Life Cycle Carbon Costs of Fibreboard, Pulp and Bioenergy Produced from Improved Oil Camellia (Camellia oleifera spp.) Forest Management Operations in China
Abstract
1. Introduction
2. Materials and Methods
2.1. System Definition
2.2. Goal and Scope, Functional Units
2.3. System Boundaries
2.4. Data Collection
Data Components | Data Sources and References * |
---|---|
Forest road construction data | Weidu forest farm field data |
Low modification of labor input data | Weidu forest farm field data |
On-site transportation methods and distances | Weidu forest farm field data |
Energy consumption data for harvesting | [43] |
Energy and material consumption data for lumber production | [35] |
Energy and material consumption data for pulp production | [36] |
Energy consumption data for biomass production | [35] |
Labor use | [37] |
Emission coefficients for trail facilities | [41,42,44] |
Transportation and energy consumption data | [38] |
GHG emission coefficients for transportation fuels | [38] |
GHG emission coefficients for forestry machinery use | [39] |
Emission coefficients of upstream products, electricity, fuel oil, natural gas and coal | [16,40,41,42,45] |
Road and rail transportation distance | [40] |
2.5. Feedstocks and by Products
2.6. Process Allocation
2.7. Carbon Footprint Modeling
2.7.1. Material Use
2.7.2. Energy Use
2.7.3. Transportation
2.7.4. Labor Use
2.7.5. Infrastructure
2.7.6. End-of-Use
2.7.7. Total Carbon Footprint
2.8. Environmental Impact Assessment
2.9. Sensitivity Analysis
3. Results
3.1. Life Cycle Inventory
3.2. Product Carbon Footprint and Supply Chain Emission
3.3. Emission Source and Activity Footprint: Fibreboard
3.4. Emission Source and Activity Footprint: Pulp
3.5. Emission Source and Activity Footprint: Bioelectricity
3.6. Sensitivity and Scenario Analysis
4. Discussion
4.1. Carbon Emissions
4.2. Carbon Footprint Activity
4.3. Substitution Potential, Uncertainty and Research Implications
4.4. Uncertainties and Implications
4.5. Future Needs
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
GHG | Greenhouse Gas |
LCA | Life Cycle Assessment |
LCI | Life Cycle Inventory |
CO2 | Carbon Dioxide |
CH4 | Methane |
N2O | Nitrous Oxide |
GWP | Global Warming Potential |
Abbreviations
OC | Camellia oleifera |
CF | Carbon Footprint |
LYFs | Low-yield forests |
EPA | U.S. Environmental Protection Agency |
USDA | U.S. Department of Agriculture |
DOE | U.S. Department of Energy |
NFGA | National Forestry and Grassland Administration |
References
- Sulis, D.B.; Lavoine, N.; Sederoff, H.; Jiang, X.; Marques, B.M.; Lan, K.; Cofre-Vega, C.; Barrangou, R.; Wang, J.P. Advances in Lignocellulosic Feedstocks for Bioenergy and Bioproducts. Nat. Commun. 2025, 16, 1244. [Google Scholar] [CrossRef]
- Quan, W.; Wang, A.; Gao, C.; Li, C. Applications of Chinese Camellia Oleifera and Its By-Products: A Review. Front. Chem. 2022, 10, 921246. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Hao, B.Q.; Chen, G.C.; Ye, H.; Ma, J. Camellia as an Oilseed Crop. HortScience 2017, 52, 488–497. [Google Scholar] [CrossRef]
- Luan, F.; Zeng, J.; Yang, Y.; He, X.; Wang, B.; Gao, Y.; Zeng, N. Recent Advances in Camellia Oleifera Abel: A Review of Nutritional Constituents, Biofunctional Properties, and Potential Industrial Applications. J. Funct. Foods 2020, 75, 104242. [Google Scholar] [CrossRef]
- Gao, W.; Huang, L.; Lei, Z.; Wang, Z. Camellia Oleifera Shell as a Potential Agricultural By-Product for Paper Production. BioResources 2021, 16, 3734. (In Chinese) [Google Scholar] [CrossRef]
- Ma, J.; Ye, H.; Rui, Y.; Chen, G.; Zhang, N. Fatty Acid Composition of Camellia Oleifera Oil. J. Verbraucherschutz Leb. 2011, 6, 9–12. [Google Scholar] [CrossRef]
- Tan, Z.; Liu, T.; Ning, C.; Lin, X.; Liu, X.; Jiang, M.; Liu, S.; Yan, W. Effects of Transformation of Inefficient Camellia Oleifera Plantation on Soil Quality and Fungal Communities. Forests 2024, 15, 603. [Google Scholar] [CrossRef]
- Forster, E.J.; Healey, J.R.; Newman, G.; Styles, D. Circular Wood Use Can Accelerate Global Decarbonisation but Requires Cross-Sectoral Coordination. Nat. Commun. 2023, 14, 6766. [Google Scholar] [CrossRef]
- Wang, R.; Cai, W.; Yu, L.; Li, W.; Zhu, L.; Cao, B.; Li, J.; Shen, J.; Zhang, S.; Nie, Y.; et al. A High Spatial Resolution Dataset of China’s Biomass Resource Potential. Sci. Data 2023, 10, 384. [Google Scholar] [CrossRef]
- National Development and Reform Commission. Notice on Issuing the “14th Five-Year Plan for Bioeconomy Development”. 2022. Available online: https://www.gov.cn/zhengce/zhengceku/2022-05/10/content_5689556.htm (accessed on 23 July 2025).
