Green Preservation Strategies: The Role of Essential Oils in Sustainable Food Preservatives
Abstract
1. Introduction
2. Essential Oils: Composition, Extraction, and Regulatory Aspects
2.1. Chemical Composition and Active Constituents
- Terpenes (e.g., limonene, pinene, sabinene);
- Terpenoids (oxygenated terpenes, e.g., linalool, geraniol, thymol, carvacrol);
- Phenolic compounds (e.g., eugenol, thymol);
- Aldehydes (e.g., citral, cinnamaldehyde);
- Ketones (e.g., menthone, carvone);
- Alcohols (e.g., borneol, terpineol);
- Esters (e.g., linalyl acetate).
2.2. Extraction Methods and Impact on Sustainability
2.2.1. Conventional Extraction Techniques
2.2.2. Green and Advanced Extraction Technologies
- Supercritical Fluid Extraction (SFE): Uses supercritical CO2 as a solvent, offering high selectivity, mild temperatures, and minimal solvent residues in the final product. SFE allows the extraction of thermolabile and non-polar compounds with lower energy consumption and no water waste, aligning well with eco-friendly processing goals [15]. However, high equipment costs can be a barrier for small producers.
- Microwave-Assisted Extraction (MAE): Utilizes microwave energy to heat the plant matrix rapidly and efficiently. MAE reduces extraction time and solvent use and can enhance the recovery of specific bioactives [16]. It is increasingly recognized as a sustainable technique for industrial-scale EO recovery.
- Ultrasound-Assisted Extraction (UAE): Relies on acoustic cavitation to disrupt plant cells and facilitate the release of EOs. The UAE enhances yield, reduces energy consumption, and shortens extraction time compared to classical techniques [17]. It is particularly effective for delicate aromatic herbs.
- Ohmic Heating: An emerging technique where plant material is heated via electrical current. It enables rapid, uniform heating and shows promise in EO extraction, particularly when combined with hydrodistillation, thereby improving energy efficiency [18].
Other Industrial Extraction Methods
- Solvent Extraction: This method uses polar (e.g., ethanol, methanol) or non-polar (e.g., hexane, petroleum ether) solvents to extract aromatic compounds. It is particularly effective for delicate flowers (e.g., jasmine, tuberose) that do not tolerate high heat. However, solvent residues, potential toxicity, and environmental concerns limit its use in food-grade applications unless followed by rigorous purification [19].
- Enzyme-Assisted Extraction (EAE): Enzymes such as cellulases or pectinases are used to degrade plant cell walls, enhancing the release of essential oil constituents and other bioactives. EAE is considered mild and selective, preserving thermolabile compounds while improving yield and extraction efficiency [20,21].
- Pressurized Hot Water Extraction (PHWE): Also known as subcritical water extraction, PHWE uses water at elevated temperatures (100–374 °C) and pressure to extract polar and semi-polar compounds. It offers a greener alternative to organic solvents and can be used to obtain antioxidant-rich extracts with minimal degradation of sensitive molecules [22,23].
2.2.3. Waste Valorization and Circular Economy Approaches
2.3. Regulatory Status of EOs in Food Systems
2.3.1. GRAS Status and Food Additive Approvals
2.3.2. European Union Regulations
2.3.3. Codex Alimentarius and International Guidelines
2.3.4. Safety Assessments and Toxicological Requirements
- Acute and chronic toxicity;
- Genotoxicity and antigenotoxicity;
- Allergenicity and potential sensitization;
2.3.5. Organic Certification and Clean-Label Trends
2.4. Sustainability Considerations in Essential Oil Production and Application
2.4.1. Importance of Standardization
- Minor variations in composition can alter antimicrobial, antioxidant, or sensory properties.
- Regulatory bodies require transparent specification sheets for food-grade materials.
- Food manufacturers depend on predictable functionality and stability in product formulation.
- The reproducibility of scientific data depends on the use of well-characterized materials.
2.4.2. Sustainable Extraction and Environmental Metrics
2.4.3. Regulatory Support for Sustainability
2.4.4. Chemical Characterization Techniques
- Gas chromatography coupled with mass spectrometry (GC–MS) is the gold standard for identifying and quantifying volatile components. It enables detection of both major (e.g., thymol, eugenol, citral) and minor constituents that contribute to bioactivity [55].
- Gas chromatography–flame ionization detection (GC–FID) is often used in tandem with GC–MS for quantification purposes and for establishing fingerprint profiles [56].
- Fourier Transform Infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectroscopy may be used to confirm the presence of functional groups or detect adulterants [57].
- Chiral chromatography is employed to assess the stereoisomeric composition, which can influence bioactivity and sensory properties [58].
2.4.5. Biological Activity Validation
- Antioxidant activity is typically evaluated using assays such as DPPH, ABTS, ORAC, or FRAP, which must be consistently reproducible across batches [59].
- Antimicrobial efficacy can be assessed using disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC), and time-kill kinetics. These bioassays are crucial for ensuring the effectiveness of EOs in various food matrices [60].
2.4.6. Detection of Adulteration and Contaminants
- Dilution with carrier oils or synthetic compounds;
- Addition of isolated natural constituents to mimic a full-spectrum EOs;
- Use of non-declared preservatives or solvents;
- Standardization protocols must include tests for authenticity and purity, using tools such as the following:
- Specific gravity, optical rotation, and refractive index;
- Stable isotope ratio analysis (SIRA) to distinguish synthetic from natural compounds;
- Residual solvent analysis via GC-MS or HS-SPME for detecting processing contaminants.
2.4.7. Role of Pharmacopeias and Standards Organizations
- European Pharmacopoeia (Ph. Eur.);
- United States Pharmacopoeia (USP);
- International Organization for Standardization (ISO);
- World Health Organisation (WHO) monographs.
2.4.8. Stability and Shelf-Life Considerations
- Accelerated stability testing under light, heat, and humidity;
- Shelf-life determination under simulated storage conditions;
- Packaging optimization (e.g., amber glass, airtight seals).
3. Antioxidant Properties of Essential Oils
3.1. Synergistic Potential and Stability Considerations
3.2. Sustainability Considerations: Toward Cleaner, Greener Food Products
4. Antimicrobial Activity of Essential Oils
4.1. Assessing Antimicrobial Potential
4.2. Performance in Food Matrices
4.3. Multifunctionality and Safety Implications
5. Antigenotoxic Potential of Essential Oils
5.1. Foodborne Genotoxins and DNA Damage
5.2. EOs and Genoprotection
5.3. Genotoxicity and Antigenotoxicity Assays
5.4. Implications for Food Safety and Human Health
6. Promising Essential Oils for Food Additives
6.1. Selection Criteria and Evaluation Scope
Key Essential Oils and Their Functional Potential
6.2. Strategic Implications for Food Preservation
7. Challenges and Limitations
7.1. Sensory Impact
7.2. Stability During Processing and Storage
7.3. Standardization of EO Composition
7.4. Regulatory Hurdles in Food Systems
7.5. Potential Toxicity at High Doses
7.6. Gaps in Antigenotoxicity Research
8. Future Perspectives and Sustainability Outlook
8.1. Integration into Green Food Processing
8.2. Valorization of Agricultural Byproducts
8.3. Contribution to Sustainable Development Goals (SDGs)
- SDG 3 (Good Health and Well-Being): EOs contribute to safer food by reducing microbial contamination and potentially mitigating DNA damage from foodborne genotoxins.
- SDG 12 (Responsible Consumption and Production): Using natural, renewable preservatives promotes sustainable food systems and reduces chemical dependency.
- SDG 13 (Climate Action): Adoption of green extraction and processing methods using EOs can lower energy use and greenhouse gas emissions.
- SDG 9 (Industry, Innovation and Infrastructure): Advances in EO encapsulation, packaging, and formulation stimulate innovation across the food and biotech sectors.
8.4. Research Needs and Innovation Gaps
- Dose Optimization: There is a need for detailed studies to determine minimum effective concentrations in complex food matrices, while ensuring sensory acceptability and safety.
- Consumer Acceptance: While natural preservatives are generally welcomed, consumer perception of intense EO flavors or odors can be a barrier. Sensory studies and transparent communication are crucial for building trust.
- Life Cycle Assessment (LCA): Comprehensive LCA studies comparing EO-based systems to synthetic preservatives are still limited. These assessments are crucial for quantifying environmental benefits and informing decision-making.
- Synergistic Formulations: Research into EO combinations and their interactions with other natural agents (e.g., organic acids, bacteriocins) can enhance efficacy and reduce the required dosages.
