Smart Skills for Smart Cities: Developing and Validating an AI Soft Skills Scale in the Framework of the SDGs
Abstract
1. Introduction
- Is the developed AI soft skills scale, along with its identified factors, valid and reliable in the context of smart cities and digitalizing businesses?
2. Materials and Methods
2.1. Design
2.2. Study Group
2.3. Expert Reviews and Content Validity
2.4. Pilot Study
2.5. Data Analysis
3. Results
3.1. Construct Validity of Artificial Intelligence Soft Skills (AISS) Scale
3.2. Item Analysis
3.3. CFA Results
3.4. Reliability Analysis Results
3.5. Convergent Validity Results
3.6. Discriminant Validity Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AGFI | Adjusted Goodness-of-Fit Index |
AI | Artificial Intelligence |
AISS | Artificial Intelligence Soft Skills |
AVE | Average Variance Extracted |
CFA | Confirmatory Factor Analysis |
CR | Composite Reliability |
EFA | Explanatory factor analysis |
GFI | Goodness-of-Fit Index |
HTMT | Heterotrait–Monotrait Ratio |
IFI | Incremental Fit Index |
NFI | Normed Fit Index |
NNFI | Non-Normed Fit Index |
PGFI | Parsimony Goodness-of-Fit Index |
PNFI | Parsimony Normed Fit Index |
RMSEA | Root Mean Square Error of Approximation |
SBSHRC | Spearman–Brown Split-Half Reliability Coefficient |
SDG | Sustainable Development Goals |
SMC | Squared Multiple Correlation |
SRMR | Standardized Root Mean Square Residual |
TLI | Tucker–Lewis Index |
U.S | United States |
References
- Delli, H.J. AI for smart cities: Opportunities and promising directions. Adv. Eng. Innov. 2024, 5, 44–48. [Google Scholar] [CrossRef]
- Alsabt, R.; Adenle, Y.A.; Alshuwaikhat, H.M. Exploring the roles, future impacts and strategic integration of artificial intelligence in the optimization of smart city—From systematic literature review to conceptual model. Sustainability 2024, 16, 3389. [Google Scholar] [CrossRef]
- Mrabet, M.; Sliti, M. Integrating machine learning for the sustainable development of smart cities. Front. Sustain. Cities 2024, 6, 1449404. [Google Scholar] [CrossRef]
- Feroz, K.; Kwak, M. Digital transformation (DT) and artificial intelligence (AI) convergence in organizations. J. Comput. Inf. Syst. 2024, 1–17. [Google Scholar] [CrossRef]
- Shokran, M.; Islam, M.S.; Ferdousi, J. Harnessing AI adoption in the workforce: A pathway to sustainable competitive advantage through intelligent decision-making and skill transformation. Am. J. Econ. Bus. Manag. 2025, 8, 954–976. Available online: https://globalresearchnetwork.us/index.php/ajebm/article/view/3355 (accessed on 23 May 2025).
- Zhai, X.; Chu, X.; Chai, C.S.; Jong, M.S.Y.; Istenic, A.; Spector, M.; Liu, J.-B.; Yuan, J.; Li, Y.; Cai, N. A review of artificial intelligence (AI) in education from 2010 to 2020. Complexity 2021, 2021, 8812542. [Google Scholar] [CrossRef]
- Bahoo, S.; Cucculelli, M.; Goga, X.; Mondolo, J. Artificial intelligence in Finance: A comprehensive review through bibliometric and content analysis. SN Bus. Econ. 2024, 4, 23. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, J.; Zhang, J.Z.; Liu, Y.D.; Kamal, M.M.; Cao, Y. Unleashing the power of AI in manufacturing: Enhancing resilience and performance through cognitive insights, process automation and cognitive engagement. Int. J. Prod. Econ. 2024, 270, 109175. [Google Scholar] [CrossRef]
- Labib, E. Artificial intelligence in marketing: Exploring current and future trends. Cogent Bus. Manag. 2024, 11, 2348728. [Google Scholar] [CrossRef]
- Reddy, S.; Fox, J.; Purohit, M.P. Artificial intelligence—Enabled healthcare delivery. J. R. Soc. Med. 2019, 112, 22–28. [Google Scholar] [CrossRef]
- Konig, P.D.; Wenzelburger, G. Opportunity for renewal or disruptive force? How artificial intelligence alters democratic politics. Gov. Inf. Q. 2020, 37, 101489. [Google Scholar] [CrossRef]
- Bujold, A.; Roberge-Maltais, I.; Parent-Rocheleau, X.; Boasen, J.; Sénécal, S.; Léger, P.-M. Responsible artificial intelligence in human resources management: A review of the empirical literature. AI Ethics 2024, 4, 1185–1200. [Google Scholar] [CrossRef]
- Hostinger. How Many Companies Use AI in 2025? Key Statistics and Industry Trends. 2025. Available online: https://www.hostinger.com/tutorials/how-many-companies-use-ai (accessed on 22 May 2025).