- National Development and Reform Commission (NDRC). Action Plan for Carbon Dioxide Peaking Before 2030. 2021. Available online: https://en.ndrc.gov.cn/policies/202110/t20211027_1301020.html (accessed on 23 July 2025).
- Pawelzik, P.; Carus, M.; Hotchkiss, J.; Narayan, R.; Selke, S.; Wellisch, M.; Weiss, M.; Wicke, B.; Patel, M.K. Critical Aspects in the Life Cycle Assessment (LCA) of Bio-Based Materials—Reviewing Methodologies and Deriving Recommendations. Resour. Conserv. Recycl. 2013, 73, 211–228. [Google Scholar] [CrossRef]
- Wang, K.; Tong, R.; Zhai, Q.; Lyu, G.; Li, Y. A Critical Review of Life Cycle Assessments on Bioenergy Technologies: Methodological Choices, Limitations, and Suggestions for Future Studies. Sustainability 2025, 17, 3415. [Google Scholar] [CrossRef]
- McManus, M.C.; Taylor, C.M. The Changing Nature of Life Cycle Assessment. Biomass Bioenergy 2015, 82, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Chu, J.; Ma, L.; Qi, X.; Kumar, A. Life Cycle Assessment of Plywood Manufacturing Process in China. Int. J. Environ. Res. Public Health 2019, 16, 2037. [Google Scholar] [CrossRef] [PubMed]
- Piekarski, C.M.; de Francisco, A.C.; da Luz, L.M.; Kovaleski, J.L.; Lopes Silva, D.A. Life Cycle Assessment of Medium-Density Fiberboard (MDF) Manufacturing Process in Brazil. Sci. Total Environ. 2017, 575, 103–111. [Google Scholar] [CrossRef]
- Culbertson, C.; Treasure, T.; Venditti, R.; Jameel, H.; Gonzalez, R. Life Cycle Assessment of Lignin Extraction in a Softwood Kraft Pulp Mill. Nord. Pulp Pap. Res. J. 2016, 31, 30–40. [Google Scholar] [CrossRef]
- Deng, H.; Zhang, D.; Yu, H.; Man, Y.; Wang, Y. Assessing Life-Cycle GHG Emissions of Recycled Paper Products under Imported Solid Waste Ban in China: A Case Study. Sci. Total Environ. 2023, 891, 164407. [Google Scholar] [CrossRef]
- Ryan, N.; Yaseneva, P. A Critical Review of Life Cycle Assessment Studies of Woody Biomass Conversion to Sugars. Philos. Trans. R. Soc. A 2021, 379, 20200335. [Google Scholar] [CrossRef]
- Gaffey, J.; Collins, M.N.; Styles, D. Review of Methodological Decisions in Life Cycle Assessment (LCA) of Biorefinery Systems across Feedstock Categories. J. Environ. Manag. 2024, 358, 120813. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization (ISO): Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/37456.html (accessed on 1 August 2025).