8.5. Addressing Inconsistencies and Standardization Needs
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nabi, B.G.; Mukhtar, K.; Arshad, R.N.; Radicetti, E.; Tedeschi, P.; Shahbaz, M.U.; Walayat, N.; Nawaz, A.; Inam-Ur-Raheem, M.; Aadil, R.M. High-Pressure Processing for Sustainable Food Supply. Sustainability 2021, 13, 13908. [Google Scholar] [CrossRef]
- Bibow, A.; Oleszek, W. Essential Oils as Potential Natural Antioxidants, Antimicrobial, and Antifungal Agents in Active Food Packaging. Antibiotics 2024, 13, 1168. [Google Scholar] [CrossRef]
- Rs, L.; Ta, Y. Final report on the safety assessment of BHT (1). Int. J. Toxicol. 2002, 21 (Suppl. 2), 19–94. Available online: https://pubmed.ncbi.nlm.nih.gov/12396675/ (accessed on 5 June 2025).
- Essential Oils. National Institute of Environmental Health Sciences. Available online: https://www.niehs.nih.gov/health/topics/agents/essential-oils (accessed on 1 August 2025).
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef]
- Miguel, M.G. Antioxidant and Anti-Inflammatory Activities of Essential Oils: A Short Review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef]
- Gonçalves, S.; Fernandes, L.; Caramelo, A.; Martins, M.; Rodrigues, T.; Matos, R.S. Soothing the Itch: The Role of Medicinal Plants in Alleviating Pruritus in Palliative Care. Plants 2024, 13, 3515. [Google Scholar] [CrossRef]
- Piccaglia, R.; Marotti, M. Characterization of several aromatic plants grown in northern Italy. Flavour. Fragr. J. 1993, 8, 115–122. [Google Scholar] [CrossRef]
- Shah, M.; Khan, F.; Ullah, S.; Mohanta, T.K.; Khan, A.; Zainab, R.; Rafiq, N.; Ara, H.; Alam, T.; Rehman, N.U.; et al. GC-MS Profiling and Biomedical Applications of Essential Oil of Euphorbia larica Boiss.: A New Report. Antioxidants 2023, 12, 662. [Google Scholar] [CrossRef]
- Bassolé, I.H.N.; Juliani, H.R. Essential oils in combination and their antimicrobial properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef]
- Gonçalves, S.; Peixoto, F.; Schoss, K.; Glavač, N.K.; Gaivão, I. Elderberry Hydrolate: Exploring Chemical Profile, Antioxidant Potency and Antigenotoxicity for Cosmetic Applications. Appl. Sci. 2024, 14, 6338. [Google Scholar] [CrossRef]
- Reverchon, E.; De Marco, I. Supercritical fluid extraction and fractionation of natural matter. J. Supercrit. Fluids 2006, 38, 146–166. [Google Scholar] [CrossRef]
- Mukhopadhyay, M. Natural Extracts Using Supercritical Carbon Dioxide; CRC Press: Boca Raton, FL, USA, 2000; p. 360. [Google Scholar]
- Chemat, F.; Cravotto, G. Microwave-Assisted Extraction for Bioactive Compounds; Springer: New York, NY, USA, 2013. [Google Scholar]
- Vinatoru, M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem. 2001, 8, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Gavahian, M.; Farahnaky, A.; Javidnia, K.; Majzoobi, M. Comparison of Ohmic-assisted hydrodistillation with traditional hydrodistillation for the extraction of essential oils from Thymus vulgaris L. Innov. Food Sci. Emerg. Technol. 2012, 14, 85–91. [Google Scholar] [CrossRef]
- Abubakar, A.R.; Haque, M. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. J. Pharm. Bioallied Sci. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Puri, M.; Sharma, D.; Barrow, C. Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol. 2011, 30, 37–44. [Google Scholar] [CrossRef]
- Gil-Martín, E.; Forbes-Hernández, T.; Romero, A.; Cianciosi, D.; Giampieri, F.; Battino, M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem. 2022, 378, 131918. [Google Scholar] [CrossRef]
- Gbashi, S. Pressurized Hot Water Extraction (PHWE) and Chemometric Fingerprinting of Phytochemicals from Bidens pilosa. Master’s Thesis, University of Johannesburg, Johannesburg, South Africa, 2016. [Google Scholar]
- Plaza, M.; Turner, C. Pressurized hot water extraction of bioactives. TrAC Trends Anal. Chem. 2015, 71, 39–54. [Google Scholar] [CrossRef]
- Maqbool, Z.; Khalid, W.; Atiq, H.T.; Koraqi, H.; Javaid, Z.; Alhag, S.K.; Al-Shuraym, L.A.; Bader, D.M.D.; Almarzuq, M.; Afifi, M.; et al. Citrus Waste as Source of Bioactive Compounds: Extraction and Utilization in Health and Food Industry. Molecules 2023, 28, 1636. [Google Scholar] [CrossRef]
- Andrade, M.A.; Barbosa, C.H.; Shah, M.A.; Ahmad, N.; Vilarinho, F.; Khwaldia, K.; Silva, A.S.; Ramos, F. Citrus By-Products: Valuable Source of Bioactive Compounds for Food Applications. Antioxidants 2022, 12, 38. [Google Scholar] [CrossRef]
- Kumar, H.; Guleria, S.; Kimta, N.; Nepovimova, E.; Dhanjal, D.S.; Sethi, N.; Suthar, T.; Shaikh, A.M.; Bela, K.; Harsányi, E. Applications of citrus peels valorisation in circular bioeconomy. J. Agric. Food Res. 2025, 20, 101780. [Google Scholar] [CrossRef]
- Elsabee, M.Z.; Morsi, R.E.; Fathy, M. Chapter 47-Chitosan-Oregano Essential Oil Blends: Use as Antimicrobial Packaging Material. In Antimicrobial Food Packaging, 2nd ed.; Barros-Velázquez, J., Ed.; Academic Press: San Diego, CA, USA, 2025; pp. 743–758. Available online: https://www.sciencedirect.com/science/article/pii/B978032390747700048X (accessed on 5 June 2025).
- Vital, A.C.P.; Guerrero, A.; Monteschio, J.D.O.; Valero, M.V.; Carvalho, C.B.; de Abreu Filho, B.A.; Madrona, G.S.; Do Prado, I.N. Effect of Edible and Active Coating (with Rosemary and Oregano Essential Oils) on Beef Characteristics and Consumer Acceptability. PLoS ONE 2016, 11, e0160535. [Google Scholar] [CrossRef] [PubMed]
- Program, H.F. GRAS Substances (SCOGS) Database; FDA: Silver Spring, MD, USA, 2024. Available online: https://www.fda.gov/food/generally-recognized-safe-gras/gras-substances-scogs-database (accessed on 5 June 2025).
- Steele, E.A.; Breen, C.; Campbell, E.; Martin, R. Food Regulations and Enforcement in the USA. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; Available online: https://www.sciencedirect.com/science/article/pii/B9780081005965210317 (accessed on 5 June 2025).
- Institute of Medicine (US) Food Forum. Legal Aspects of the Food Additive Approval Process. In Enhancing the Regulatory Decision-Making Approval Process for Direct Food Ingredient Technologies: Workshop Summary; National Academies Press: Washington, DC, USA, 1999. Available online: https://www.ncbi.nlm.nih.gov/books/NBK224037/ (accessed on 5 June 2025).
- EU Rules-European Commission. Available online: https://food.ec.europa.eu/food-safety/food-improvement-agents/flavourings/eu-rules_en (accessed on 5 June 2025).
- Flavouring Group Evaluation, 0.6.; Revision 4 |, E.F.S.A. 2013. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/3091 (accessed on 5 June 2025).
- Commission Regulation (EU) No 10/2011 of 14 January 2011 on Plastic Materials and Articles Intended to Come into Contact with Food Text with EEA Relevance. Available online: http://data.europa.eu/eli/reg/2011/10/oj/eng (accessed on 14 January 2011).
- Joint FAO/WHO Food Standards Programme, Codex Committee on Food Additives. Proposals for New and/or Revision of Food Additive Provisions; General Standard for Food Additives (GSFA): Rome, Italy, 2019. [Google Scholar]
- Chauhan, K.; Rao, A. Clean-label alternatives for food preservation: An emerging trend. Heliyon 2024, 10, e35815. [Google Scholar] [CrossRef] [PubMed]
- Codex General Standard for Food Additives (GSFA) Online Database. Available online: https://www.lib.ncsu.edu/databases/codex-general-standard-food-additives-gsfa-online-database (accessed on 5 June 2025).
- Ververis, E.; Ackerl, R.; Azzollini, D.; Colombo, P.A.; de Sesmaisons, A.; Dumas, C.; Fernandez-Dumont, A.; Ferreira da Costa, L.; Germini, A.; Goumperis, T.; et al. Novel Foods in the European Union: Scientific requirements and challenges of the risk assessment process by the European Food Safety Authority. Food Res Int. 2020, 137, 109515. [Google Scholar] [CrossRef] [PubMed]
- Novel Food and Generally Recognized as Safe (GRAS) Regulatory Submissions in an Evolving World–What’s Required? | knoell. 2024. Available online: https://www.knoell.com/en/news/novel-food-and-generally-recognized-as-safe-gras-regulatory-submissions-in-an-evolving-world (accessed on 5 June 2025).