- Stanford Institute for Human-Centered Artificial Intelligence (HAI). Artificial Intelligence Index Report 2025; Stanford University: Stanford, CA, USA, 2025; Available online: https://hai.stanford.edu/ai-index/2025-ai-index-report (accessed on 30 July 2025).
- PricewaterhouseCoopers (PwC). Global AI Jobs Barometer: Tracking the Impact of AI on Jobs and Skills. 2025. Available online: https://www.pwc.com/gx/en/issues/artificial-intelligence/job-barometer/2025/report.pdf (accessed on 30 July 2025).
- Bone, M.; Ehlinger, E.; Stephany, F. Skills or degree? The rise of skill-based hiring for AI and green jobs. Technol. Forecast. Soc. Change 2025, 200, 124042. [Google Scholar] [CrossRef]
- Hassani, H.; Silva, E.S. Predictions from Generative Artificial Intelligence Models: Towards a New Benchmark in Forecasting Practice. Information 2024, 15, 291. [Google Scholar] [CrossRef]
- Aithal, P.S. How to create business value through technological innovations using ICCT underlying technologies. Int. J. Appl. Eng. Manag. Lett. 2023, 7, 232–292. [Google Scholar] [CrossRef]
- Archana, T. Artificial Intelligence (AI) and Digital Competencies in the Public Sector. In Digital Competency Development for Public Officials: Adapting New Technologies in Public Services; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 95–120. [Google Scholar]
- Amazon Web Services & Access Partnership. Accelerating AI skills: Preparing the Workforce for Jobs of the Future. 2023. Amazon. Available online: https://www.aboutamazon.com/news/aws/how-ai-changes-workplaces-aws-report (accessed on 3 July 2025).
- Kruhlov, V.; Dvorak, J. Social inclusivity in the smart city governance: Overcoming the digital divide. Sustainability 2025, 17, 5735. [Google Scholar] [CrossRef]
- Aleryani, A.Y. Roadmap: Empower researchers in AI skills in developing countries. Int. J. Comput. Organ. Trends 2025, 15, 1–13. [Google Scholar] [CrossRef]
- Nong, Y.; Cui, J.; He, Y.; Zhang, P.; Zhang, T. Development and validation of an AI literacy scale. J. Artif. Intell. Res. 2024, 1, 17–26. [Google Scholar] [CrossRef]
- Long, D.; Magerko, B. What is AI Literacy? Competencies and Design Considerations. In Proceedings of the 2019 ACM Conference on Human Factors in Computing Systems (CHI 2020), Honolulu, HI, USA, 25–30 April 2020. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Chuang, Y.W. Artificial intelligence self-efficacy: Scale development and validation. Educ. Inf. Technol. 2024, 29, 4785–4808. [Google Scholar] [CrossRef]
- Grassini, S. Development and validation of the AI attitude scale (AIAS-4): A brief measure of general attitude toward ar-tificial intelligence. Front. Psychol. 2023, 14, 1191628. [Google Scholar] [CrossRef] [PubMed]
- Schepman, A.; Rodway, P. Initial validation of the general attitudes towards Artificial Intelligence Scale. Comput. Hum. Behav. Rep. 2020, 1, 100014. [Google Scholar] [CrossRef]
- Creswell, J.W.; Plano Clark, V.L. Designing and Conducting Mixed Methods Research, 2nd ed.; Sage: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- McKim, C.A. The value of mixed methods research: A mixed methods study. J. Mix. Methods Res. 2017, 11, 202–222. [Google Scholar] [CrossRef]
- Florea, N.V.; Croitoru, G. The impact of artificial intelligence on communication dynamics and performance in organi-zational leadership. Adm. Sci. 2025, 15, 33. [Google Scholar] [CrossRef]
- Babashahi, L.; Barbosa, C.E.; Lima, Y.; Lyra, A.; Salazar, H.; Argôlo, M.; de Almeida, M.A.; de Souza, J.M. AI in the Workplace: A systematic review of skill transformation in the industry. Adm. Sci. 2024, 14, 127. [Google Scholar] [CrossRef]
- Przegalinska, A.; Triantoro, T.; Kovbasiuk, A.; Ciechanowski, L.; Freeman, R.B.; Sowa, K. Collaborative AI in the workplace: Enhancing organizational performance through resource-based and task-technology fit perspectives. Int. J. Inf. Manag. 2025, 81, 102853. [Google Scholar] [CrossRef]
