]
- Shinde, A.M.; Dikshit, A.K.; Singh, R.K. Life Cycle Assessment of Public Transport Modes in Mumbai Metropolitan Region. In Handbook of Environmental Materials Management; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–14. [Google Scholar]
- Ding, N.; Pan, J.; Zhang, Z.; Yang, J. Life Cycle Assessment of Car Sharing Models and the Effect on GWP of Urban Transportation: A Case Study of Beijing. Sci. Total Environ. 2019, 688, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; He, Q.; Luo, X.; Zhang, Y.; Dong, L. Calculation of Life-Cycle Greenhouse Gas Emissions of Urban Rail Transit Systems: A Case Study of Shanghai Metro. Resour. Conserv. Recycl. 2018, 128, 451–457. [Google Scholar] [CrossRef]
- Brewer, E.; Li, Y.; Finken, B.; Quartucy, G.; Muzio, L.; Baez, A.; Garibay, M.; Jung, H.S. PM2.5 and Ultrafine Particulate Matter Emissions from Natural Gas-Fired Turbine for Power Generation. Atmos. Environ. 2016, 131, 141–149. [Google Scholar] [CrossRef]
- Milojević, S.; Glišović, J.; Savić, S.; Bošković, G.; Bukvić, M.; Stojanović, B. Particulate Matter Emission and Air Pollution Reduction by Applying Variable Systems in Tribologically Optimized Diesel Engines for Vehicles in Road Traffic. Atmosphere 2024, 15, 184. [Google Scholar] [CrossRef]
- Picatoste, A.; Schulz-Mönninghoff, M.; Niero, M.; Justel, D.; Mendoza, J.M.F. Comparing the Circularity and Life Cycle Environmental Performance of Batteries for Electric Vehicles. Resour. Conserv. Recycl. 2024, 210, 107833. [Google Scholar] [CrossRef]
- Alishaq, A.; Cooper, J.; Woods, J.; Mwabonje, O. Environmental Impacts of Battery Electric Light-Duty Vehicles Using a Dynamic Life Cycle Assessment for Qatar’s Transport System (2022 to 2050). Int. J. Life Cycle Assess. 2025, 30, 110–120. [Google Scholar] [CrossRef]
- Coppola, P.; Bocciolone, M.; Colombo, E.; De Fabiis, F.; Sanvito, F.D. Multi-Criteria Life-Cycle Assessment of Bus Fleet Renewal: A Methodology with a Case Study from Italy. Case Stud. Transp. Policy 2023, 13, 101044. [Google Scholar] [CrossRef]
- Borne, I.; de Souza, S.A.S.; Carniatto Silva, E.T.; Soares, G.B.; Gimenez Ledesma, J.J.; Ando Junior, O.H. Sustainable Mobility: Analysis of the Implementation of Electric Bus in University Transportation. Energies 2025, 18, 2195. [Google Scholar] [CrossRef]
- Muhith, T.; Behara, S.; Reddy, M.A. An Investigation into the Viability of Battery Technologies for Electric Buses in the UK. Batteries 2024, 10, 91. [Google Scholar] [CrossRef]
- Maheshwari, P.; Haider, M.B.; Yusuf, M.; Klemeš, J.J.; Bokhari, A.; Beg, M.; Al-Othman, A.; Kumar, R.; Jaiswal, A.K. A Review on Latest Trends in Cleaner Biodiesel Production: Role of Feedstock, Production Methods, and Catalysts. J. Clean. Prod. 2022, 355, 131588. [Google Scholar] [CrossRef]
- Alanis, C.; Ávila Córdoba, L.; Álvarez Arteaga, G.; Romero, R.; Padilla-Rivera, A.; Natividad, R. Strategies to Improve the Sustainability of the Heterogeneous Catalysed Biodiesel Production from Waste Cooking Oil. J. Clean. Prod. 2022, 134970. [Google Scholar] [CrossRef]