- Maurya, A.; Prasad, J.; Das, S.; Dwivedy, A.K. Essential Oils and Their Application in Food Safety. Front. Sustain. Food Syst. 2021, 5, 133. Available online: https://www.frontiersin.org/journals/sustainable-food-systems/articles/10.3389/fsufs.2021.653420/full (accessed on 5 June 2025). [CrossRef]
- Saeed, K.; Pasha, I.; Chughtai, M.F.; Ali, Z.; Bukhari, H.; Zuhair, M. Application of essential oils in food industry: Challenges and innovation. J. Essent. Oil Res. 2022, 34, 97–110. [Google Scholar] [CrossRef]
- Singh, R.; Kotecha, M. A review on the Standardization of herbal medicines. Int. J. Pharma Sci. Res. 2016, 7, 97–106. [Google Scholar]
- Wang, H.; Chen, Y.; Wang, L.; Liu, Q.; Yang, S.; Wang, C. Advancing herbal medicine: Enhancing product quality and safety through robust quality control practices. Front. Pharmacol. 2023, 14, 1265178. [Google Scholar] [CrossRef]
- Bautista-Baños, S.; Correa-Pacheco, Z.; Ventura-Aguilar, R.; Salgado, P.; Cortés Higareda, M.; Ramos-García, M. Traditional and Recent Alternatives for Controlling Bacterial Foodborne Pathogens in Fresh Horticultural Commodities—A Review. Coatings 2025, 15, 597. [Google Scholar] [CrossRef]
- Maruyama, S.; Streletskaya, N.; Lim, J. Clean label: Why this ingredient but not that one? Food Qual. Prefer. 2020, 87, 104062. [Google Scholar] [CrossRef]
- Labeling Organic Products | Agricultural Marketing Service. Available online: https://www.ams.usda.gov/rules-regulations/organic/labeling (accessed on 5 June 2025).
- Truzzi, E.; Marchetti, L.; Benvenuti, S.; Ferroni, A.; Rossi, M.C.; Bertelli, D. Novel Strategy for the Recognition of Adulterant Vegetable Oils in Essential Oils Commonly Used in Food Industries by Applying 13C NMR Spectroscopy. J. Agric. Food Chem. 2021, 69, 8276–8286. [Google Scholar] [CrossRef]
- Mugao, L. Factors influencing yield, chemical composition and efficacy of essential oils. Int. J. Multidiscip. Res. Growth Eval. 2024, 5, 169–178. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, S.; Marques, P.; Matos, R.S. Exploring Aromatherapy as a Complementary Approach in Palliative Care: A Systematic Review. J. Palliat. Med. 2024, 27, 1247–1266. [Google Scholar] [CrossRef] [PubMed]
- Putra, N.R.; Yustisia, Y.; Heryanto, R.B.; Asmaliyah, A.; Miswarti, M.; Rizkiyah, D.N.; Yunus, M.A.C.; Irianto, I.; Qomariyah, L.; Rohman, G.A.N. Advancements and challenges in green extraction techniques for Indonesian natural products: A review. S. Afr. J. Chem. Eng. 2023, 46, 88–98. [Google Scholar] [CrossRef]
- Kant, R.; Kumar, A. Energy-economic and exergy-environment performance evaluation of solar energy integrated essential oil extraction system. Sol. Energy 2023, 265, 112101. [Google Scholar] [CrossRef]
- Karipidis, P.; Tselempis, D.; Tsironis, L. Eco-Certification and Transparency in Global Food Supply Chains. In Driving Agribusiness with Technology Innovations; IGI Global: London, UK, 2020; pp. 1053–1074. [Google Scholar]
- Farm to Fork Strategy-European Commission. Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 5 June 2025).
- Cagliero, C.; Bicchi, C.; Marengo, A.; Rubiolo, P.; Sgorbini, B. Gas chromatography of essential oil: State-of-the-art, recent advances, and perspectives. J. Sep. Sci. 2022, 45, 94–112. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Liu, O. Development and validation of a GC–FID method for quantitative analysis of oleic acid and related fatty acids. J. Pharm. Anal. 2015, 5, 223–230. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Ristivojevic, P.; Gegechkori, V.; Litvinova, T.M.; Morton, D.W. Essential Oil Quality and Purity Evaluation via FT-IR Spectroscopy and Pattern Recognition Techniques. Appl. Sci. 2020, 10, 7294. [Google Scholar] [CrossRef]
- Sadgrove, N.J.; Padilla-González, G.F.; Phumthum, M. Fundamental Chemistry of Essential Oils and Volatile Organic Compounds, Methods of Analysis and Authentication. Plants 2022, 11, 789. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Kavela, S.; Kakkerla, S.; Thupurani, M.K. Broad-spectrum antimicrobial activity and in vivo efficacy of SK1260 against bacterial pathogens. Front. Microbiol. 2025, 16, 1553693. [Google Scholar] [CrossRef] [PubMed]
- Bejar, E. Adulteration of Tea Tree Oil (Melaleuca alternifolia and M. linariifolia). 2017. Available online: https://www.researchgate.net/publication/319535839_Adulteration_of_Tea_Tree_Oil_Melaleuca_alternifolia_and_M_linariifolia (accessed on 1 August 2025).
- Sharma, A.; Gumber, K.; Gohain, A.; Bhatia, T.; Sohal, H.S.; Mutreja, V.; Bhardwaj, G. Importance of essential oils and current trends in use of essential oils (aroma therapy, agrofood, and medicinal usage). In Essential Oils; Academic Press: Cambridge, MA, USA, 2023; pp. 53–83. [Google Scholar]
- Oprea, I.; Fărcaș, A.C.; Leopold, L.F.; Diaconeasa, Z.; Coman, C.; Socaci, S.A. Nano-Encapsulation of Citrus Essential Oils: Methods and Applications of Interest for the Food Sector. Polymers 2022, 14, 4505. [Google Scholar] [CrossRef] [PubMed]
- Geng, L.; Liu, K.; Zhang, H. Lipid oxidation in foods and its implications on proteins. Front. Nutr. 2023, 10, 1192199. [Google Scholar] [CrossRef]
- Masoodi, F.A. Advances in use of natural antioxidants as food additives for improving the oxidative stability of meat Products. Madridge J. Food Technol. 2016, 1, 10–17. [Google Scholar] [CrossRef]
- Ren, J.; Li, Z.; Li, X.; Yang, L.; Bu, Z.; Wu, Y.; Li, Y.; Zhang, S.; Meng, X. Exploring the Mechanisms of the Antioxidants BHA, BHT, and TBHQ in Hepatotoxicity, Nephrotoxicity, and Neurotoxicity from the Perspective of Network Toxicology. Foods 2025, 14, 1095. [Google Scholar] [CrossRef]
- Sharopov, F.; Wink, M. Radical Scavenging and Antioxidant Activities of Essential Oil Components–An Experimental and Computational Investigation. Nat. Prod. Commun. 2015, 10, 153–156. [Google Scholar] [CrossRef]
- Cao, G.; Alessio, H.M.; Cutler, R.G. Oxygen-radical absorbance capacity assay for antioxidants. Free Radic. Biol. Med. 1993, 14, 303–311. [Google Scholar] [CrossRef]
- Gülçin, I. Fe3+–Fe2+ Transformation Method: An Important Antioxidant Assay. Methods Mol. Biol. 2015, 1208, 233–246. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Gonçalves, S.; Peixoto, F.; Silveria TFFda Barros, L.; Gaivão, I. Antigenotoxic and cosmetic potential of elderberry (Sambucus nigra) extract: Protection against oxidative DNA damage. Food Funct. 2024, 15, 10795–10810. [Google Scholar] [CrossRef]
- Verheyen, D.; Govaert, M.; Seow, T.K.; Ruvina, J.; Mukherjee, V.; Baka, M.; Skåra, T.; Van Impe, J.F. The Complex Effect of Food Matrix Fat Content on Thermal Inactivation of Listeria monocytogenes: Case Study in Emulsion and Gelled Emulsion Model Systems. Front. Microbiol. 2020, 10, 3149. Available online: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2019.03149/full (accessed on 5 June 2025). [CrossRef]
- Theofanous, A.; Deligiannakis, Y.; Louloudi, M. Hybrids of Gallic Acid@SiO2 and {Hyaluronic-Acid Counterpats} @SiO2 against Hydroxyl (●OH) Radicals Studied by EPR: A Comparative Study vs Their Antioxidant Hydrogen Atom Transfer Activity. Langmuir 2024, 40, 26412–26424. [Google Scholar] [CrossRef]
- Aeschbach, R.; Löliger, J.; Scott, B.C.; Murcia, A.; Butler, J.; Halliwell, B.; Aruoma, O.I. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem. Toxicol. 1994, 32, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Mukurumbira, A.R.; Shellie, R.A.; Keast, R.; Palombo, E.A.; Jadhav, S.R. Encapsulation of essential oils and their application in antimicrobial active packaging. Food Control 2022, 136, 108883. [Google Scholar] [CrossRef]
- Lü, J.M.; Lin, P.H.; Yao, Q.; Chen, C. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell Mol. Med. 2010, 14, 840–860. [Google Scholar] [CrossRef] [PubMed]
