Evaluation of Nutrient Loss and Greenhouse Gas Emissions Caused by Food Loss and Waste in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Flow Model of the Food System
2.1.1. Model Construction
2.1.2. Data Sources
2.2. Evaluation of Nutrient Loss
2.2.1. Assessment of Individual Nutrient Loss
2.2.2. Assessment of Wasted Nutrient Days (WNDs)
2.3. GHG Emissions Assessment
2.3.1. Methodology
2.3.2. Source of Food Carbon Footprint Parameters
2.4. Scenario Analysis
- Scenario 1: Baseline scenario. The current Chinese dietary pattern in 2022.
- Scenario 2: Improved postharvest handling and storage. We have updated the previously established FLW database [6], with data now spanning from 2021 to 2025. Based on this database, we define the parameters for optimizing each food harvesting stage as the minimum values observed among developed countries (Table S5).
- Scenario 3: Improved supply chain. Leveraging our established food loss and waste database [6], this scenario aims to reduce losses across all post-harvest stages (storage, processing, distribution, and food waste) by adopting globally optimized minimum values for China-specific food groups and supply-chain segments (Table S5).
- Scenario 4: Optimal diet. Dietary consumption aligns with the diet recommended by the Dietary Guidelines for Chinese Residents (2022) [33].
- Scenario 5: Optimal diet + improved postharvest and storage. Building upon Scenario 4, this scenario further reduces postharvest handling and storage losses by optimizing the FLW parameters defined in Scenario 2 (Table S5).
- Scenario 6: Optimal diet + improved supply chain. Based on Scenario 4, this scenario integrates measures to reduce losses at all stages by optimizing the food loss/waste parameters from Scenario 3 (Table S5).
3. Results
3.1. Current Status of FLW in China
3.2. Nutrient Loss
3.3. GHG Emissions Caused by FLW in China
3.4. Significantly Reduced FLW and Associated GHG Emissions Under Scenario Modeling
4. Discussion
4.1. China’s FLW Landscape: Moderate per Capita Rates Mask World-Leading Total Emissions
Region | Food Loss and Waste | Year | Reference Documentation | |
---|---|---|---|---|
g Capita−1 Day−1 | Mt Year−1 | |||
China | 781 | 415 | 2022 | Our research |
The United States | 952 | 107 | 2010 | Chen & Chen, 2018, Sustainability [40] |
Japan | 807 | 38 | 2011 | Liu et al., 2016, Journal of Cleaner Production [16] |
South Korea | 819 | 15 | 2007–2017 average | Adelodun & Choi, 2020, Journal of Cleaner Production [14] |
Peru | 734 | 8 | 2012 | Vázquez-Rowe et al., 2021, Resources, Conservation and Recycling [41] |
South Africa | 540 | 10 | 2012 | Nahman & de Lange, 2013, Waste Management [42] |
Poland | 869 | 12 | 2006 | Bräutigam et al., 2014, Waste Management and Research [43] |
Italy | 913 | 20 | 2006 | |
European Union (27 countries) | 790 | 143 | 2006 | |
World | 606 | 1482 | 2007 | Gustavsson, J. et al., 2011 [3] |
Industrialized Asia | 770 | 443 | 2011 | Porter et al., 2016, Science of the Total Environment [5] |
Europe | 816 | 211 | 2011 | |
North America and Oceania | 1214 | 167 | 2011 | |
South Asia and Southeast Asia | 422 | 355 | 2011 | |
Sub-Saharan Africa | 616 | 159 | 2011 |
4.2. FLW Reduction: A Critical Lever for Enhancing Food–Nutrition Security
4.3. A Twofold Potential for Reducing GHG Emissions from FLW by Targeting Supply and Demand
4.4. Strategic Priorities for Mitigating FLW Across China’s Food System