- Alanis, C.; Romero, R.; Ávila Córdoba, L.; Natividad, R. Methyl Esters Production from Waste Cooking Oil Catalysed by Iron Oxides Supported on CaO: Cost and Environmental Impacts. Clean. Circ. Bioecon. 2024, 9, 100109. [Google Scholar] [CrossRef]
- Cerón-Ferrusca, M.; Romero, R.; Alanis, C. Natividad R Developments in Biodiesel: Feedstock, Production, and Properties; Balakrishna, R.G., Mohan, S., Zaki Sharara, T., Eds.; Royal Society of Chemistry: London, UK, 2024; ISBN 978-1-83767-060-4. [Google Scholar]
- Cerón-Ferrusca, M.; Romero, R.R.; Alanis, C.; Natividad, R. Algae-Based and Other Emerging Neat/Modified Feedstocks. In Developments in Biodiesel; Royal Society of Chemistry: London, UK, 2024; pp. 113–139. [Google Scholar]
- Loo, D.L.; Teoh, Y.H.; How, H.G.; Teh, J.S.; Andrei, L.C.; Starčević, S.; Sher, F. Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review. Sustainability 2021, 13, 9677. [Google Scholar] [CrossRef]
- Amini Niaki, S.R.; Mahdavi, S.; Mouallem, J. Experimental and Simulation Investigation of Effect of Biodiesel-diesel Blend on Performance, Combustion, and Emission Characteristics of a Diesel Engine. Environ. Prog. Sustain. Energy 2018, 37, 1540–1550. [Google Scholar] [CrossRef]
- Tibesigwa, T.; Iezzi, B.; Lim, T.H.; Kirabira, J.B.; Olupot, P.W. Life Cycle Assessment of Biodiesel Production from Selected Second-Generation Feedstocks. Clean. Eng. Technol. 2023, 13, 100614. [Google Scholar] [CrossRef]
- de Alba-Martínez, H.; Grindlay, A.L.; Ochoa-Covarrubias, G. (In)Equitable Accessibility to Sustainable Transport from Universities in the Guadalajara Metropolitan Area, Mexico. Sustainability 2020, 13, 55. [Google Scholar] [CrossRef]
- Larkins, K.E.; Dunning, A.E.; Ridout, J.S. Accessible Transportation and the Built Environment on College Campuses. Transp. Res. Rec. J. Transp. Res. Board 2011, 2218, 88–97. [Google Scholar] [CrossRef]
- Vozenilek, V. Accesibility Zones of the University According to Students Transportation. Int. Multidiscip. Sci. GeoConf. SGEM 2016, 3, 19–25. [Google Scholar]
- Fondzenyuy, S.K.; Jackai, I.N.; Feudjio, S.L.T.; Usami, D.S.; Gonzalez-Hernández, B.; Wounba, J.F.; Elambo, N.G.; Persia, L. Assessment of Sustainable Mobility Patterns of University Students: Case of Cameroon. Sustainability 2024, 16, 4591. [Google Scholar] [CrossRef]
- Hannouf, M.B. Methodological Framework to Find Links between Life Cycle Sustainability Assessment Categories and the UN Sustainable Development Goals Based on Literature. J. Ind. Ecol. 2023, 27, 707–725. [Google Scholar] [CrossRef]
- Bouillass, G.; Blanc, I.; Perez-Lopez, P. Step-by-Step Social Life Cycle Assessment Framework: A Participatory Approach for the Identification and Prioritization of Impact Subcategories Applied to Mobility Scenarios. Int. J. Life Cycle Assess. 2021, 26, 2408–2435. [Google Scholar] [CrossRef]
- Mulibana, L.; du Toit, J. Transport Planning Research Toward Implementing SDG 11 in South Africa. In SDGs in Africa and the Middle East Region; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–24. [Google Scholar]
- UAEMEX. Dirección de Transporte Universitario. Available online: https://sa.uaemex.mx/dtu/rutas-potrobus.html (accessed on 13 July 2025).