- Bibi Sadeer, N.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The Versatility of Antioxidant Assays in Food Science and Safety—Chemistry, Applications, Strengths, and Limitations. Antioxidants 2020, 9, 709. [Google Scholar] [CrossRef]
- Huang, L.; Huang, X.-H.; Yang, X.; Hu, J.-Q.; Zhu, Y.-Z.; Yan, P.-Y.; Xie, Y. Novel Nano-Drug Delivery System for Natural Products and Their Application. Pharmacol. Res. 2024, 201, 107100. [Google Scholar] [CrossRef]
- Carvalho, A.C.F.; Ghosh, S.; Hoffmann, T.G.; Prudêncio, E.S.; de Souza, C.K.; Roy, S. Valuing agro-industrial waste in the development of sustainable food packaging based on the system of a circular bioeconomy: A review. Clean. Waste Syst. 2025, 11, 100275. [Google Scholar] [CrossRef]
- Ali, E.; Mohammed, D.; Abd Elgawad, F.E.; Orabi, M.; Gupta, R.; Srivastav, P. Valorization of food processing waste byproducts for essential oil production and their application in food system. Waste Manag. Bull. 2025, 3, 100200. [Google Scholar] [CrossRef]
- Mihai, M.-M.; Bălăceanu-Gurău, B.; Holban, A.M.; Ilie, C.-I.; Sima, R.M.; Gurău, C.-D.; Dițu, L.-M. Promising Antimicrobial Activities of Essential Oils and Probiotic Strains on Chronic Wound Bacteria. Biomedicines 2025, 13, 962. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef] [PubMed]
- Agreles, M.A.A.; Cavalcanti, I.D.L.; Cavalcanti, I.M.F. The Role of Essential Oils in the Inhibition of Efflux Pumps and Reversion of Bacterial Resistance to Antimicrobials. Curr. Microbiol. 2021, 78, 3609–3619. [Google Scholar] [CrossRef]
- Limaverde, P.W.; Campina, F.F.; da Cunha, F.A.B.; Crispim, F.D.; Figueredo, F.G.; Lima, L.F.; Oliveira-Tintino, C.D.D.M.; de Matos, Y.M.; Morais-Braga, M.F.B.; Menezes, I.R.; et al. Inhibition of the TetK efflux-pump by the essential oil of Chenopodium ambrosioides L. and α-terpinene against Staphylococcus aureus IS-58. Food Chem. Toxicol. 2017, 109, 957–961. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Yiap, B.C.; Ping, H.C.; Lim, S.H.E. Essential Oils, A New Horizon in Combating Bacterial Antibiotic Resistance. Open Microbiol. J. 2014, 8, 6–14. [Google Scholar] [CrossRef]
- Hulankova, R. Methods for Determination of Antimicrobial Activity of Essential Oils In Vitro—A Review. Plants. 2024, 13, 2784. [Google Scholar] [CrossRef]
- Hossain, T.J. Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. Eur. J. Microbiol. Immunol. 2024, 14, 97–115. [Google Scholar] [CrossRef]
- Sheykhian, M.; Mirnejad, R.; Zarei, S.M.; Kheirandish, M.; Amrollahi-Sharifabadi, M.; Abdelaziz, S.; Salimi-Sabour, E.; Gonçalves, S.; Mosaffa-Jahromi, M. Investigation of the additive antimicrobial effects of clove and marjoram extracts combination against common oral pathogens. Biomed. Biopharm. Res. 2025, 22, 1–17. [Google Scholar]
- Vitali Čepo, D.; Radić, K.; Turčić, P.; Anić, D.; Komar, B.; Šalov, M. Food (Matrix) Effects on Bioaccessibility and Intestinal Permeability of Major Olive Antioxidants. Foods 2020, 9, 1831. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Tang, S.; Zhong, Y. Extraction, structural and functional properties of lipophilic protein isolated from peanut defatted powder. LWT 2024, 201, 116235. [Google Scholar] [CrossRef]
- Milanović, V.; Mariz, M.; Cardinali, F.; Garofalo, C.; Radan, M.; Bilušić, T.; Aquilanti, L.; Cunha, L.M.; Osimani, A. Evaluation of natural compounds against Listeria innocua: Translating in vitro success to processed meat models. Food Biosci. 2024, 60, 104377. [Google Scholar] [CrossRef]
- Mishra, A.P.; Devkota, H.P.; Nigam, M.; Adetunji, C.O.; Srivastava, N.; Saklani, S.; Shukla, I.; Azmi, L.; Shariati, M.A.; Coutinho, H.D.M.; et al. Combination of Essential Oils in Dairy Products: A Review of Their Functions and Potential Benefits. LWT-Food Sci. Technol. 2020, 133, 110116. [Google Scholar] [CrossRef]
- Lages, L.Z.; Radünz, M.; Gonçalves, B.T.; da Rosa, R.S.; Fouchy, M.V.; Gularte, M.A.; Mendonça, C.R.B.; Gandra, E.A. Microbiological and sensory evaluation of meat sausage using thyme (Thymus vulgaris, L.) essential oil and powdered beet juice (Beta vulgaris L., Early Wonder cultivar). LWT 2021, 148, 111794. [Google Scholar] [CrossRef]
- Pierozan, M.B.; de Oliveira Filho, J.G.; Cappato, L.P.; Costa, A.C.; Egea, M.B. Essential Oils Against Spoilage in Fish and Seafood: Impact on Product Quality and Future Challenges. Foods 2024, 13, 3903. [Google Scholar] [CrossRef]
- Salanță, L.C.; Cropotova, J. An Update on Effectiveness and Practicability of Plant Essential Oils in the Food Industry. Plants 2022, 11, 2488. [Google Scholar] [CrossRef]
- Antunes, M.; Cavaco, A. The use of essential oils for postharvest decay control. A review. Flavour. Fragr. J. 2010, 25, 351–366. [Google Scholar] [CrossRef]
- Belletti, N.; Lanciotti, R.; Patrignani, F.; Gardini, F. Antimicrobial Efficacy of Citron Essential Oil on Spoilage and Pathogenic Microorganisms in Fruit-Based Salads. J. Food Sci. 2008, 73, M331–M338. [Google Scholar] [CrossRef]
- Soni, M.; Yadav, A.; Maurya, A.; Das, S.; Dubey, N.K.; Dwivedy, A.K. Advances in Designing Essential Oil Nanoformulations: An Integrative Approach to Mathematical Modeling with Potential Application in Food Preservation. Foods 2023, 12, 4017. [Google Scholar] [CrossRef]
- Rezagholizade-shirvan, A.; Soltani, M.; Shokri, S.; Radfar, R.; Arab, M.; Shamloo, E. Bioactive compound encapsulation: Characteristics, applications in food systems, and implications for human health. Food Chem. X 2024, 24, 101953. [Google Scholar] [CrossRef]
- Bunse, M.; Daniels, R.; Gründemann, C.; Heilmann, J.; Kammerer, D.R.; Keusgen, M.; Lindequist, U.; Melzig, M.F.; Morlock, G.E.; Schulz, H.; et al. Essential Oils as Multicomponent Mixtures and Their Potential for Human Health and Well-Being. Front. Pharmacol. 2022, 13, 956541. [Google Scholar] [CrossRef]
- Yammine, J.; Chihib, N.E.; Gharsallaoui, A.; Dumas, E.; Ismail, A.; Karam, L. Essential oils and their active components applied as: Free, encapsulated and in hurdle technology to fight microbial contaminations. A review. Heliyon 2022, 8, e12472. [Google Scholar] [CrossRef] [PubMed]
- Sobhy, M.; Abdelkarim, E.A.; Hussein, M.A.; Aziz, T.; Al-Asmari, F.; Alabbosh, K.F.; Cui, H.; Lin, L. Essential oils as antibacterials against multidrug-resistant foodborne pathogens: Mechanisms, recent advances, and legal considerations. Food Biosci. 2025, 64, 105937. [Google Scholar] [CrossRef]
- Hanková, K.; Lupoměská, P.; Nový, P.; Všetečka, D.; Klouček, P.; Kouřimská, L.; Hlebová, M.; Božik, M. Effect of Conventional Preservatives and Essential Oils on the Survival and Growth of Escherichia coli in Vegetable Sauces: A Comparative Study. Foods 2023, 12, 2832. [Google Scholar] [CrossRef]
- Laranjo, M.; Fernández-Léon, A.M.; Potes, M.E.; Agulheiro-Santos, A.C.; Elias, M. Use of essential oils in food preservation. In Antimicrobial Research: Novel Bioknowledge and Educational Programs; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2017. [Google Scholar]
- Lisboa, H.M.; Pasquali, M.B.; dos Anjos, A.I.; Sarinho, A.M.; de Melo, E.D.; Andrade, R.; Batista, L.; Lima, J.; Diniz, Y.; Barros, A. Innovative and Sustainable Food Preservation Techniques: Enhancing Food Quality, Safety, and Environmental Sustainability. Sustainability 2024, 16, 8223. [Google Scholar] [CrossRef]
- Gonçalves, S.; Gaivão, I. Natural Ingredients Common in the Trás-os-Montes Region (Portugal) for Use in the Cosmetic Industry: A Review about Chemical Composition and Antigenotoxic Properties. Molecules 2021, 26, 5255. [Google Scholar] [CrossRef] [PubMed]
- Seukep, A.J.; Noumedem, J.A.K.; Djeussi, D.E.; Kuete, V. 9-Genotoxicity and Teratogenicity of African Medicinal Plants. In Toxicological Survey of African Medicinal Plants; Kuete, V., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 235–275. Available online: https://www.sciencedirect.com/science/article/pii/B9780128000182000091 (accessed on 1 August 2025).