5. Limitations and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clark, M.A.; Domingo, N.G.G.; Colgan, K.; Thakrar, S.K.; Tilman, D.; Lynch, J.; Azevedo, I.L.; Hill, J.D. Global food system emissions could preclude achieving the 1.5° and 2 °C climate change targets. Science 2020, 370, 705–708. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; Van Otterdijk, R.; Meybeck, A. Global Food Losses and Food Waste: Extent, Causes and Prevention; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2011. [Google Scholar]
- Kummu, M.; de Moel, H.; Porkka, M.; Siebert, S.; Varis, O.; Ward, P.J. Lost food, wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 2012, 438, 477–489. [Google Scholar] [CrossRef]
- Porter, S.D.; Reay, D.S.; Higgins, P.; Bomberg, E. A half-century of production-phase greenhouse gas emissions from food loss & waste in the global food supply chain. Sci. Total Environ. 2016, 571, 721–729. [Google Scholar]
- Wang, X.; Dou, Z.; Feng, S.; Zhang, Y.; Ma, L.; Zou, C.; Bai, Z.; Lakshmanan, P.; Shi, X.; Liu, D.; et al. Global food nutrients analysis reveals alarming gaps and daunting challenges. Nat. Food 2023, 4, 1007–1017. [Google Scholar] [CrossRef]
- United Nations (UN). Transforming Our World: The 2030 Agenda for Sustainable Development; Working Papers; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Qi, D.; Apolzan, J.W.; Li, R.; Roe, B.E. Unpacking the decline in food waste measured in Chinese households from 1991 to 2009. Resour. Conserv. Recycl. 2020, 160, 104893. [Google Scholar] [CrossRef]
- Sun, S.K.; Lu, Y.J.; Gao, H.; Jiang, T.T.; Du, X.Y.; Shen, T.X.; Wu, P.T.; Wang, Y.B. Impacts of food wastage on water resources and environment in China. J. Clean. Prod. 2018, 185, 732–739. [Google Scholar] [CrossRef]
- Song, G.; Li, M.; Semakula, H.M.; Zhang, S. Food consumption and waste and the embedded carbon, water and ecological footprints of households in China. Sci. Total Environ. 2015, 529, 191–197. [Google Scholar] [CrossRef]
- Xue, L.; Liu, X.; Lu, S.; Cheng, G.; Hu, Y.; Liu, J.; Dou, Z.; Cheng, S.; Liu, G. China’s food loss and waste embodies increasing environmental impacts. Nat. Food 2021, 2, 519–528. [Google Scholar] [CrossRef]
- Yang, Y. Chinese Food Composition Table; Peking University Medical Press: Beijing, China, 2018. (In Chinese) [Google Scholar]
- Abbade, E.B. Estimating the nutritional loss and the feeding potential derived from food losses worldwide. World Dev. 2020, 134, 105038. [Google Scholar] [CrossRef]
- Adelodun, B.; Choi, K.S. Impact of food wastage on water resources and GHG emissions in Korea: A trend-based prediction modeling study. J. Clean. Prod. 2020, 271, 122562. [Google Scholar] [CrossRef]
- Magro, G.P.D.; Talamini, E. Estimating the magnitude of the food loss and waste generated in Brazil. Waste Manag. Res. 2019, 37, 706–716. [Google Scholar] [CrossRef]
- Liu, C.; Hotta, Y.; Santo, A.; Hengesbaugh, M.; Watabe, A.; Totoki, Y.; Allen, D.; Bengtsson, M. Food waste in Japan: Trends, current practices and key challenges. J. Clean. Prod. 2016, 133, 557–564. [Google Scholar] [CrossRef]
- FAOSTAT Food and Agriculture Data. Food Balances. 2022. Available online: https://www.fao.org/faostat/en/#data (accessed on 11 February 2025).
- Li, C.; Bremer, P.; Harder, M.K.; Lee, M.S.W.; Parker, K.; Gaugler, E.C.; Mirosa, M. A systematic review of food loss and waste in China: Quantity, impacts and mediators. J. Environ. Manag. 2022, 303, 114092. [Google Scholar] [CrossRef]
- Food Development Research Group, Chinese Academy of Agricultural Sciences. On the intermediate-long term strategies for food development in China. Sci. Agric. Sin. 1993, 1, 1–12. (In Chinese) [Google Scholar]
- FAO/INFOODS Guidelines for Checking Food Composition Data Prior to the Publication of a User Table/Database-Version 1.0; FAO: Rome, Italy, 2012.