- Thonemann, N.; Schumann, M. Environmental Impacts of Wood-Based Products under Consideration of Cascade Utilization: A Systematic Literature Review. J. Clean. Prod. 2018, 172, 4181–4188. [Google Scholar] [CrossRef]
- Bortoli, A.d.; Bjorn, A.; Saunier, F.; Margni, M. Planning Sustainable Carbon Neutrality Pathways: Accounting Challenges Experienced by Organizations and Solutions from Industrial Ecology. Int. J. Life Cycle Assess. 2023, 28, 746–770. [Google Scholar] [CrossRef]
- Höglmeier, K.; Weber-Blaschke, G.; Richter, K. Utilization of Recovered Wood in Cascades versus Utilization of Primary Wood—A Comparison with Life Cycle Assessment Using System Expansion. Int. J. Life Cycle Assess. 2014, 19, 1755–1766. [Google Scholar] [CrossRef]
- Hosseinzadeh-Bandbafha, H.; Aghbashlo, M.; Tabatabaei, M. Life Cycle Assessment of Bioenergy Product Systems: A Critical Review. E-Prime Adv. Electr. Eng. Electron. Energy 2021, 1, 100015. [Google Scholar] [CrossRef]
- Xu, S. Forestry Offsets under China’s Certificated Emission Reduction (CCER) for Carbon Neutrality: Regulatory Gaps and the Ways Forward. Int. J. Clim. Change Strateg. Manag. 2024, 16, 140–156. [Google Scholar] [CrossRef]
- Talwar, N.; Holden, N.M. The Limitations of Bioeconomy LCA Studies for Understanding the Transition to Sustainable Bioeconomy. Int. J. Life Cycle Assess. 2022, 27, 680–703. [Google Scholar] [CrossRef]
- McManus, M.C.; Taylor, C.M.; Mohr, A.; Whittaker, C.; Scown, C.D.; Borrion, A.L.; Glithero, N.J.; Yin, Y. Challenge Clusters Facing LCA in Environmental Decision-Making—What We Can Learn from Biofuels. Int. J. Life Cycle Assess. 2015, 20, 1399–1414. [Google Scholar] [CrossRef]
- Finnveden, G.; Hauschild, M.Z.; Ekvall, T.; Guinée, J.; Heijungs, R.; Hellweg, S.; Koehler, A.; Pennington, D.; Suh, S. Recent Developments in Life Cycle Assessment. J. Environ. Manag. 2009, 91, 1–21. [Google Scholar] [CrossRef]
- Alizadeh, P.; Mupondwa, E.; Cree, D.; Tabil, L.; Li, X. Technoeconomic Feasibility of Bioenergy Production from Wood Sawdust. Energies 2023, 16, 1914. [Google Scholar] [CrossRef]
- Fonarev, I.I.; Khakimova, F.; Noskova, O.A.; Khakimov, R. Integrated Recycling of Lignin-Containing Wood Waste. Lesn. Zhurnal (Russ. For. J.) 2024, 3, 188–202. [Google Scholar] [CrossRef]
- Ariyani, M.; Pitoi, M.M.; Sari, A.A.; Yusiasih, R.; Koesmawati, T.A.; Sunardi. Life Cycle Assessment of Simultaneous Pyrethroid Extraction in Soil Matrices: A Comparative Study with QuEChERS Method. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 1017, p. 012018. [Google Scholar] [CrossRef]
- Forster, E.J.; Healey, J.R.; Dymond, C.; Styles, D. Commercial Afforestation Can Deliver Effective Climate Change Mitigation under Multiple Decarbonisation Pathways. Nat. Commun. 2021, 12, 3831. [Google Scholar] [CrossRef]
- Johnson, L.R.; Lippke, B.; Marshall, J.D.; Comnick, J. Life-Cycle Impacts of Forest Resource Activities in the Pacific Northwest and Southeast United States. J. Wood Fiber Sci. 2005, 37, 30–46. [Google Scholar]
- CORRIM. CORRIM Guidelines for Performing Life Cycle Inventories on Wood Products, Version 1.0. Consortium for Research on Renewable Industrial Materials. Available online: https://corrim.org/wp-content/uploads/2020/12/CORRIM-AWC-OSB-Final.pdf (accessed on 28 June 2025).
- Xu, W.; Becker, G. Environmental Impact Assessment of Wood Pulp from a Eucalyptus Plantation in South China by Using Life-Cycle Analysis. For. Prod. J. 2012, 62, 365–372. [Google Scholar] [CrossRef]
- Liu, X.; Xu, W.; Li, Z.; Chu, Q.; Yang, X.; Chen, F. The Missteps, Improvement and Application of Carbon Footprint Methodology in Farmland Ecosystems with the Case Study of Analyzing the Carbon Efficiency of China’s Intensive Farming. Chin. J. Agric. Resour. Reg. Plan. 2013, 34, 1–11. (In Chinese) [Google Scholar] [CrossRef]
- China City Greenhouse Gas Working Group (CCG). CityGHG China Products Carbon Footprint Factors Database. 2022. Available online: https://lca.cityghg.com/ (accessed on 30 June 2025).
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Greenhouse Gas Emission Accounting Guidelines for Facility Agricultural Enterprises. 2015. Available online: https://std.samr.gov.cn/db/search/stdDBDetailed?id=91D99E4D8FC52E24E05397BE0A0A3A10 (accessed on 1 August 2025).
- European Commission. European Reference Life Cycle Database (ELCD) V3. Available online: https://eplca.jrc.ec.europa.eu/ELCD3/ (accessed on 29 June 2025).
- Ecoinvent Association. Ecoinvent Database. Version 3.0 2023. Available online: https://ecoinvent.org/database/ (accessed on 29 June 2025).