- Izquierdo-Vega, J.A.; Morales-González, J.A.; Sánchez-Gutiérrez, M.; Betanzos-Cabrera, G.; Sosa-Delgado, S.M.; Sumaya-Martínez, M.T.; Morales-González, Á.; Paniagua-Pérez, R.; Madrigal-Bujaidar, E.; Madrigal-Santillán, E. Evidence of Some Natural Products with Antigenotoxic Effects. Part 1: Fruits and Polysaccharides. Nutrients 2017, 9, 102. [Google Scholar] [CrossRef]
- Mirza Alizadeh, A.; Mohammadi, M.; Hashempour-baltork, F.; Hosseini, H.; Shahidi, F. Process-induced toxicants in food: An overview on structures, formation pathways, sensory properties, safety and health implications. Food Prod. Process Nutr. 2025, 7, 1–45. [Google Scholar] [CrossRef]
- Awuchi, C.G.; Ondari, E.N.; Ogbonna, C.U.; Upadhyay, A.K.; Baran, K.; Okpala, C.O.R.; Korzeniowska, M.; Guiné, R.P. Mycotoxins Affecting Animals, Foods, Humans, and Plants: Types, Occurrence, Toxicities, Action Mechanisms, Prevention, and Detoxification Strategies—A Revisit. Foods 2021, 10, 1279. [Google Scholar] [CrossRef]
- Ráduly, Z.; Szabó, L.; Madar, A.; Pócsi, I.; Csernoch, L. Toxicological and Medical Aspects of Aspergillus-Derived Mycotoxins Entering the Feed and Food Chain. Front. Microbiol. 2019, 10, 2908. [Google Scholar] [CrossRef]
- Gonçalves, S.; Monteiro, M.; Gaivão, I.; Matos, R.S. Preliminary Insights into the Antigenotoxic Potential of Lemon Essential Oil and Olive Oil in Human Peripheral Blood Mononuclear Cells. Plants 2024, 13, 1623. [Google Scholar] [CrossRef]
- Pezantes-Orellana, C.; German Bermúdez, F.; Matías De la Cruz, C.; Montalvo, J.L.; Orellana-Manzano, A. Essential oils: A systematic review on revolutionizing health, nutrition, and omics for optimal well-being. Front. Med. 2024, 11, 1337785. [Google Scholar] [CrossRef] [PubMed]
- Blowman, K.; Magalhães, M.; Lemos, M.F.L.; Cabral, C.; Pires, I.M. Anticancer Properties of Essential Oils and Other Natural Products. Evid.-Based Complement. Altern. Med. ECAM 2018, 2018, 3149362. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Grewal, K.; Jandrotia, R.; Batish, D.R.; Singh, H.P.; Kohli, R.K. Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomed. Pharmacother. 2022, 146, 112514. [Google Scholar] [CrossRef]
- Silva, M.V.; de Lima Ada, C.A.; Silva, M.G.; Caetano, V.F.; de Andrade, M.F.; da Silva, R.G.C.; de Moraes, L.E.P.T.; de Lima Silva, I.D.; Vinhas, G.M. Clove essential oil and eugenol: A review of their significance and uses. Food Biosci. 2024, 62, 105112. [Google Scholar] [CrossRef]
- Tavvabi-Kashani, N.; Hasanpour, M.; Baradaran Rahimi, V.; Vahdati-Mashhadian, N.; Askari, V.R. Pharmacodynamic, pharmacokinetic, toxicity, and recent advances in Eugenol’s potential benefits against natural and chemical noxious agents: A mechanistic review. Toxicon 2024, 238, 107607. [Google Scholar] [CrossRef]
- Aprotosoaie, A.C.; Luca, V.S.; Trifan, A.; Miron, A. Chapter 7-Antigenotoxic Potential of Some Dietary Non-phenolic Phytochemicals. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 223–297. Available online: https://www.sciencedirect.com/science/article/pii/B9780444641816000073 (accessed on 5 June 2025).
- Sotto, A.; Mazzanti, G.; Carbone, F.; Hrelia, P.; Maffei, F. Genotoxicity of Lavender Oil, Linalyl Acetate, and Linalool on Human Lymphocytes In Vitro. Environ. Mol. Mutagen. 2011, 52, 69–71. [Google Scholar] [CrossRef]
- (PDF) Chemoprotective Effect of Thymol Against Genotoxicity Induced by Bleomycin in Human Lymphocytes. ResearchGate. Available online: https://www.researchgate.net/publication/310474288_Chemoprotective_effect_of_thymol_against_genotoxicity_induced_by_bleomycin_in_human_lymphocytes (accessed on 5 June 2025).
- Gagné, F. Chapter 10-Genotoxicity. In Biochemical Ecotoxicology; Gagné, F., Ed.; Academic Press: Oxford, UK, 2014; pp. 171–196. Available online: https://www.sciencedirect.com/science/article/pii/B9780124116047000106 (accessed on 5 June 2025).
- Guy, R.C. Ames test. In Encyclopedia of Toxicology, 4th ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2024; pp. 377–379. Available online: https://www.sciencedirect.com/science/article/pii/B9780128243152011015 (accessed on 5 June 2025).