- Chen, C.; Chaudhary, A.; Mathys, A. Nutritional and environmental losses embedded in global food waste. Resour. Conserv. Recycl. 2020, 160, 104912. [Google Scholar] [CrossRef]
- Cooper, K.A.; Quested, T.E.; Lanctuit, H.; Zimmermann, D.; Espinoza-Orias, N.; Roulin, A. Nutrition in the Bin: A Nutritional and Environmental Assessment of Food Wasted in the UK. Front. Nutr. 2018, 5, 19. [Google Scholar] [CrossRef]
- Chinese Nutrition Society. Introduction to the Dietary Reference Intakes for Chinese Residents (2023 Revision). Acta Nutr. Sin. 2023, 45, 4. (In Chinese) [Google Scholar]
- Jianyi, L.; Yuanchao, H.; Shenghui, C.; Jiefeng, K.; Lilai, X. Carbon footprints of food production in China (1979–2009). J. Clean. Prod. 2015, 90, 97–103. [Google Scholar] [CrossRef]
- Xu, X.; Lan, Y. A comparative study on carbon footprints between plant- and animal-based foods in China. J. Clean. Prod. 2016, 112, 2581–2592. [Google Scholar] [CrossRef]
- Xu, X.; Lan, Y. Spatial and temporal patterns of carbon footprints of grain crops in China. J. Clean. Prod. 2017, 146, 218–227. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Clark, M.; Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 2017, 12, 064016. [Google Scholar] [CrossRef]
- Clune, S.; Crossin, E.; Verghese, K. Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean. Prod. 2017, 140, 766–783. [Google Scholar] [CrossRef]
- Linquist, B.; van Groenigen, K.J.; Adviento-Borbe, M.A.; Pittelkow, C.; van Kessel, C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Change Biol. 2012, 18, 194–209. [Google Scholar] [CrossRef]
- Lam, W.Y.; van Zelm, R.; Benítez-López, A.; Kulak, M.; Sim, S.; King, J.M.H.; Huijbregts, M.A.J. Variability of Greenhouse Gas Footprints of Field Tomatoes Grown for Processing: Interyear and Intercountry Assessment. Environ. Sci. Technol. 2018, 52, 135–144. [Google Scholar] [CrossRef]
- MacLeod, M.J.; Hasan, M.R.; Robb, D.H.F.; Mamun-Ur-Rashid, M. Quantifying greenhouse gas emissions from global aquaculture. Sci. Rep. 2020, 10, 11679. [Google Scholar] [CrossRef]
- Chinese Nutrition Society. Dietary Guidelines for Chinese Residents; People’s Medical Publishing House: Beijing, China, 2022. (In Chinese) [Google Scholar]
- United Nations Environment Programme. Food Waste Index Report 2024. 2024. Available online: https://www.unep.org/resources/publication/food-waste-index-report-2024 (accessed on 18 February 2025).
- Kim, B.F.; Santo, R.E.; Scatterday, A.P.; Fry, J.P.; Synk, C.M.; Cebron, S.R.; Mekonnen, M.M.; Hoekstra, A.Y.; de Pee, S.; Bloem, M.W.; et al. Country-specific dietary shifts to mitigate climate and water crises. Glob. Environ. Change 2020, 62, 101926. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, Q.; Li, S.; Zhao, W.; Ding, G. Strengthening nutrition surveys and surveillance to improve the nutritional and health status of Chinese residents. J. Hyg. Res. 2019, 48, 517–522. (In Chinese) [Google Scholar]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Zhao, L. Report on the monitoring of nutrition and health status of Chinese residents (2010–2013). In Proceedings of the China Nutrition Research and Development Report Seminar, Beijing, China, 21 October 2014. (In Chinese). [Google Scholar]