- Bobitan, N.; Dumitrescu, D.; Popa, A.F.; Sahlian, D.N.; Turlea, I.C. Shaping tomorrow: Anticipating skills requirements based on the integration of artificial intelligence in business organizations—A Foresight Analysis using the Scenario Method. Electronics 2024, 13, 2198. [Google Scholar] [CrossRef]
- Du, T.; Li, X.; Jiang, N.; Xu, Y.; Zhou, Y. Adaptive AI as collaborator: Examining the impact of an AI’s adaptability and social role on individual professional efficacy and credit attribution in human—AI collaboration. Int. J. Hum.-Comput. Interact. 2025, 1–12. [Google Scholar] [CrossRef]
- Bukartaite, R.; Hooper, D. Automation, artificial intelligence and future skills needs: An Irish perspective. Eur. J. Train. Dev. 2023, 47, 163–185. [Google Scholar] [CrossRef]
- Singh, A.; Saxena, R.; Saxena, S. The human touch in the age of artificial intelligence: A literature review on the interplay of emotional intelligence and AI. Asian J. Curr. Res. 2024, 9, 36–50. [Google Scholar] [CrossRef]
- Jeong, J.; Jeong, I. Driving creativity in the AI-enhanced workplace: Roles of self-efficacy and transformational leaders-hip. Curr. Psychol. 2025, 44, 8001–8014. [Google Scholar] [CrossRef]
- Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 1988, 103, 411–423. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S.; Ullman, J.B. Using Multivariate Statistics; Pearson: Boston, MA, USA, 2013; Volume 6, pp. 497–516. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 2nd ed.; Guilford Press: New York, NY, USA, 2005. [Google Scholar]
- Streiner, D.L.; Norman, G.R.; Cairney, J. Health Measurement Scales. A Practical Guide to Their Development and Use, 4th ed.; Oxford University Press: New York, NY, USA, 2014. [Google Scholar]
- Neuhaus, C.; Camathias, C.; Mumme, M.; Faude, O. The German version of the KOOS-Child questionnaire (Knee injury and Osteoarthritis Outcome Score for children) shows a good to excellent internal consistency and a high test–retest reliability in children with knee problems. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 1354–1360. [Google Scholar] [CrossRef]
- Yusoff, M.S.B. ABC of content validation and content validity index calculation. Educ. Med. J. 2019, 11, 49–54. [Google Scholar] [CrossRef]
- Lawshe, C.H. A quantitative approach to content validity. Pers. Psychol. 1975, 28, 563–575. [Google Scholar] [CrossRef]
- Polit, D.F.; Beck, C.T.; Owen, S.V. Is the CVI an acceptable indicator of content validity? Appraisal and recommendations. Res. Nurs. Health 2007, 30, 459–467. [Google Scholar] [CrossRef]
- Namlu, A.G.; Odabasi, F. Unethical computer using behaviour scale: A study of reliability and validity on Turkish uni-versity students. Comput. Educ. 2007, 48, 205–215. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S. Experimental Designs Using ANOVA; Thomson/Brooks/Cole: Belmont, CA, USA, 2007. [Google Scholar]
- Nunnally, J.C. Pyschometric Theory; McGraw-Hill: New York, NY, USA, 1978. [Google Scholar]
- Worthington, R.L.; Whittaker, T.A. Scale development research: A content analysis and recommendations for best practices. Couns. Psychol. 2006, 34, 806–838. [Google Scholar] [CrossRef]
- Ephrem, A.N.; Murimbika, M. Development and validation of an individual entrepreneurial potential new measurement scale. J. Res. Mark. Entrep. 2024, 26, 63–110. [Google Scholar] [CrossRef]
- Osborne, J.W. What is rotating in exploratory factor analysis? Pract. Assess. Res. Eval. 2015, 20, 2. [Google Scholar] [CrossRef]
- Schreiber, J.B. Issues and recommendations for exploratory factor analysis and principal component analysis. Res. Soc. Adm. Pharm. 2021, 17, 1004–1011. [Google Scholar] [CrossRef]