- Villas-Boas, G.; Lemos, J.; Oliveira, M.; Santos, R.; Silveira, A.; Bacha, F.; Ito, C.N.A.; Cornelius, E.B.; Lima, F.B.; Rodrigues, A.M.S.; et al. Preclinical safety evaluation of the aqueous extract from Mangifera indica Linn. (Anacardiaceae): Genotoxic, clastogenic and cytotoxic assessment in experimental models of genotoxicity in rats to predict potential human risks. J. Ethnopharmacol. 2019, 243, 112086. [Google Scholar] [CrossRef]
- Llana-Ruiz-Cabello, M.; Puerto, M.; Maisanaba, S.; Guzmán-Guillén, R.; Pichardo, S.; Cameán, A.M. Use of micronucleus and comet assay to evaluate evaluate the genotoxicity of oregano essential oil (Origanum vulgare L. Virens) in rats orally exposed for 90 days. J. Toxicol. Environ. Health A 2018, 81, 525–533. [Google Scholar] [CrossRef]
- Maisanaba, S.; Llana Ruiz-Cabello, M.; Puerto, M.; Guzmán-Guillén, R.; Pichardo, S.; Cameán, A. Combined in vivo genotoxicity study of oregano essential oil by the micronucleus and alkaline comet assays in rats. Toxicol. Lett. 2016, 258, S166. [Google Scholar] [CrossRef]
- Leyva-López, N.; Gutiérrez-Grijalva, E.P.; Vazquez-Olivo, G.; Heredia, J.B. Essential Oils of Oregano: Biological Activity beyond Their Antimicrobial Properties. Mol. J. Synth. Chem. Nat. Prod. Chem. 2017, 22, 989. [Google Scholar] [CrossRef]
- Gonçalves, S.; Castro, J.; Almeida, A.; Monteiro, M.; Rodrigues, T.; Fernandes, R.; Matos, R.S. A systematic review of the therapeutic properties of lemon essential oil. Adv. Integr. Med. 2024, 12, 100433. Available online: https://www.sciencedirect.com/science/article/pii/S2212958824001356 (accessed on 5 June 2025). [CrossRef]
- Garofalo, M.; Payros, D.; Oswald, E.; Nougayrède, J.-P.; Oswald, I.P. The Foodborne Contaminant Deoxynivalenol Exacerbates DNA Damage Caused by a Broad Spectrum of Genotoxic Agents. Sci. Total Environ. 2022, 820, 153280. [Google Scholar] [CrossRef] [PubMed]
- Mićović, T.; Topalović, D.; Živković, L.; Spremo-Potparević, B.; Jakovljević, V.; Matić, S.; Popović, S.; Baskić, D.; Stešević, D.; Samardžić, S.; et al. Antioxidant, Antigenotoxic and Cytotoxic Activity of Essential Oils and Methanol Extracts of Hyssopus officinalis L. Subsp. aristatus (Godr.) Nyman (Lamiaceae). Plants 2021, 10, 711. [Google Scholar] [PubMed]
- Nehme, R.; Andrés, S.; Pereira, R.B.; Ben Jemaa, M.; Bouhallab, S.; Ceciliani, F.; López, S.; Rahali, F.Z.; Ksouri, R.; Pereira, D.M.; et al. Essential Oils in Livestock: From Health to Food Quality. Antioxidants 2021, 10, 330. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhao, D.; Ge, S.; Bian, P.; Xue, H.; Lang, Y. Alginate-based edible coating with oregano essential oil/β-cyclodextrin inclusion complex for chicken breast preservation. Int. J. Biol. Macromol. 2023, 251, 126126. [Google Scholar] [CrossRef]
- Vassiliou, E.; Awoleye, O.; Davis, A.; Mishra, S. Anti-Inflammatory and Antimicrobial Properties of Thyme Oil and Its Main Constituents. Int. J. Mol. Sci. 2023, 24, 6936. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Przychodna, M.; Sopata, S.; Bodalska, A.; Fecka, I. Thymol and Thyme Essential Oil—New Insights into Selected Therapeutic Applications. Molecules 2020, 25, 4125. [Google Scholar] [CrossRef]
- Aydin, S.; Başaran, A.A.; Başaran, N. The effects of thyme volatiles on the induction of DNA damage by the heterocyclic amine IQ and mitomycin C. Mutat. Res. 2005, 581, 43–53. [Google Scholar] [CrossRef]
- Mak, K.K.; Kamal, M.; Ayuba, S.; Sakirolla, R.; Kang, Y.B.; Mohandas, K.; Balijepalli, M.; Ahmad, S.; Pichika, M. A comprehensive review on eugenol’s antimicrobial properties and industry applications: A transformation from ethnomedicine to industry. Pharmacogn. Rev. 2019, 13, 1. [Google Scholar]
- Liñán-Atero, R.; Aghababaei, F.; García, S.R.; Hasiri, Z.; Ziogkas, D.; Moreno, A.; Hadidi, M. Clove Essential Oil: Chemical Profile, Biological Activities, Encapsulation Strategies, and Food Applications. Antioxidants 2024, 13, 488. [Google Scholar] [CrossRef]
- Frangiamone, M.; Lázaro, Á.; Cimbalo, A.; Font, G.; Manyes, L. In vitro and in vivo assessment of AFB1 and OTA toxic effects and the beneficial role of bioactive compounds. A systematic review. Food Chem. 2024, 447, 138909. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Jacobsen, C.; Sørensen, A.D.M. The effect of rosemary (Rosmarinus officinalis L.) extract on the oxidative stability of lipids in cow and soy milk enriched with fish oil. Food Chem. 2018, 263, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Zegura, B.; Dobnik, D.; Niderl, M.; Filipic, M. Antioxidant and antigenotoxic effects of rosemary (Rosmarinus officinalis L.) extracts in Salmonella typhimurium TA98 and HepG2 cells. Environ. Toxicol. Pharmacol. 2011, 32, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Johansen, B.; Duval, R.E.; Sergere, J.C. Antimicrobial Spectrum of TitroleaneTM: A New Potent Anti-Infective Agent. Antibiotics 2020, 9, 391. [Google Scholar] [CrossRef]
- Rodríguez, M.; Núñez Estévez, B.; Soria López, A.; García Oliveira, P.; Prieto, M. Essential Oils and Their Application on Active Packaging Systems: A Review. Resources 2021, 10, 7. [Google Scholar] [CrossRef]
- Bagul, G.; Gvhad omkar Shaikh, S. A Review on Lemongrass Oil Act As a Antifungal And Anti-Bacterial Agent. Int. J. Pharm. Sci. 2024, 2, 868. [Google Scholar]
- Balakrishnan, B.; Paramasivam, S.; Arulkumar, A. Evaluation of the lemongrass plant (Cymbopogon citratus) extracted in different solvents for antioxidant and antibacterial activity against human pathogens. Asian Pac. J. Trop. Dis. 2014, 4, S134–S139. [Google Scholar] [CrossRef]
- Diniz do Nascimento, L.; Moraes, A.A.B.; de Costa, K.S.; da Pereira Galúcio, J.M.; Taube, P.S.; Costa, C.M.L.; Neves Cruz, J.; de Aguiar Andrade, E.H.; Guerreiro de Faria, L.J. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules 2020, 10, 988. [Google Scholar] [CrossRef]
- Stanojević, J.; Berić, T.; Opačić, B.; Vuković-Gačić, B.; Simić, D.; Knežević-Vukčević, J. The effect of essential oil of basil (Ocimum basilicum L.) on UV-induced mutagenesis in Escherichia coli and Saccharomyces cerevisiae. Arch. Biol. Sci. 2008, 60, 93–102. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, K.P.; Zhang, X.; Pan, D.D.; Sun, Y.Y.; Cao, J.X. Antibacterial Activity and Mechanism of Action of Black Pepper Essential Oil on Meat-Borne Escherichia coli. Front. Microbiol. 2017, 7, 2094. [Google Scholar] [CrossRef]
- Gupta, A.; Rajpurohit, D. Antioxidant and Antimicrobial Activity of Nutmeg (Myristica fragrans). In Nuts and Seeds in Health and Disease Prevention; Elsevier Inc.: Amsterdam, The Netherlands, 2011; pp. 831–839. [Google Scholar]
- Tejada-Muñoz, S.; Cortez, D.; Rascón, J.; Chavez, S.G.; Caetano, A.C.; Díaz-Manchay, R.J.; Sandoval-Bances, J.; Huyhua-Gutierrez, S.; Gonzales, L.; Chenet, S.M.; et al. Antimicrobial Activity of Origanum vulgare Essential Oil against Staphylococcus aureus and Escherichia coli. Pharmaceuticals. 2024, 17, 1430. [Google Scholar] [CrossRef]
- de Torre, M.P.; Vizmanos, J.L.; Cavero, R.Y.; Calvo, M.I. Improvement of antioxidant activity of oregano (Origanum vulgare L.) with an oral pharmaceutical form. Biomed. Pharmacother. 2020, 129, 110424. [Google Scholar] [CrossRef]
- Al-Hijazeen, M.; Lee, E.J.; Mendonca, A.; Ahn, D.U. Effect of Oregano Essential Oil (Origanum vulgare subsp. hirtum) on the Storage Stability and Quality Parameters of Ground Chicken Breast Meat. Antioxidants 2016, 5, 18. Available online: https://pubmed.ncbi.nlm.nih.gov/27338486/ (accessed on 5 June 2025). [CrossRef]
- Walentowska, J.; Foksowicz-Flaczyk, J. Thyme essential oil for antimicrobial protection of natural textiles. Int. Biodeterior. Biodegrad. 2013, 84, 407–411. [Google Scholar] [CrossRef]
- Ricardo-Rodrigues, S.; Rouxinol, M.I.; Agulheiro-Santos, A.C.; Potes, M.E.; Laranjo, M.; Elias, M. The Antioxidant and Antibacterial Potential of Thyme and Clove Essential Oils for Meat Preservation—An Overview. Appl. Biosci. 2024, 3, 87–101. [Google Scholar] [CrossRef]
- Glavinić, U.; Rajković, M.; Ristanić, M.; Stevanović, J.; Vejnović, B.; Djelić, N.; Stanimirović, Z. Genotoxic Potential of Thymol on Honey Bee DNA in the Comet Assay. Insects 2023, 14, 451. [Google Scholar] [CrossRef]
- Akermi, S.; Smaoui, S.; Fourati, M.; Elhadef, K.; Chaari, M.; Chakchouk Mtibaa, A.; Mellouli, L. In-Depth Study of Thymus vulgaris Essential Oil: Towards Understanding the Antibacterial Target Mechanism and Toxicological and Pharmacological Aspects. BioMed Res. Int. 2022, 2022, 3368883. [Google Scholar] [CrossRef]
- Kuete, V. Chapter 28-Thymus vulgaris. In Medicinal Spices and Vegetables from Africa; Kuete, V., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 599–609. Available online: https://www.sciencedirect.com/science/article/pii/B9780128092866000285 (accessed on 5 June 2025).