- Sgarra, V.; Meta, E.; Saporito, M.R.; Persia, L.; Usami, D.S. Improving Sustainable Mobility in University Campuses: The Case Study of Sapienza University. Transp. Res. Procedia 2022, 60, 108–115. [Google Scholar] [CrossRef]
- Sánchez, J.M.; Castro, A. Instalación de Una Planta de Biodiésel Para La Central de Abastos En La CDMX; Universidad Nacional Autónoma de México: Ciudad de México, Mexico, 2018. [Google Scholar]
University Transport Services | Data Inventory | Inputs | Outputs | Source |
---|---|---|---|---|
Bus 1 | Diesel | 1.69 × 10−4 kg | - | Experimental |
CO2 | - | 6.30 g | [47] | |
CO | - | 0.12 g | ||
NOX | - | 0.03 g | ||
PM2.5 | - | 9.53 × 10−5 g | ||
NO | - | 0.02 g | ||
Bus 2 | CNG | 4.84 × 10−3 L | - | Experimental |
CO2 | - | 5.92 g | [48] | |
CO | - | 7.93 × 10−3 g | ||
NOX | - | 5.37 × 10−3 g | ||
NO | - | 5.0 × 10−3 g | ||
PM2.5 | - | 6.10 × 10−6 g | ||
NO2 | - | 1.22 × 10−4 g |
University Transport Services | Inputs | Outputs | Source | ||
---|---|---|---|---|---|
Bus 1 | Lubricating oil | 6.23 × 10−6 kg | Lubricating oil | 6.23 × 10−6 kg | Experimental |
Aluminum alloy | 5.60 × 10−7 kg | ||||
Aluminum alloy | 1.40 × 10−8 kg | - | - | ||
Water, ultrapure | 7.66 × 10−7 kg | - | - | ||
Ethylene glycol | 3.28 × 10−7 kg | - | - | ||
Tap water | 4.90 × 10−4 kg | - | - | ||
Synthetic rubber | 2.82 × 10−6 kg | - | - | ||
Electricity | 2.82 × 10−6 kg | - | - | ||
Battery, lead | 6.23 × 10−6 kg | - | - | ||
Bus 2 | Lubricating oil | 1.29 × 10−5 kg | Lubricating oil | 1.29 × 10−5 kg | Experimental |
Aluminum alloy | 5.60 × 10−7 kg | - | - | ||
Aluminum alloy | 1.40 × 10−8 kg | - | - | ||
Water, ultrapure | 3.58 × 10−6 kg | - | - | ||
Ethylene glycol | 1.53 × 10−6 kg | - | - | ||
Tap water | 4.90 × 10−4 kg | - | - | ||
Synthetic rubber | 2.82 × 10−6 kg | - | - | ||
Electricity | 1.62 × 10−3 kg | - | - | ||
Battery, lead | 7.65 × 10−6 kg | - | - |
Criteria for LCI | Bus 1. Fuel Efficiency | Bus 1. Maintenance | Bus 2. Fuel Efficiency | Bus 2. Maintenance |
---|---|---|---|---|
Reliability | 1.5 | 2.5 | 1.5 | 2.8 |
Completeness | 3 | 1.8 | 3 | 1.8 |
Temporal correlation | 1 | 1 | 1 | 1 |
Geographical correlation | 1 | 1 | 1 | 1 |
Technological correlation | 1 | 1 | 1.5 | 2 |
Modes of Transport | Stakeholder | Subcategory | Indicator |
---|---|---|---|
Bus 1, bus 2, private car, motorcycle, taxi, and urban bus | Users | Accessibility | Access points |
Number of passengers | |||
Safety | Accidents | ||
Travel cost | Amount of money paid per trip | ||
Punctuality | Punctuality | ||
Inclusive design | Inclusive design |
Impact Category | Unit | Bus 1 (Diesel) | Bus 2 (CNG) | ||||
---|---|---|---|---|---|---|---|
Operation | Maintenance | Total | Operation | Maintenance | Total | ||
Global Warming | kg CO2 eq | 8.14 × 10−3 | 1.04 × 10−3 | 9.18 × 10−3 | 5.92 × 10−3 | 1.07 × 10−3 | 6.99 × 10−3 |
Ozone Formation, Human Health | kg NOx eq | 8.12 × 10−5 | 2.00 × 10−6 | 8.32 × 10−5 | 1.66 × 10−5 | 2.09 × 10−6 | 1.87 × 10−5 |