- SimaPro. PRé Sustainability B.V. Industry Data 2.0. 2025. Available online: https://simapro.com/products/industry-data/ (accessed on 29 June 2025).
- Heinimann, H.R. Life Cycle Assessment (LCA) in Forestry–State and Perspectives. Croat. J. For. Eng. 2012, 33, 357–372. [Google Scholar]
- The Climate Registry. 2024 Default Emission Factors. Available online: https://theclimateregistry.org/wp-content/uploads/2024/03/2024-Emission-Factor-Document_FINAL.pdf (accessed on 30 June 2025).
- Gu, H.; Liang, S.; Pierobon, F.; Puettmann, M.; Ganguly, I.; Chen, C.; Pasternack, R.; Wishnie, M.; Jones, S.; Maples, I. Mass Timber Building Life Cycle Assessment Methodology for the U.S. Regional Case Studies. Sustainability 2021, 13, 14034. [Google Scholar] [CrossRef]
- Finkbeiner, M.; Inaba, A.; Tan, R.B.H.; Christiansen, K.; Klüppel, H.J. The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044. Int. J. Life Cycle Assess. 2006, 11, 80–85. [Google Scholar] [CrossRef]
- Farjana, S.H.; Tokede, O.; Tao, Z.; Ashraf, M. Life Cycle Assessment of End-of-Life Engineered Wood. Sci. Total Environ. 2023, 887, 164018. [Google Scholar] [CrossRef]
- Quadrini, F.; Bellisario, D.; Iorio, L.; Proietti, A.; Regi, M.; Siani, L. Recycling of Powders from Cutting of Medium Density Fiberboard. In Key Engineering Materials; Trans Tech Publications Ltd.: Zurich, Switzerland, 2022; Volume 926, pp. 1719–1724. [Google Scholar] [CrossRef]
- Dermatas, D.; Meng, X. Utilization of Fly Ash for Stabilization/Solidification of Heavy Metal Contaminated Soils. Eng. Geol. 2003, 70, 377–394. [Google Scholar] [CrossRef]
- Chen, T.; Li, Y.; Lei, L.; Hong, M.; Sun, Q.; Hou, Y. Influence of Residual Black Liquor in Pulp on Wastewater Pollution after Bleaching Process. BioResources 2017, 12, 2031–2039. [Google Scholar] [CrossRef]
- Agrela, F.; Cabrera, M.; Morales, M.M.; Zamorano, M.; Alshaaer, M. 2—Biomass Fly Ash and Biomass Bottom Ash. In New Trends in Eco-efficient and Recycled Concrete; de Brito, J., Agrela, F., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Cambridge, UK, 2019; pp. 23–58. [Google Scholar]
- Zhang, Z.; Cai, W.; Hu, Y.; Yang, K.; Zheng, Y.; Fang, C.; Ma, C.; Tan, Y. Ecological Risk Assessment and Influencing Factors of Heavy-Metal Leaching from Coal-Based Solid Waste Fly Ash. Front. Chem. 2022, 10, 932133. [Google Scholar] [CrossRef]
- World Business Council for Sustainable Development (WBCSD). Reporting Matters 2014. Available online: https://www.wbcsd.org/resources/reporting-matters-2014/ (accessed on 30 June 2025).
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 1 August 2025).
- Jung, J.; Von Der Assen, N.; Bardow, A. Sensitivity Coefficient-Based Uncertainty Analysis for Multi-Functionality in LCA. Int. J. Life Cycle Assess. 2014, 19, 661–676. [Google Scholar] [CrossRef]
- Cherubini, E.; Franco, D.; Zanghelini, G.M.; Soares, S.R. Uncertainty in LCA Case Study Due to Allocation Approaches and Life Cycle Impact Assessment Methods. Int. J. Life Cycle Assess. 2018, 23, 2055–2070. [Google Scholar] [CrossRef]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006; Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 1 August 2025).
- BEIS. Government Conversion Factors for Company Reporting of Greenhouse Gas Emissions. 2022. Available online: https://www.gov.uk/government/collections/government-conversion-factors-for-company-reporting (accessed on 1 August 2025).
- Wilson, J.B. Life-Cycle Inventory of Particleboard in Terms of Resources, Emissions, Energy and Carbon. Wood Fiber Sci. 2010, 42, 90–106. Available online: https://wfs.swst.org/index.php/wfs/article/view/1349 (accessed on 1 August 2025).