- Bollen, K.A. Sample size and Bentler and Bonett’s nonnormed fit index. Psychometrika 1986, 51, 375–377. [Google Scholar] [CrossRef]
- Bollen, K.A. A new incremental fit index for general structural equation models. Sociol. Method. Res. 1989, 17, 303–316. [Google Scholar] [CrossRef]
- Schermelleh-Engel, K.; Moosbrugger, H.; Müller, H. Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. MPR-Online 2003, 8, 23–74. [Google Scholar]
- Hu, L.T.; Bentler, P.M. Cut-off criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Hooper, D.; Coughlan, J.; Mullen, M.R. Structural equation modelling: Guidelines for determining model fit. Electron. J. Bus. Res. Methods 2008, 6, 53–60. [Google Scholar]
- Hair, J.F.; Tatham, R.L.; Anderson, R.E.; Black, W. Multivariate Data Analysis with Readings, 5th ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1998. [Google Scholar]
- Fornell, C.G.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Taber, K.S. The use of Cronbach’s alpha when developing and reporting research instruments in science education. Res. Sci. Educ. 2018, 48, 1273–1296. [Google Scholar] [CrossRef]
- Cohen, L.; Manion, L.; Morrison, K. Research Methods in Education, 8th ed.; Routledge: London, UK, 2017. [Google Scholar] [CrossRef]
- Child, D. The Essentials of Factor Analysis, 3rd ed.; Continuum: New York, NY, USA, 2006. [Google Scholar]
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 4th ed.; Sage Publications: London, UK, 2013. [Google Scholar]
- Anshari, M.; Almunawar, M.N.; Lim, S.A.; Al-Mudimigh, A. Customer relationship management and big data-enabled: Personalization & customization of services. Appl. Comput. Inform. 2018, 15, 94–101. [Google Scholar] [CrossRef]
- Krakowski, S.; Luger, J.; Raisch, S. Artificial intelligence and the changing sources of competitive advantage. Strateg. Manag. J. 2023, 44, 1425–1452. [Google Scholar] [CrossRef]
- Jin, F.; Zhang, X. Artificial intelligence or human: When and why consumers prefer AI recommendations. Inf. Technol. People 2025, 38, 279–303. [Google Scholar] [CrossRef]
- Ayala, N.F.; da Silva, J.R.; Tinoco, M.A.C.; Saccani, N.; Frank, A.G. Artificial intelligence capabilities in digital servitization: Identifying digital opportunities for different service types. Int. J. Prod. Econ. 2025, 284, 109604. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; Rock, D.; Syverson, C. Artificial intelligence and the modern productivity paradox: A clash of expectations and statistics. In The Economics of Artificial Intelligence: An Agenda; Agrawal, A., Gans, J., Goldfarb, A., Eds.; University of Chicago Press: Chicago, IL, USA, 2017; pp. 23–57. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Qadri, M.A.; Singh, R.P.; Suman, R. Artificial intelligence (AI) applications for marketing: A literature-based study. Int. J. Intell. Netw. 2022, 3, 119–132. [Google Scholar] [CrossRef]
- Kreutzer, R.T.; Sirrenberg, M. Fields of application of artificial intelligence—Customer service, marketing and sales. In Understanding Artificial Intelligence: Fundamentals, Use Cases and Methods for a Corporate AI Journey; Kreutzer, R.T., Sirrenberg, M., Eds.; Springer: Cham, Switzerland, 2020; pp. 105–154. [Google Scholar] [CrossRef]
- Sajid, S.; Haleem, A.; Bahl, S.; Javaid, M.; Goyal, T.; Mittal, M. Data Science Applications for Predictive Maintenance and Materials Science in Context to Industry 4.0. In Proceedings of the Second International Conference on Aspects of Materials Science and Engineering, Hyatt Regency Chandigarh, India, 5–6 March 2021. [Google Scholar] [CrossRef]
- Moro-Visconti, R. 2024 Digital networking and artificial intelligence-driven startups. In Startup Valuation, 2nd ed.; Moro-Visconti, R., Ed.; Palgrave Macmillan: Cham, Switzerland, 2024; pp. 241–291. [Google Scholar] [CrossRef]