- Nuñez, L.; Aquino, M.D. Microbicide activity of clove essential oil (Eugenia caryophyllata). Braz. J. Microbiol. 2012, 43, 1255–1260. [Google Scholar] [CrossRef]
- Park, H.J. Mutagenicity of the essential oils in Ames Test. Korean J. Pharmacogn. 2002, 33, 372–375. [Google Scholar]
- Karunamay, S.; Badhe, S.; Shukla, V.; Singh, N.; Lali, K.; Patil, S. Application of Clove Essential Oil in Food Industry-A Review. J. Food. Res. Technol. 2022, 7, 23–25. [Google Scholar]
- Nabavi, S.F.; Lorenzo, A.D.; Izadi, M.; Sobarzo-Sánchez, E.; Daglia, M.; Nabavi, S.M. Antibacterial Effects of Cinnamon: From Farm to Food, Cosmetic and Pharmaceutical Industries. Nutrients 2015, 7, 7729. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Jiang, X.; Tian, Y.; Yan, S.; Liu, J.; Xie, J.; Zhang, F.; Yao, C.; Hao, E. Therapeutic Potential of Cinnamon Oil: Chemical Composition, Pharmacological Actions, and Applications. Pharmaceuticals 2024, 17, 1700. [Google Scholar] [CrossRef]
- Singh, S.K.; Mukerjee, A.; Gupta, P.; Tripathi, A. Evaluation of Antigenotoxic Effect of Cinnamon Oil and Usnic Acid Blended Nanoemulsion on Swiss Albino Mice. BioNanoScience 2022, 12, 370–379. [Google Scholar] [CrossRef]
- Llana-Ruiz-Cabello, M.; Pichardo, S.; Maisanaba, S.; Puerto, M.; Prieto, A.I.; Gutiérrez-Praena, D.; Jos, A.; Camean, A.M. In vitro toxicological evaluation of essential oils and their main compounds used in active food packaging: A review. Food Chem. Toxicol. 2015, 81, 9–27. [Google Scholar] [CrossRef]
- Valková, V.; Ďúranová, H.; Galovičová, L.; Vukovic, N.L.; Vukic, M.; Kowalczewski, P.Ł.; Kačániová, M. Application of Three Types of Cinnamon Essential Oils as Natural Antifungal Preservatives in Wheat Bread. Appl. Sci. 2022, 12, 10888. [Google Scholar] [CrossRef]
- Kinki, A.B.; Atlaw, T.; Haile, T.; Meiso, B.; Belay, D.; Hagos, L.; Hailemichael, F.; Abid, J.; Elawady, A.; Firdous, N. Preservation of minced raw meat using rosemary (Rosmarinus officinalis) and basil (Ocimum basilicum) essential oils. Cogent Food Agric. 2024, 10, 2306016. [Google Scholar] [CrossRef]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef]
- Carson, C.F.; Hammer, K.A.; Riley, T.V. Melaleuca alternifolia (Tea Tree) Oil: A Review of Antimicrobial and Other Medicinal Properties. Clin. Microbiol. Rev. 2006, 19, 50–62. [Google Scholar] [CrossRef]
- Yasin, M.; Younis, A.; Javed, T.; Akram, A.; Ahsan, M.; Shabbir, R.; Ali, M.M.; Tahir, A.; El-Ballat, E.M.; Sheteiwy, M.S.; et al. River Tea Tree Oil: Composition, Antimicrobial and Antioxidant Activities, and Potential Applications in Agriculture. Plants 2021, 10, 2105. [Google Scholar] [CrossRef] [PubMed]
- Pereira, T.S.; de Sant, J.R.; Silva, E.L.; Pinheiro, A.L.; de Castro-Prado, M.A.A. In vitro genotoxicity of Melaleuca alternifolia essential oil in human lymphocytes. J. Ethnopharmacol. 2014, 151, 852–857. Available online: https://pubmed.ncbi.nlm.nih.gov/24315850/ (accessed on 5 June 2025). [CrossRef] [PubMed]
- Song, X.; Wang, L.; Liu, L.; Li, J.; Wu, X. Impact of tea tree essential oil and citric acid/choline chloride on physical, structural and antibacterial properties of chitosan-based films. Food Control. 2022, 141, 109186. [Google Scholar] [CrossRef]
- Faheem, F.; Liu, Z.W.; Rabail, R.; Haq, I.-U.; Gul, M.; Bryła, M.; Roszko, M.; Kieliszek, M.; Din, A.; Aadil, R.M. Uncovering the Industrial Potentials of Lemongrass Essential Oil as a Food Preservative: A Review. Antioxidants 2022, 11, 720. [Google Scholar] [CrossRef] [PubMed]
- Mukarram, M.; Choudhary, S.; Khan, M.A.; Poltronieri, P.; Khan, M.M.A.; Ali, J.; Kurjak, D.; Shahid, M. Lemongrass Essential Oil Components with Antimicrobial and Anticancer Activities. Antioxidants 2022, 11, 20. [Google Scholar] [CrossRef]
- Guimarães, L.; Cardoso, M.; Sousa, P.; Andrade, J.; Vieira, S. Antioxidant and fungitoxic activities of the lemongrass essential oil and citral. Rev. Cienc. Agron. 2011, 42, 464–472. [Google Scholar] [CrossRef]
- Shafique, M.; Khan, S.J.; Khan, N.H. Study of antioxidant and antimicrobial activity of sweet basil (Ocimum basilicum) essential oil. Pharmacologyonline 2011, 1, 105–111. [Google Scholar]
- Ru, Y.; Zhu, Y.; Wang, X.; Dong, Q.; Ma, Y. Edible antimicrobial yeast-based coating with basil essential oil for enhanced food safety. Innov. Food Sci. Emerg. Technol. 2024, 93, 103612. [Google Scholar] [CrossRef]
- Fernández-Bedmar, Z.; Alonso-Moraga, A. In vivo and in vitro evaluation for nutraceutical purposes of capsaicin, capsanthin, lutein and four pepper varieties. Food Chem. Toxicol. 2016, 98, 89–99. [Google Scholar] [CrossRef]
- Tang, H.; Chen, W.; Dou, Z.M.; Chen, R.; Hu, Y.; Chen, W.; Chen, H. Antimicrobial effect of black pepper petroleum ether extract for the morphology of Listeria monocytogenes and Salmonella typhimurium. J. Food Sci. Technol. 2017, 54, 2067–2076. [Google Scholar] [CrossRef]
- Šojić, B.; Tomovic, V.; Kocić-Tanackov, S.; Škaljac, S.; Ikonić, P.; Džinić, N.; Živković, N.; Jokanović, M.; Tasić, T.; Kravić, S. Effect of nutmeg (Myristica fragrans) essential oil on the oxidative and microbial stability of cooked sausage during refrigerated storage. Food Control. 2015, 54, 282–286. [Google Scholar] [CrossRef]
- Ashokkumar, K.; Simal-Gandara, J.; Murugan, M.; Dhanya, M.K.; Pandian, A. Nutmeg (Myristica fragrans Houtt.) essential oil: A review on its composition, biological, and pharmacological activities. Phytother. Res. 2022, 36, 2839–2851. [Google Scholar] [CrossRef] [PubMed]
- Reis, D.R.; Ambrosi, A.; Luccio, M.D. Encapsulated essential oils: A perspective in food preservation. Future Foods 2022, 5, 100126. [Google Scholar] [CrossRef]
- Jackson-Davis, A.; White, S.; Kassama, L.S.; Coleman, S.; Shaw, A.; Mendonca, A.; Cooper, B.; Thomas-Popo, E.; Gordon, K.; London, L. A Review of Regulatory Standards and Advances in Essential Oils as Antimicrobials in Foods. J. Food Prot. 2023, 86, 100025. [Google Scholar] [CrossRef]
- Sharma, S.; Mulrey, L.; Byrne, M.; Jaiswal, A.K.; Jaiswal, S. Encapsulation of Essential Oils in Nanocarriers for Active Food Packaging. Foods 2022, 11, 2337. [Google Scholar] [CrossRef]
- Mahanta, B.; Bora, P.; Kemprai, P.; Borah, G.; Lal, D.; Haldar, S. Thermolabile Essential Oils, Aromas and Flavours: Degradation Pathways, Effect of Thermal Processing and Alteration of Sensory Quality. Food Res. Int. 2021, 145, 110404. [Google Scholar] [CrossRef]
- Burkey, J.L.; Sauer, J.M.; McQueen, C.A.; Glenn Sipes, I. Cytotoxicity and genotoxicity of methyleugenol and related congeners—A mechanism of activation for methyleugenol. Mutat. Res. Mol. Mech. Mutagen. 2000, 453, 25–33. [Google Scholar] [CrossRef]
- Jin, M.; Kijima, A.; Suzuki, Y.; Hibi, D.; Inoue, T.; Ishii, Y.; Nohmi, T.; Nishikawa, A.; Ogawa, K.; Umemura, T. Comprehensive toxicity study of safrole using a medium-term animal model with gpt delta rats. Toxicology 2011, 290, 312–321. [Google Scholar] [CrossRef]
- Aissa, A.F.; Bianchi, M.L.P.; Ribeiro, J.C.; Hernandes, L.C.; de Faria, A.F.; Mercadante, A.Z.; Antunes, L.M.G. Comparative study of β-carotene and microencapsulated β-carotene: Evaluation of their genotoxic and antigenotoxic effects. Food Chem. Toxicol. 2012, 50, 1418–1424. [Google Scholar] [CrossRef]
- Bautista-Hernández, I.; Gómez-García, R.; Martínez-Ávila, G.C.G.; Medina-Herrera, N.; González-Hernández, M.D. Unlocking Essential Oils’ Potential as Sustainable Food Additives: Current State and Future Perspectives for Industrial Applications. Sustainability 2025, 17, 2053. [Google Scholar] [CrossRef]