- Alexander, P.; Brown, C.; Arneth, A.; Finnigan, J.; Moran, D.; Rounsevell, M.D.A. Losses, inefficiencies and waste in the global food system. Agric. Syst. 2017, 153, 190–200. [Google Scholar] [CrossRef]
- Chen, C.R.; Chen, R.J.C. Using Two Government Food Waste Recognition Programs to Understand Current Reducing Food Loss and Waste Activities in the U.S. Sustainability 2018, 10, 2760. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Ziegler-Rodriguez, K.; Margallo, M.; Kahhat, R.; Aldaco, R. Climate action and food security: Strategies to reduce GHG emissions from food loss and waste in emerging economies. Resour. Conserv. Recycl. 2021, 170, 105562. [Google Scholar] [CrossRef]
- Nahman, A.; de Lange, W. Costs of food waste along the value chain: Evidence from South Africa. Waste Manag. 2013, 33, 2493–2500. [Google Scholar] [CrossRef]
- Bräutigam, K.-R.; Jörissen, J.; Priefer, C. The extent of food waste generation across EU-27: Different calculation methods and the reliability of their results. Waste Manag. 2014, 32, 683–694. [Google Scholar] [CrossRef]
- Veeck, G.; Veeck, A.; Yu, H. Challenges of agriculture and food systems issues in China and the United States. Geogr. Sustain. 2020, 1, 109–117. [Google Scholar] [CrossRef]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Wang, X.; Liu, B.; Wu, G.; Sun, Y.; Guo, X.; Jin, G.; Jin, Z.; Zou, C.; Chadwick, D.; Chen, X. Cutting carbon footprints of vegetable production with integrated soil–crop system management: A case study of greenhouse pepper production. J. Clean. Prod. 2020, 254, 120158. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook 2023; China Statistics Press: Beijing China, 2024.
- Guo, C.; Su, C.; Wang, Z.; Du, W.; Wang, H.; Zhang, B. Dietary protein intake of adults aged 18–64 in 15 provinces of China in 2015. Acta Nutr. Sin. 2018, 40, 428–433. (In Chinese) [Google Scholar]
- Jouanne, M.; Oddoux, S.; Noël, A.; Voisin-Chiret, A.S. Nutrient requirements during pregnancy and lactation. Nutrients 2021, 13, 692. [Google Scholar] [CrossRef] [PubMed]
- Bloom, I.; Pilgrim, A.; Jameson, K.A.; Dennison, E.M.; Sayer, A.A.; Roberts, H.C.; Cooper, C.; Ward, K.A.; Robinson, S.M. The relationship of nutritional risk with diet quality and health outcomes in community-dwelling older adults. Aging Clin. Exp. Res. 2021, 33, 2767–2776. [Google Scholar] [CrossRef]
- Lu, S.; Cheng, G.; Li, T.; Xue, L.; Liu, X.; Huang, J.; Liu, G. Quantifying supply chain food loss in China with primary data: A large-scale, field-survey based analysis for staple food, vegetables, and fruits. Resour. Conserv. Recycl. 2022, 177, 106006. [Google Scholar] [CrossRef]
- Chaboud, G.; Moustier, P. The role of diverse distribution channels in reducing food loss and waste: The case of the Cali tomato supply chain in Colombia. Food Policy 2021, 98, 101881. [Google Scholar] [CrossRef]
- Chauhan, C.; Dhir, A.; Akram, M.U.; Salo, J. Food loss and waste in food supply chains. A systematic literature review and framework development approach. J. Clean. Prod. 2021, 295, 126438. [Google Scholar] [CrossRef]
- Lemaire, A.; Limbourg, S. How can food loss and waste management achieve sustainable development goals? J. Clean. Prod. 2019, 234, 1221–1234. [Google Scholar] [CrossRef]