- Hao, X.; Li, Y.; Wang, K.; Sun, Q.; Wu, H. Eco-intelligent production: Intelligent manufacturing and industrial green transition. Environ. Dev. Sustain. 2025. [Google Scholar] [CrossRef]
- Bai, C.; Yao, D.; Xue, Q. Does artificial intelligence suppress firms’ greenwashing behavior? Evidence from robot adoption in China. Energy Econ. 2025, 142, 108168. [Google Scholar] [CrossRef]
- Sohrabpour, V.; Oghazi, P.; Toorajipour, R.; Nazarpour, A. Export sales forecasting using artificial intelligence. Technol. Forecast. Soc. Change 2021, 163, 120480. [Google Scholar] [CrossRef]
- Jeon, H.; Seo, W.; Park, E.; Choi, S. Hybrid machine learning approach for popularity prediction of newly released contents of online video streaming services. Technol. Forecast. Soc. Change 2020, 161, 120303. [Google Scholar] [CrossRef]
- Doherty, O.; Stephens, S. Hard and soft skill needs: Higher education and the Fintech sector. J. Educ. Work 2023, 36, 186–201. [Google Scholar] [CrossRef]
- Deepa, S.; Seth, M. Do soft skills matter?—Implications for educators based on recruiters’ perspective. IUP J. Soft Ski. 2013, 7, 7–20. [Google Scholar]
- Jerman, A.; Pejić Bach, M.; Aleksić, A. Transformation towards smart factory system: Examining new job profiles and competencies. Syst. Res. Behav. Sci. 2020, 37, 388–402. [Google Scholar] [CrossRef]
- Smaldone, F.; Ippolito, A.; Lagger, J.; Pellicano, M. Employability skills: Profiling data scientists in the digital labour market. Eur. Manag. J. 2022, 40, 671–684. [Google Scholar] [CrossRef]
- El-Tabal, A.A.A. Soft skills and its impact on an organizational creativity—A field study. J. Bus. Retail. Manag. Res. 2020, 14, 78–87. [Google Scholar] [CrossRef]
- Siagian, E.I.; Nurkarim, M.C.; Maharani, N. Persuasive communication in business negotiations: Strategies and techniques. Ilomata Int. J. Soc. Sci. 2024, 5, 428–443. [Google Scholar] [CrossRef]
- Chan, H.M.H.; Cho, V.W.S. An empirical study: The impact of collaborative communications on new product creativity that contributes to new product performance. Sustainability 2022, 14, 4626. [Google Scholar] [CrossRef]
- Pulakos, E.D.; Arad, S.; Donovan, M.A.; Plamondon, K.E. Adaptability in the workplace: Development of a taxonomy of adaptive performance. J. Appl. Psychol. 2000, 85, 612. [Google Scholar] [CrossRef]
- Doğru, Ç.A. Meta-analysis of the relationships between emotional intelligence and employee outcomes. Front. Psychol. 2022, 13, 611348. [Google Scholar] [CrossRef]
- Wu, S.-M. Emotional intelligence and workplace spirituality in predicting career success of high-tech leaders. Behav. Sci. 2024, 14, 1009. [Google Scholar] [CrossRef]
- Zhou, J.; Hoever, I.J. Research on workplace creativity: A review and redirection. Annu. Rev. Organ. Psychol. 2014, 1, 333–359. [Google Scholar] [CrossRef]
Variable | Category | EFA Sample (n1 = 340) | CFA Sample (n2 =340) | Total Sample (n = 680) | |||
---|---|---|---|---|---|---|---|
F | % | F | % | F | % | ||
Gender | Female | 148 | 43.5 | 139 | 40.9 | 287 | 42.2 |
Male | 192 | 56.5 | 201 | 59.1 | 393 | 57.8 | |
Age | 24–29 | 71 | 20.9 | 80 | 23.5 | 151 | 22.2 |
30–34 | 66 | 19.4 | 64 | 18.8 | 130 | 19.1 | |
35–38 | 64 | 18.8 | 60 | 17.6 | 124 | 18.2 | |
40–44 | 82 | 24.1 | 70 | 20.6 | 152 | 22.4 | |
45–49 | 57 | 16.8 | 66 | 19.4 | 123 | 18.1 | |
Education Level | Bachelor’s | 201 | 59.1 | 187 | 55.0 | 388 | 57.1 |
Master’s | 95 | 27.9 | 95 | 27.9 | 190 | 27.9 | |
PhD | 44 | 12.9 | 58 | 17.1 | 102 | 15.0 | |
AI Usage Start Year | Before 2020 | 8 | 2.4 | 11 | 3.2 | 19 | 2.8 |
Since 2020 | 60 | 17.6 | 71 | 20.9 | 131 | 19.3 | |
Since 2021 | 75 | 22.1 | 55 | 16.2 | 130 | 19.1 | |
Since 2022 | 64 | 18.8 | 72 | 21.2 | 136 | 20 | |
Since 2023 | 96 | 28.2 | 103 | 30.3 | 199 | 29.3 | |
Since 2024 | 37 | 10.9 | 28 | 8.2 | 65 | 9.6 | |
Sector | Finance and Banking | 89 | 26.2 | 103 | 30.3 | 192 | 28.2 |