- Lao, W.L.; Chang, L. Greenhouse Gas Footprint Assessment of Wood-Based Panel Production in China. J. Clean. Prod. 2023, 389, 136064. [Google Scholar] [CrossRef]
- Sun, M.; Wang, Y.; Shi, L.; Klemeš, J.J. Uncovering Energy Use, Carbon Emissions and Environmental Burdens of Pulp and Paper Industry: A Systematic Review and Meta-Analysis. Renew. Sustain. Energy Rev. 2018, 92, 823–833. [Google Scholar] [CrossRef]
- Zhang, L.; He, Y.; Zhu, Y.; Liu, Y.; Wang, X. Camellia Oleifera Shell as an Alternative Feedstock for Furfural Production Using a High Surface Acidity Solid Acid Catalyst. Bioresour. Technol. 2018, 249, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Brito, A.; Suarez, A.; Pifano, A.; Reisinger, L.; Wright, J.; Saloni, D.; Kelley, S.; Gonzalez, R.; Venditti, R.; Jameel, H. Environmental Life Cycle Assessment of Premium and Ultra Hygiene Tissue Products in the United States. BioResources 2023, 18, 932133. [Google Scholar] [CrossRef]
- Alizadeh, P.; Mupondwa, E.; Tabil, L.G.; Li, X.; Cree, D. Life Cycle Assessment of Bioenergy Production from Wood Sawdust. J. Clean. Prod. 2023, 427, 138936. [Google Scholar] [CrossRef]
- Reed, D.; Bergman, R.; Kim, J.W.; Taylor, A.; Harper, D.; Jones, D.; Knowles, C.; Puettmann, M.E. Cradle-to-Gate Life-Cycle Inventory and Impact Assessment of Wood Fuel Pellet Manufacturing from Hardwood Flooring Residues in the Southeastern United States. For. Prod. J. 2012, 62, 280–288. [Google Scholar] [CrossRef]
- Morrison, B.; Golden, J.S. Southeastern United States Wood Pellets as a Global Energy Resource: A Cradle-to-Gate Life Cycle Assessment Derived from Empirical Data. Int. J. Sustain. Energy 2018, 37, 134–146. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Zhou, P.; Chang, Y.; Zhou, D.; Pang, M.; Yin, H. Assessing the Environmental Externalities for Biomass-and Coal-Fired Electricity Generation in China: A Supply Chain Perspective. J. Environ. Manag. 2019, 246, 758–767. [Google Scholar] [CrossRef]
- Song, S.; Liu, P.; Xu, J.; Chong, C.; Huang, X.; Ma, L.; Li, Z.; Ni, W. Life Cycle Assessment and Economic Evaluation of Pellet Fuel from Corn Straw in China: A Case Study in Jilin Province. Energy 2017, 130, 373–381. [Google Scholar] [CrossRef]
- Hussain, M.; Naseem Malik, R.; Taylor, A. Carbon Footprint as an Environmental Sustainability Indicator for the Particleboard Produced in Pakistan. Environ. Res. 2017, 155, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Bergman, R.D. Life-cycle inventory analysis of cellulosic fiberboard production in North America. In Proceedings of the Society of Wood Science and Technology 57th International Convention, Zvolen, Slovakia, 23–27 June 2014; pp. 542–550. Available online: https://research.fs.usda.gov/treesearch/46267 (accessed on 29 June 2025).
- Sahoo, K.; Bergman, R.; Khatri, P. Cradle-to-Grave Life-Cycle Assessment of Cellulosic Fiberboard. Recent Prog. Mater. 2021, 3, 1–28. [Google Scholar] [CrossRef]
- Tomberlin, K.; Venditti, R.; Yao, Y. Life Cycle Carbon Footprint Analysis of Pulp and Paper Grades in the United States Using Production-Line-Based Data and Integration. BioResources 2020, 15, 3899. [Google Scholar] [CrossRef]
- Buitrago-Tello, R.; Venditti, R.A.; Jameel, H.; Hart, P.W.; Ghosh, A.; Belalcázar-Cerón, L.C. Energy Efficient Alternatives to Decarbonize the Pulp and Paper Industry—The Case of Linerboard Production. Biofuels Bioprod. Biorefining 2025, 19, 705–729. [Google Scholar] [CrossRef]
- Kouchaki-Penchah, H.; Sharifi, M.; Mousazadeh, H.; Zarea-Hosseinabadi, H. Life Cycle Assessment of Medium-Density Fiberboard Manufacturing Process in Islamic Republic of Iran. J. Clean. Prod. 2016, 112, 351–358. [Google Scholar] [CrossRef]
- Ohwo, O.A.; Onakpoma, I.; Okoromaraye, E. Evaluation of properties of graded density fiberboard produced from wood residues (sawdust and corrugated paper). Balt. For. 2020, 26. [Google Scholar] [CrossRef]