- Reynolds, C.; Goucher, L.; Quested, T.; Bromley, S.; Gillick, S.; Wells, V.K.; Evans, D.; Koh, L.; Carlsson Kanyama, A.; Katzeff, C.; et al. Review: Consumption-stage food waste reduction interventions—What works and how to design better interventions. Food Policy 2019, 83, 7–27. [Google Scholar] [CrossRef]
- Academy of Global Food Economics and Policy. 2025 Report on China and Global Food Policy; Academy of Global Food Economics and Policy: Beijing China, 2025. [Google Scholar]
- Guo, S.; Guo, H. The driving factors of food waste in Chinese urban households: A qualitative study based on grounded theory. Sustainability 2024, 16, 6091. [Google Scholar] [CrossRef]
Food Item | Calories Kcal | Protein g | Dietary Fiber g | Vitamin A µg | Vitamin C mg | Vitamin E mg | Calcium mg | Magnsium mg | Iron mg | Zinc mg |
---|---|---|---|---|---|---|---|---|---|---|
Cereals | 420.0 | 11.8 | 5.9 | 0.0 | 7.4 | 1.3 | 26.1 | 37.3 | 3.0 | 2.4 |
Roots | 49.5 | 1.3 | 0.6 | 10.9 | 0.5 | 7.3 | 11.2 | 19.3 | 0.5 | 0.3 |
Pulses and nuts | 7.1 | 0.6 | 0.1 | 0.5 | 0.1 | 0.0 | 1.1 | 0.1 | 0.0 | 0.1 |
Vegetable oils | 44.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 0.2 | 0.1 | 0.1 |
Vegetable | 82.0 | 4.8 | 4.4 | 161.1 | 151.7 | 2.6 | 90.3 | 58.0 | 4.8 | 1.8 |
Fruits | 30.3 | 0.4 | 0.9 | 14.4 | 7.3 | 0.3 | 8.3 | 6.2 | 0.2 | 0.2 |
Meat | 90.1 | 5.5 | 0.0 | 6.6 | 0.0 | 0.2 | 2.3 | 5.8 | 0.6 | 0.7 |
Eggs | 13.2 | 1.2 | 0.2 | 34.0 | 0.0 | 0.0 | 0.1 | 1.1 | 0.3 | 0.2 |
Milk | 4.9 | 0.2 | 0.5 | 3.7 | 0.0 | 0.0 | 0.0 | 0.8 | 0.0 | 0.0 |
Fish | 15.5 | 2.6 | 0.8 | 0.5 | 0.0 | 0.0 | 5.8 | 3.8 | 0.2 | 0.9 |
Total | 756.8 | 28.4 | 13.5 | 231.7 | 167.1 | 11.8 | 145.8 | 132.6 | 9.8 | 6.7 |
Food Item | Agricultural Production | Postharvest Handling and Storage | Food Processing and Distribution | Waste of Consumption | Total |
---|---|---|---|---|---|
Cereals | 28.7 | 65.6 | 4.3 | 32.7 | 131.3 |
Roots | 3.6 | 13.4 | 0.4 | 1.8 | 19.2 |
Pulses and nuts | 0.8 | 0.4 | 0.1 | 0.3 | 1.6 |
Vegetable oils | 1.7 | 0.8 | 0.1 | 0.3 | 2.9 |
Vegetable | 29.7 | 67.5 | 10.1 | 19.1 | 126.4 |
Fruits | 6.2 | 3.7 | 7.1 | 5.1 | 22.1 |
Meat | 76.9 | 30.6 | 16.6 | 29.4 | 153.5 |
Eggs | 9.2 | 3.4 | 5.0 | 4.3 | 21.9 |
Milk | 3.6 | 2.2 | 0.6 | 3.2 | 9.6 |
Fish | 8.0 | 15.6 | 6.2 | 10 | 39.8 |
Total | 168.4 | 203.2 | 50.5 | 106.2 | 528.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Fang, Y.; Wang, X. Evaluation of Nutrient Loss and Greenhouse Gas Emissions Caused by Food Loss and Waste in China. Sustainability 2025, 17, 7341. https://doi.org/10.3390/su17167341
Chen C, Fang Y, Wang X. Evaluation of Nutrient Loss and Greenhouse Gas Emissions Caused by Food Loss and Waste in China. Sustainability. 2025; 17(16):7341. https://doi.org/10.3390/su17167341
Chicago/Turabian StyleChen, Chun, Yiman Fang, and Xiaozhong Wang. 2025. "Evaluation of Nutrient Loss and Greenhouse Gas Emissions Caused by Food Loss and Waste in China" Sustainability 17, no. 16: 7341. https://doi.org/10.3390/su17167341
APA StyleChen, C., Fang, Y., & Wang, X. (2025). Evaluation of Nutrient Loss and Greenhouse Gas Emissions Caused by Food Loss and Waste in China. Sustainability, 17(16), 7341. https://doi.org/10.3390/su17167341