Information Technology and Software | 78 | 22.9 | 73 | 21.5 | 151 | 22.2 | |
Digital Marketing and Advertising | 65 | 19.1 | 76 | 20.6 | 141 | 20.7 | |
Engineering | 38 | 11.2 | 30 | 8.8 | 68 | 10.0 | |
Management, Human Resources, and Project Development | 70 | 20.6 | 58 | 17.1 | 128 | 18.8 |
Item | I-CVI (Clarity) | I-CVI (Simplicity) | I-CVI (Ambiguity) | I-CVI (Relevance) | CVR | Decision |
---|---|---|---|---|---|---|
| 0.9 | 1 | 0.9 | 1 | 1 | Retained |
| 0.9 | 0.9 | 1 | 0.9 | 1 | Retained |
| 1 | 1 | 0.9 | 0.9 | 0.8 | Retained |
| 0 | 0.4 | 0 | 0.3 | −0.8 | Eliminated |
| 1 | 1 | 1 | 1 | 1 | Retained |
| 1 | 1 | 0.9 | 0.9 | 1 | Retained |
| 1 | 1 | 1 | 0.9 | 1 | Retained |
| 1 | 0.9 | 1 | 1 | 0.8 | Retained |
| 0.9 | 0.9 | 1 | 0.9 | 0.8 | Retained |
| 0.9 | 0.9 | 0.9 | 0.9 | 1 | Retained |
| 0.9 | 0.9 | 1 | 1 | 0.8 | Retained |
| 1 | 1 | 1 | 0.9 | 1 | Retained |
| 1 | 1 | 1 | 0.9 | 0.8 | Retained |
| 0 | 0.3 | 0.2 | 0.1 | −0.4 | Eliminated |
| 1 | 0.9 | 1 | 1 | 0.8 | Retained |
| 1 | 0.9 | 1 | 1 | 1 | Retained |
| 1 | 0.9 | 1 | 0.9 | 0.8 | Retained |
| 0 | 0.3 | 0.1 | 0.1 | 0 | Eliminated |
| 0.9 | 1 | 1 | 1 | 1 | Retained |
| 1 | 0.9 | 1 | 1 | 0.8 | Retained |
| 1 | 0.9 | 1 | 1 | 1 | Retained |
| 0.9 | 1 | 1 | 1 | 1 | Retained |
| 0 | 0 | 0.2 | 0 | −0.4 | Eliminated |
| 1 | 1 | 1 | 1 | 1 | Retained |
| 0.9 | 1 | 0.9 | 1 | 0.8 | Retained |
| 0.9 | 1 | 1 | 1 | 0.8 | Retained |
| 0.2 | 0 | 0 | 0.3 | −1 | Eliminated |
| 1 | 0.9 | 1 | 1 | 0.8 | Retained |
| 0.9 | 0.9 | 1 | 1 | 1 | Retained |
| 0.2 | 0.3 | 0 | 0.3 | −0.4 | Eliminated |
| 1 | 1 | 0.9 | 1 | 1 | Retained |
| 1 | 0.9 | 1 | 1 | 0.8 | Retained |
| 0.9 | 1 | 1 | 1 | 1 | Retained |
| 0.2 | 0.2 | 0 | 0.2 | −0.2 | Eliminated |
| 0.9 | 0.9 | 0.9 | 1 | 1 | Retained |
| 1 | 1 | 1 | 0.9 | 1 | Retained |
| 1 | 1 | 1 | 1 | 0.8 | Retained |
Item | Mean | Median (Q3–Q1) | Std. Deviation (SD) | Corrected Item-Total Correlation | Cronbach’s Alpha When an Item is Removed |
---|---|---|---|---|---|
I quickly adapt to different use scenarios of AI systems. | 3.63 | 4 (1) | 0.89 | 0.514 | 0.843 |
I synthesize insights from diverse data sources to generate creative outcomes using AI tools. | 3.50 | 4 (1) | 0.74 | 0.452 | 0.839 |
I make decisions in AI projects by considering human emotions. | 3.95 | 4 (1) | 0.74 | 0.731 | 0.869 |
I use AI analyses to visualize data in creative and effective ways. | 3.68 | 4 (1) | 0.81 | 0.636 | 0.846 |
I ensure coordination with other experts during the development and implementation of AI systems. | 3.74 | 4 (1) | 0.86 | 0.660 | 0.871 |
I persuade decision-makers of the importance of artificial intelligence algorithms. | 3.99 | 4 (1) | 0.75 | 0.458 | 0.858 |
I create synergy within the team by integrating data from various sources. | 3.86 | 4 (1) | 0.93 | 0.526 | 0.831 |
I prioritize emotional intelligence when evaluating ethical issues in AI projects. | 3.54 | 4 (1) | 0.99 | 0.531 | 0.867 |
I flexibly adjust AI algorithms to changing datasets or requirements. | 3.41 | 4 (1) | 0.77 | 0.549 | 0.848 |
I strive to achieve better outcomes by integrating different perspectives in AI projects. | 3.73 | 4 (1) | 0.73 | 0.459 | 0.847 |
I understand the emotional needs of AI system users. | 3.79 | 4 (1) | 0.79 | 0.682 | 0.862 |
I act with empathy and social responsibility when assessing the societal impacts of AI technologies. | 3.46 | 4 (1) | 0.91 | 0.489 | 0.842 |
I develop innovative approaches to AI algorithms to overcome existing limitations. | 3.55 | 4 (1) | 0.84 | 0.585 | 0.854 |
I promote AI solutions among users and stakeholders to gain support. | 3.72 | 4 (1) | 0.75 | 0.563 | 0.843 |
I adapt to rapid changes and developments in AI technologies | 3.53 | 4 (1) | 0.86 | 0.635 | 0.841 |
I evaluate the performance of AI systems and make adjustments when necessary. | 3.53 | 4 (1) | 0.81 | 0.523 | 0.859 |