- Gupta, A.K.; Boruah, T.; Ghosh, P.; Ikram, A.; Rana, S.S.; Bachetti, A.; Jha, A.K.; Naik, B.; Kumar, V.; Rustagi, S. Green chemistry revolutionizing sustainability in the food industry: A comprehensive review and call to action. Sustain. Chem. Pharm. 2024, 42, 101774. [Google Scholar] [CrossRef]
- Atarés, L.; Chiralt, A. Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci. Technol. 2016, 48, 51–62. [Google Scholar] [CrossRef]
- Pal, P.; Singh, A.K.; Srivastava, R.K.; Rathore, S.S.; Sahoo, U.K.; Subudhi, S.; Sarangi, P.K.; Prus, P. Circular Bioeconomy in Action: Transforming Food Wastes into Renewable Food Resources. Foods 2024, 13, 3007. [Google Scholar] [CrossRef]
- Grover, S.; Sachdev, P.; Kumar, A.; Kaur, S.; Yadav, R.; Babbar, N. Utilizing citrus peel waste: A review of essential oil extraction, characterization, and food-industry potential. Biomass Convers. Biorefinery 2024, 15, 5043–5064. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nakajima, L. Sustainable development goals for advanced materials provided by industrial wastes and biomass sources. Curr. Opin. Green. Sustain. Chem. 2021, 28, 100439. [Google Scholar] [CrossRef]
Region | Regulatory Body | EOs Approved As | Key Requirements | Examples |
---|---|---|---|---|
United States | FDA (GRAS Program) | Flavorings (GRAS status); not all approved as preservatives | Must comply with GRAS evaluation for specific uses; safety and efficacy data needed for preservative claims | Clove EO, cinnamon EO, lemon EO |
European Union | EFSA/EC | Flavorings (Reg. 1334/2008); Additives (Reg. 1333/2008) | Safety assessments, ADI values, E-number registration for additive use | Thymol, eugenol (as components) |
Codex Alimentarius (Global) | FAO/WHO (Codex GSFA) | Individual EO compounds as additives or flavorings | Non-binding but serves as reference for trade and national regulation | Citral, limonene, cinnamaldehyde |
China | NHC | Limited use as food flavors | Approval required for food additive use; strictly regulated | Star anise EO, orange EO |
Japan | MHLW | Food flavorings under the positive list | Additive use must be authorized; generally, restrictive | Menthol, peppermint EO |
Category | Technique/Method | Purpose | Application |
---|---|---|---|
Chemical Characterization | GC-MS | Identify and quantify EO constituents | Establish EO fingerprint; detect major and minor compounds |
GC-FID | Quantify volatile components | Determine consistency in batches | |
FTIR | Identify functional groups | Confirm composition and check for adulteration | |
NMR | Structural elucidation of EO molecules | Authentication; detect processing artifacts | |
Chiral Chromatography | Analyze enantiomeric composition | Detect changes in stereoisomeric forms affecting activity | |
Biological Validation | DPPH, ABTS, ORAC, FRAP assays | Assess antioxidant activity | Determine bioefficacy in oxidative food environments |
MIC/MBC/MFC, disk diffusion, time-kill assays | Assess antimicrobial potential | Predict preservation efficacy in food systems | |
Contaminant Detection | Residual solvent analysis (e.g., HS-SPME/GC-MS) | Detect solvents used during extraction | Ensure food-grade purity |
Heavy metal and pesticide screening | Identify chemical contaminants | Comply with safety standards for food ingredients | |
Microbial load testing | Check for microbial contamination | Verify hygiene and shelf stability | |
Authenticity Testing | Specific gravity, refractive index, and optical rotation | Physical constants to verify identity | Detect dilution or substitution |
SIRA | Differentiate synthetic vs. natural compounds | Confirm natural origin | |
Stability Assessment | Encapsulation/nanoemulsion validation | Assess enhanced stability methods | Ensure consistency and bioavailability in final food products |
Accelerated stability tests (light, heat, humidity) | Evaluate degradation over time | Define shelf life and optimize packaging | |
Compliance Tools | ISO, USP, Ph. Eur., WHO Monographs | Standardized specifications for EO identity and purity | Support regulatory submissions and industrial quality assurance |
Food Matrix Type | Relevant Challenges | Recommended Methods | Notes |
---|---|---|---|
Lipid-based | Lipid oxidation | ORAC, FRAP, Lipid peroxidation assays | ORAC is suitable for peroxyl radicals commonly found in fats; FRAP is used for reducing power. Lipid peroxidation (e.g., TBARS) is a critical process. |
Sensory impact, EO stability | Encapsulation, Accelerated stability tests | Encapsulation helps control flavor and improve EO shelf life. | |
Aqueous-based | Microbial growth | Disk diffusion, MIC/MBC, ABTS | MIC/MBC are quantitative; ABTS works in both aqueous and lipid systems. |
Radical scavenging | DPPH, ABTS | DPPH is suited for hydrophilic systems; ABTS is more versatile. |
Essential Oil | Major Active Compounds | Antimicrobial Activity | Antioxidant Activity | Antigenotoxic Evidence | Common Food Applications | References |
---|---|---|---|---|---|---|
Oregano | Carvacrol, thymol | Strong (bacteria, fungi) | High | Comet, Micronucleus | Meat, dairy, and vegetables | [126,151,152,153] |
Thyme | Thymol, p-cymene | Strong (Gram+ and Gram−) | High | Comet, Micronucleus | Juices, sauces, plant products | [154,155,156,157,158] |
Clove | Eugenol | Strong | Very high | Ames, Comet | Bakery, meats, herbal drinks | [110,155,159,160,161] |
Cinnamon | Cinnamaldehyde | Moderate to strong | High | Comet | Cereals, confectionery | [162,163,164,165,166] |
Rosemary | Carnosic acid, rosmarinic acid | Moderate | Very high | Ames, Comet | Oils, processed meats | [165,167,168] |
Tea Tree | Terpinen-4-ol, α-terpineol | Moderate | Moderate | Micronucleus, Comet | Packaging films, dressings | [169,170,171,172] |
Lemongrass | Citral, limonene | Moderate | High | Comet | Juices, dairy drinks | [165,173,174,175] |
Basil | Linalool, methyl chavicol | Moderate | Moderate | Ames | Fresh produce coating | [165,176,177] |
Black pepper | Piperine, caryophyllene | Moderate to strong (especially against Gram-negative bacteria) | Moderate | Limited; in vitro data suggest DNA protection, but more studies are needed | Meat, sauces, snacks, spice blends | [178,179] |
Nutmeg | Myristicin, elemicin, eugenol | Moderate (mainly Gram-positive bacteria and fungi) | Moderate | Preliminary in vitro evidence; further investigation required | Baked goods, dairy, desserts, beverages | [180,181] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diogo Gonçalves, S.; Paiva-Cardoso, M.d.N.; Caramelo, A. Green Preservation Strategies: The Role of Essential Oils in Sustainable Food Preservatives. Sustainability 2025, 17, 7326. https://doi.org/10.3390/su17167326
Diogo Gonçalves S, Paiva-Cardoso MdN, Caramelo A. Green Preservation Strategies: The Role of Essential Oils in Sustainable Food Preservatives. Sustainability. 2025; 17(16):7326. https://doi.org/10.3390/su17167326
Chicago/Turabian StyleDiogo Gonçalves, Sara, Maria das Neves Paiva-Cardoso, and Ana Caramelo. 2025. "Green Preservation Strategies: The Role of Essential Oils in Sustainable Food Preservatives" Sustainability 17, no. 16: 7326. https://doi.org/10.3390/su17167326
APA StyleDiogo Gonçalves, S., Paiva-Cardoso, M. d. N., & Caramelo, A. (2025). Green Preservation Strategies: The Role of Essential Oils in Sustainable Food Preservatives. Sustainability, 17(16), 7326. https://doi.org/10.3390/su17167326