- Kadiyala, A.; Kommalapati, R.; Huque, Z. Evaluation of the Life Cycle Greenhouse Gas Emissions from Different Biomass Feedstock Electricity Generation Systems. Sustainability 2016, 8, 1181. [Google Scholar] [CrossRef]
- Whittaker, C.; Mortimer, N.; Murphy, R.; Matthews, R. Energy and Greenhouse Gas Balance of the Use of Forest Residues for Bioenergy Production in the UK. Biomass Bioenergy 2011, 35, 4581–4594. [Google Scholar] [CrossRef]
- Walker, T.; Cardellichio, P.; Gunn, J.S.; Saah, D.S.; Hagan, J.M. Carbon Accounting for Woody Biomass from Massachusetts (USA) Managed Forests: A Framework for Determining the Temporal Impacts of Wood Biomass Energy on Atmospheric Greenhouse Gas Levels. J. Sustain. For. 2013, 32, 130–158. [Google Scholar] [CrossRef]
- Yu, X.; Zeng, L.; Zhang, G.; Wang, H. Environmental Impact of Bamboo Laminated Flooring and Bamboo Scrimber Flooring Investigated via Life Cycle Assessment. BioResources 2019, 14, 9132–9145. [Google Scholar] [CrossRef]
- Man, Y.; Han, Y.; Li, J.; Hong, M.; Zheng, W. Life Cycle Energy Consumption Analysis and Green Manufacture Evolution for the Papermaking Industry in China. Green Chem. 2019, 21, 1011–1020. [Google Scholar] [CrossRef]
- Huo, L.; Saito, K. Multidimensional Life Cycle Assessment on Various Moulded Pulp Production Systems. Packag. Technol. Sci. 2009, 22, 261–273. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, S.; Wang, L. Life Cycle Analysis of Greenhouse Gas Emissions of China’s Power Generation on Spatial and Temporal Scale. Energy Sci. Eng. 2022, 10, 1083–1095. [Google Scholar] [CrossRef]
- Feng, X.; Zuo, T.; Sun, N.; Xie, J.; Gao, C.; Bi, Y.; Wang, Y. Greenhouse Gas Emission Reduction Effect of a Straw Briquette Central Heating System. Chin. J. Eco-Agric. 2022, 30, 702–712. (In Chinese) [Google Scholar] [CrossRef]
- Liu, M.; Zeng, J.; Huang, G.; Liu, X.; He, G.; Yao, S.; Shang, N.; Zheng, L.; Wang, P. Assessing Energy Consumption, Carbon Emissions, and Costs in Biomass-to-Gas Processes: A Life-Cycle Assessment Approach. Sustainability 2024, 16, 5209. [Google Scholar] [CrossRef]
- World Bank; ICAP. Emissions Trading in Practice: A Handbook on Design and Implementation; World Bank Group: Washington, DC, USA, 2016; Available online: https://documents1.worldbank.org/curated/en/651061479211782041/pdf/108879-WP-CHINESE-P153285-Handbook-Chinese-PUBLIC.pdf (accessed on 22 July 2025).
- Abhyankar, N.; Lin, J.; Liu, X.; Sifuentes, F. Economic and Environmental Benefits of Market-Based Power-System Reform in China: A Case Study of the Southern Grid System. Resour. Conserv. Recycl. 2020, 153, 104558. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Z.; Li, Y. Life-Cycle Analysis of Greenhouse Gas Emissions of Hydrogen, and Recommendations for China. In White Paper October 2022; Gardner, G., Ed.; International Council on Clean Transportation: Washington, DC, USA, 2022; Available online: https://theicct.org/wp-content/uploads/2022/10/China-hydrogen-report-A4_final-5.pdf (accessed on 22 July 2025).
- Ministry of Ecology and Environment of the People’s Republic of China (MEE). Notice on the Issuance of “Guidelines for Accounting and Reporting of Greenhouse Gas Emissions from Power Generation Facilities” and “Technical Guidelines for Verification of Greenhouse Gas Emissions from Power Generation Facilities”. 2022. Available online: https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202212/t20221221_1008430.html (accessed on 22 July 2025).
- United Nations Conference on Trade and Development (UNCTAD). China’s Policy Strategies for Green Low-Carbon Development: Perspective from South-South Cooperation. 2023. Available online: https://unctad.org/publication/chinas-policy-strategies-green-low-carbon-development-perspective-south-south (accessed on 22 July 2025).
- National Forestry and Grassland Administration (NFGA). Forestry and Grassland Industry Development Plan (2021–2025). 2022. Available online: https://www.gov.cn/zhengce/zhengceku/2022-02/13/5673332/files/97808c86c2454133b6416abe7eae2c55.pdf (accessed on 22 July 2025).