I adapt to AI projects by following emerging technological trends and best practices. | 3.60 | 4 (1) | 0.96 | 0.662 | 0.837 |
I present strong and logical arguments to advocate for AI systems. | 3.90 | 4 (1) | 0.9 | 0.615 | 0.861 |
I collaborate harmoniously with team members from various disciplines. | 3.46 | 4 (1) | 0.82 | 0.588 | 0.850 |
I challenge traditional thought patterns in AI projects to generate more creative solutions. | 3.70 | 4 (1) | 0.91 | 0.582 | 0.878 |
I produce original and creative solutions using AI algorithms. | 3.67 | 4 (1) | 0.74 | 0.679 | 0.863 |
I consider people’s emotional reactions when evaluating the impacts of AI applications. | 3.73 | 4 (1) | 0.99 | 0.647 | 0.866 |
I respond quickly and effectively to unexpected situations in AI projects. | 3.52 | 4 (1) | 0.84 | 0.649 | 0.879 |
I encourage decision-makers to adopt the benefits of AI algorithms. | 3.76 | 4 (1) | 0.81 | 0.529 | 0.864 |
I encourage decision-makers to consider the potential drawbacks of AI algorithms. | 3.79 | 4 (1) | 0.84 | 0.486 | 0.857 |
I actively collaborate with team members to overcome obstacles and achieve common goals in AI projects. | 3.54 | 4 (1) | 0.89 | 0.727 | 0.847 |
I ensure effective communication among team members in AI projects. | 3.48 | 4 (1) | 0.95 | 0.649 | 0.865 |
I develop innovative projects using AI tools. | 3.91 | 4 (1) | 0.78 | 0.465 | 0.869 |
I establish persuasive communication by emphasizing the societal impacts of AI technologies. | 3.66 | 4 (1) | 0.84 | 0.637 | 0.844 |
I develop empathy-driven solutions to improve the user experience of AI systems. | 3.73 | 4 (1) | 0.97 | 0.485 | 0.871 |
Item | Factor Loading | Communality | |
---|---|---|---|
Dimension 1: Persuasion | |||
AISS1 | I persuade decision-makers of the importance of artificial intelligence algorithms. | 0.743 | 0.698 |
AISS2 | I present strong and logical arguments to advocate for AI systems. | 0.789 | 0.740 |
AISS3 | I promote AI solutions among users and stakeholders to gain support. | 0.680 | 0.715 |
AISS4 | I encourage decision-makers to adopt the benefits of AI algorithms. | 0.677 | 0.642 |
AISS5 | I encourage decision-makers to consider the potential drawbacks of AI algorithms. | 0.893 | 0.875 |
AISS6 | I establish persuasive communication by emphasizing the societal impacts of AI technologies. | 0.756 | 0.778 |
Dimension 2: Collaboration | |||
AISS7 | I collaborate harmoniously with team members from various disciplines. | 0.814 | 0.735 |
AISS8 | I strive to achieve better outcomes by integrating different perspectives in AI projects. | 0.788 | 0.732 |
AISS9 | I actively collaborate with team members to overcome obstacles and achieve common goals in AI projects. | 0.630 | 0.653 |
AISS10 | I ensure coordination with other experts during the development and implementation of AI systems. | 0.621 | 0.587 |
AISSl1 | I create synergy within the team by integrating data from various sources. | 0.808 | 0.764 |
Dimension 3: Adaptability | |||
AISS12 | I adapt to rapid changes and developments in AI technologies. | 0.845 | 0.781 |
AISS13 | I quickly adapt to different use scenarios of AI systems. | 0.822 | 0.787 |
AISS14 | I flexibly adjust AI algorithms to changing datasets or requirements. | 0.769 | 0.710 |
AISS15 | I respond quickly and effectively to unexpected situations in AI projects. | 0.734 | 0.683 |
Dimension 4: Emotional Intelligence | |||
AISS16 | I understand the emotional needs of AI system users. | 0.699 | 0.616 |
AISS17 | I consider people’s emotional reactions when evaluating the impacts of AI applications. | 0.728 | 0.633 |
AISS18 | I make decisions in AI projects by considering human emotions. | 0.774 | 0.701 |
AISS19 | I develop empathy-driven solutions to improve the user experience of AI systems. | 0.834 | 0.732 |