Fine Particulate Matter Formation | kg PM2.5 eq | 3.78 × 10−6 | 1.41 × 10−6 | 5.20 × 10−6 | 3.65 × 10−7 | 1.48 × 10−6 | 1.85 × 10−6 |
Ozone Formation, Terrestrial Ecosystems | kg NOx eq | 1.66 × 10−4 | 2.15 × 10−6 | 1.68 × 10−4 | 3.48 × 10−5 | 2.26 × 10−6 | 3.70 × 10−5 |
Terrestrial Acidification | kg SO2 eq | 1.77 × 10−5 | 3.14 × 10−6 | 2.08 × 10−5 | 2.64 × 10−6 | 3.33 × 10−6 | 5.96 × 10−6 |
Energy Source | Scenario | Impact Category | ||||
---|---|---|---|---|---|---|
GWP | OfHh | FPmf | OfTe | TA | ||
kg CO2 eq | kg NOx eq | kg PM2.5 eq | kg NOx eq | kg SO2 eq | ||
Diesel | 8.14 × 10−3 | 8.12 × 10−6 | 3.78 × 10−6 | 1.66 × 10−4 | 1.77 × 10−5 | |
CNG | 5.92 × 10−3 | 1.66 × 10−5 | 3.65 × 10−7 | 3.48 × 10−5 | 2.64 × 10−6 | |
Electric * | S1 | 2.98 × 10−3 | 5.55 × 10−6 | 3.91 × 10−6 | 5.91 × 10−6 | 8.60 × 10−6 |
Electric and renewable ** | S2 | 1.63 × 10−3 | 3.14 × 10−6 | 2.26 × 10−6 | 3.33 × 10−6 | 4.96 × 10−6 |
Renewable | S3 | 2.71 × 10−4 | 7.23 × 10−7 | 6.14 × 10−7 | 7.58 × 10−7 | 1.33 × 10−6 |
B-10 *** | S4 | 7.56 × 10−3 | 6.85 × 10−5 | 3.58 × 10−6 | 1.40 × 10−4 | 1.56 × 10−5 |
B-15 | S5 | 7.28 × 10−3 | 6.85 × 10−5 | 3.62 × 10−6 | 1.39 × 10−4 | 1.56 × 10−5 |
B-20 | S6 | 6.99 × 10−3 | 6.84 × 10−5 | 3.65 × 10−6 | 1.39 × 10−4 | 1.56 × 10−5 |
B-25 | S7 | 6.71 × 10−3 | 6.84 × 10−5 | 3.69 × 10−6 | 1.39 × 10−4 | 1.56 × 10−5 |
Impact Subcategory | Transport Services | SPI | ||||||
---|---|---|---|---|---|---|---|---|
Bus 1 | Bus 2 | Private Car | Motorcycle | Taxi | Urban Bus | |||
Accessibility | 4 | 4 | 5 | 5 | 4 | 4 | 4.3 | |
Safety | 5 | 5 | 5 | 5 | 5 | 3 | 4.7 | |
Travel cost | 5 | 5 | 4 | 5 | 3 | 4 | 4.3 | |
Punctuality | 5 | 5 | 5 | 5 | 4 | 4 | 4.7 | |
Inclusive design | 4 | 4 | 4 | 3 | 4 | 3 | 3.7 | |
Mean | 4.5 | 4.5 | 4.5 | 4.4 | 3.9 | 3.5 | 4.2 | |
SPI by service | 4.6 | 4.6 | 4.6 | 4.6 | 4.0 | 3.6 | ASPI | 4.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanis, C.; Ávila-Córdoba, L.; Cruz-Olayo, A.; Natividad, R.; Padilla-Rivera, A. Integrating Environmental and Social Life Cycle Assessment for Sustainable University Mobility Strategies. Sustainability 2025, 17, 7456. https://doi.org/10.3390/su17167456
Alanis C, Ávila-Córdoba L, Cruz-Olayo A, Natividad R, Padilla-Rivera A. Integrating Environmental and Social Life Cycle Assessment for Sustainable University Mobility Strategies. Sustainability. 2025; 17(16):7456. https://doi.org/10.3390/su17167456
Chicago/Turabian StyleAlanis, Claudia, Liliana Ávila-Córdoba, Ariana Cruz-Olayo, Reyna Natividad, and Alejandro Padilla-Rivera. 2025. "Integrating Environmental and Social Life Cycle Assessment for Sustainable University Mobility Strategies" Sustainability 17, no. 16: 7456. https://doi.org/10.3390/su17167456
APA StyleAlanis, C., Ávila-Córdoba, L., Cruz-Olayo, A., Natividad, R., & Padilla-Rivera, A. (2025). Integrating Environmental and Social Life Cycle Assessment for Sustainable University Mobility Strategies. Sustainability, 17(16), 7456. https://doi.org/10.3390/su17167456