- Wenker, J.L.; Richter, K.; Rüter, S.A. Methodical Approach for Systematic Life Cycle Assessment of Wood-Based Furniture. J. Ind. Ecol. 2018, 22, 671–685. [Google Scholar] [CrossRef]
- Suarez, A.; Ghosh, A.; Paulsen, F.; Hart, P.W. Life Cycle Carbon Analysis of Packaging Products Containing Purposely Grown Nonwood Fibers: A Case Study on the Use of Switchgrass Pulp for Linerboard and Corrugating Medium. TAPPI J. 2024, 23, 143–152. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change (UNFCCC). Paris Agreement; UNFCCC: Paris, France, 2015; Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 22 July 2025).
- Pu, S.; Yan, C.; Huang, H.; Liu, S.; Deng, D. Toxicity of Nano-CuO Particles to Maize and Microbial Community Largely Depends on Its Bioavailable Fractions. Environ. Pollut. 2019, 255, 113248. [Google Scholar] [CrossRef]
- Xu, Y.; Fan, Z.; Li, X.; Yang, S.; Wang, J.; Zheng, A.; Shu, R. Cooperative Production of Monophenolic Chemicals and Carbon Adsorption Materials from Cascade Pyrolysis of Acid Hydrolysis Lignin. Bioresour. Technol. 2024, 399, 130557. [Google Scholar] [CrossRef]
- He, Q.; Zhan, J.; Liu, X.; Dong, C.; Tian, D.; Fu, Q. Multispectral Polarimetric Bidirectional Reflectance Research of Plant Canopy. Opt. Lasers Eng. 2025, 184, 108688. [Google Scholar] [CrossRef]
- Dong, X.; Yu, M. Green Bond Issuance and Green Innovation: Evidence from China’s Energy Industry. Int. Rev. Financ. Anal. 2024, 94, 103281. [Google Scholar] [CrossRef]
Category | Item | Lumber | Pulp Production | Bioenergy | |||
---|---|---|---|---|---|---|---|
Input Value | Unit | Input Value | Unit | Input Value | Unit | ||
Energy | Electricity | 54.087 | kWh/m3 | 11.382 | kWh/t | 0.001 | m/kWh |
Diesel | 23.353 | L/m3 | 4.666 | kg/t | 0.004 | kg/kWh | |
Gasoline | 2.033 | L/m3 | 0.443 | L/m3 | 0.0316 | t·km/kWh | |
Propane | 0.047 | kg/m3 | 0.1 | t·km/kWh | |||
Natural gas | 4.235 | m3/m3 | 7.859 | GJ/t | 0.0079 | kg/kWh | |
Onsite power | 29.282 | kWh/m3 | 56.413 | kWh/t | |||
Coal | 196.771 | kg/t | |||||
Onsite steam | 7.859 | GJ/t | |||||
Materials | Paint | 0.000 | |||||
Water | 274.670 | kg/m3 | 27.563 | m3/t | 0.2 | m3/m3 | |
Lubricant | 0.014 | kg/m3 | 0.0013 | L/m3 | |||
Hydraulic fluid | 0.018 | kg/m3 | |||||
Calcium Oxide | 91.464 | kg/t | |||||
Ethanol | 15.378 | kg/t | |||||
Hydrogen peroxide | 3.595 | kg/t | |||||
Sulfuric acid | 19.828 | kg/t | |||||
Sodium chlorate | 29.098 | kg/t | |||||
Sodium hydroxide | 0.014 | kg/m3 | 36.761 | kg/t | 0.0094 | person·day/kWh | |
Road | Road maintenance | 0.0010 | m/kWh | ||||
Labor | Labor | 0.063 | person·day/m3 | 0.0094 | person·day/kWh | ||
Transport | Gasoline truck | 0.052 | L/m3 | 0.103 | t·km/kWh | 0.0316 | t·km/kWh |
Diesel 8 t truck | 2.033 | L/m3 | 4.666 | kg/t | 0.2 | t·km/kWh | |
Diesel pick uptruck | 0.052 | L/m3 | 0.044 | L/m3 | |||
Train | 0.206 | t·km/kWh | 0.0316 | t·km/kWh |
Life Cycle | Consumption | GWP, kg CO2e/m3 | %Total |
---|---|---|---|
Harvest and internal transport | |||
Diesel for ground-based harvesting | 8.153 | 68.970 | |
Lubricant for harvesting | 0.058 | 0.487 | |
Diesel for internal transport | 0.870 | 7.361 | |
Lubricant for internal transport | 0.002 | 0.013 | |
Load maintenance (electricity from national grid) | 1.562 | 13.215 | |
Labor for harvesting | 0.045 | 0.378 | |
Transport (gate to gate) | |||
Transport by train (gasoline use) | 0.023 | 0.195 | |
Transport by 8 t-truck (gasoline use) | 0.117 | 0.987 | |
Direct emissions | |||
Emissions to air 1 | 0.058 | 0.491 | |
Emissions to water 2 | 0.934 | 7.903 | |
Total | 11.821 | 100 |
Consumption | Inputs | GWP, kg CO2e/m3 | %Total |
---|---|---|---|
Wood fiber materials | |||
OC wood fiber materials | 17.307 | 7.089 | |
Energy and fossil fuels | |||
Diesel | 74.316 | 30.441 | |
Electricity from national grid | 34.077 | 13.958 | |
Gasoline | 6.102 | 2.499 | |
Liquefied petroleum gas | 12.145 | 4.975 | |
Lube oil | 0.020 | 0.008 | |
Natural gas | 9.835 | 4.028 | |
On-site generated electricity | 8.149 | 3.338 | |
Propane | 0.086 | 0.035 | |
Chemicals | Solvent paint, hydraulic fluid | 0.006 | 0.003 |
Other materials | Water | 81.331 | 33.314 |
Direct emissions 1 | 0.939 | 0.385 | |
Total | 244.134 | 100 |
Consumption | Items | GWP, kg CO2e/m3 | %Total |
---|---|---|---|
Wood fiber materials | |||
OC pulpwood | 32.509 | 6.750 | |
Energy and fossil fuels | |||
Bunker oil | 24.158 | 5.016 | |
Coal | 15.742 | 3.268 | |
Diesel | 17.716 | 3.678 | |
Electricity from national grid | 5.926 | 1.230 | |
On-site generated electricity | 29.374 | 6.099 | |
Internal used steam | 1.305 | 0.271 | |
Chemicals | |||
CaO | 101.525 | 21.080 | |
CH3OH | 5.874 | 1.220 | |
H2O2 | 35.615 | 7.395 | |
H2SO4 | 1.539 | 0.319 | |
NaClO3 | 25.135 | 5.219 | |
NaOH | 41.246 | 8.564 | |
On-site recovered NaOH | 20.546 | 4.266 | |
Other materials | |||
Water | 5.871 | 1.219 | |
Direct emissions to air | |||
NOx | 3.384 | 0.703 | |
SO2 | 2.331 | 0.484 | |
Particulates | 0.005 | 0.001 | |
TRS | 0.104 | 0.022 | |
Waste heat | 28.165 | 5.848 | |
Direct emissions to water | |||
COD | 8.158 | 1.694 | |
BOD | 1.579 | 0.331 | |
Total N | 0.353 | 0.073 | |
Total P | 1.255 | 0.260 | |
TSS | 0.989 | 0.205 | |
Effluent | 40.451 | 8.399 | |
Solid wastes | |||
Ash and dust | 4.609 | 0.957 | |
Sludge | 26.146 | 5.429 | |
Total | 481.626 | 100 |
Consumption | Inputs | GWP, g CO2e/kWh | %Total |
---|---|---|---|
Load maintenance | Electricity from national grid | 0.536 | 1.285 |
Labor for harvesting | Labor | 8.041 | 19.260 |
Transport by train | Electricity from national grid | 0.879 | 2.106 |
Transport by 8t-truck | Gasoline | 17.900 | 42.874 |
Processing | |||
Gasoline | 5.925 | 14.192 | |
Natural gas | 8.469 | 20.284 | |
Total | 41.750 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, T.; Wang, J.; Zhao, M.; Xiong, T.; Lu, L.; Xia, Y. Life Cycle Carbon Costs of Fibreboard, Pulp and Bioenergy Produced from Improved Oil Camellia (Camellia oleifera spp.) Forest Management Operations in China. Sustainability 2025, 17, 7379. https://doi.org/10.3390/su17167379
Yao T, Wang J, Zhao M, Xiong T, Lu L, Xia Y. Life Cycle Carbon Costs of Fibreboard, Pulp and Bioenergy Produced from Improved Oil Camellia (Camellia oleifera spp.) Forest Management Operations in China. Sustainability. 2025; 17(16):7379. https://doi.org/10.3390/su17167379
Chicago/Turabian StyleYao, Tongyu, Jingsong Wang, Meifang Zhao, Tao Xiong, Liang Lu, and Yingying Xia. 2025. "Life Cycle Carbon Costs of Fibreboard, Pulp and Bioenergy Produced from Improved Oil Camellia (Camellia oleifera spp.) Forest Management Operations in China" Sustainability 17, no. 16: 7379. https://doi.org/10.3390/su17167379
APA StyleYao, T., Wang, J., Zhao, M., Xiong, T., Lu, L., & Xia, Y. (2025). Life Cycle Carbon Costs of Fibreboard, Pulp and Bioenergy Produced from Improved Oil Camellia (Camellia oleifera spp.) Forest Management Operations in China. Sustainability, 17(16), 7379. https://doi.org/10.3390/su17167379