AIEAS20 | I prioritize emotional intelligence when evaluating ethical issues in AI projects. | 0.751 | 0.685 |
AIEAS21 | I act with empathy and social responsibility when assessing the societal impacts of AI technologies. | 0.786 | 0.743 |
Dimension 5: Creativity | |||
AISS22 | I produce original and creative solutions using AI algorithms. | 0.883 | 0.826 |
AISS23 | I develop innovative projects using AI tools. | 0.682 | 0.649 |
AISS24 | I use AI analyses to visualize data in creative and effective ways | 0.710 | 0.673 |
Factor | Initial Eigenvalues | % of Variance | Cumulative % |
---|---|---|---|
1 | 11.637 | 48.49% | 48.49% |
2 | 2.231 | 9.30% | 57.79% |
3 | 1.971 | 8.21% | 66.00% |
4 | 1.307 | 5.45% | 71.45% |
5 | 1.193 | 4.97% | 76.42% |
Items | Mean (SD) | Median (Q1–Q3) | T | p-Value |
---|---|---|---|---|
Dimension 1: Persuasion | ||||
AISS1 | 3.051 (0.847) | 3.000 (3.000–4.000) | 15.765 | <0.001 |
AISS2 | 3.330 (1.011) | 4.000 (3.000–4.000) | 15.188 | <0.001 |
AISS3 | 3.892 (0.903) | 4.000 (3.000–4.000) | 15.356 | <0.001 |
AISS4 | 3.561 (0.816) | 4.000 (3.000–4.000) | 18.275 | <0.001 |
AISS5 | 3.584 (0.936) | 4.000 (3.000–4.000) | 27.365 | <0.001 |
AISS6 | 3.357 (0.874) | 4.000 (3.000–4.000) | 15.465 | <0.001 |
Dimension 2: Collaboration | ||||
AISS7 | 3.153 (1.129) | 4.000 (3.000–4.000) | 12.474 | <0.001 |
AISS8 | 2.492 (0.894) | 4.000 (3.000–4.000) | 20.008 | <0.001 |
AISS9 | 3.255 (1.110) | 4.000 (3.000–4.000) | 21.464 | <0.001 |
AISSl10 | 3.416 (1.070) | 4.000 (3.000–4.000) | 20.624 | <0.001 |
AISS11 | 2.960 (0.956) | 3.000 (2.000–3.000) | 12.061 | <0.001 |
Dimension 3: Adaptability | ||||
AISS12 | 3.355 (0.986) | 4.000 (3.000–4.000) | 14.275 | <0.001 |
AISS13 | 3.293 (0.911) | 4.000 (3.000–4.000) | 13.886 | <0.001 |
AISS14 | 3.449 (1.019) | 4.000 (3.000–4.000) | 12.332 | <0.001 |
AISS15 | 3.390 (0.894) | 4.000 (3.000–4.000) | 16.415 | <0.001 |
Dimension 4: Emotional Intelligence | ||||
AISS16 | 2.844 (0.853) | 3.000 (2.000–3.000) | 12.114 | <0.001 |
AISS17 | 3.372 (0.826) | 4.000 (3.000–4.000) | 12.127 | <0.001 |
AISS18 | 3.503 (1.077) | 4.000 (3.000–4.000) | 15.884 | <0.001 |
AISS19 | 3.263 (0.876) | 4.000 (3.000–4.000) | 12.393 | <0.001 |
AISS20 | 3.535 (1.085) | 4.000 (3.000–4.000) | 13.950 | <0.001 |
AISS21 | 3.241 (0.800) | 4.000 (3.000–4.000) | 16.523 | <0.001 |
Dimension 5: Creativity | ||||
AISS22 | 3.264 (0.825) | 4.000 (3.000–4.000) | 21.103 | <0.001 |
AISS23 | 3.180 (0.766) | 4.000 (3.000–4.000) | 17.178 | <0.001 |
AISS24 | 3.525 (0.939) | 4.000 (3.000–4.000) | 15.538 | <0.001 |
Items | SMC | CI-TC | Cronbach’s Alpha When the Item Is Removed |
---|---|---|---|
Dimension 1: Persuasion | |||
AISS1 | 0.552 | 0.698 | 0.917 |
AISS2 | 0.623 | 0.707 | 0.914 |
AISS3 | 0.462 | 0.614 | 0.917 |
AISS4 | 0.458 | 0.625 | 0.919 |
AISS5 | 0.797 | 0.766 | 0.914 |
AISS6 | 0.572 | 0.681 | 0.914 |
Dimension 2: Collaboration | |||
AISS7 | 0.663 | 0.670 | 0.915 |
AISS8 | 0.621 | 0.653 | 0.916 |
AISS9 | 0.397 | 0.583 | 0.916 |
AISS10 | 0.386 | 0.541 | 0.919 |
AISS11 | 0.653 | 0.686 | 0.918 |
Dimension 3: Adaptability | |||
AISS12 | 0.714 | 0.735 | 0.913 |
AISS13 | 0.676 | 0.652 | 0.918 |
AISS14 | 0.591 | 0.634 | 0.914 |
AISS15 | 0.539 | 0.602 | 0.914 |
Dimension 4: Emotional Intelligence | |||
AISS16 | 0.489 | 0.542 | 0.919 |
AISS17 | 0.530 | 0.611 | 0.917 |
AISS18 | 0.599 | 0.673 | 0.916 |
AISS19 | 0.696 | 0.672 | 0.919 |
AISS20 | 0.564 | 0.633 | 0.912 |
AISS21 | 0.618 | 0.685 | 0.917 |
Dimension 5: Creativity | |||
AISS22 | 0.780 | 0.793 | 0.914 |
AISS23 | 0.465 | 0.536 | 0.918 |
AISS24 | 0.712 | 0.748 | 0.915 |
Measure | Value | Perfect Fit Interval | Adequate Fit Interval |
---|---|---|---|
χ2 | 460.526 | 0 ≤ χ2 ≤ 2df | 2df < χ2 ≤ 3df (df = 242) |
χ2/df | 1.903 | 0 ≤ χ2/df ≤ 2 | 2 < χ2/df ≤ 3 |
GFI | 0.940 | 0.95 ≤ GFI ≤ 1.00 | 0.90 ≤ GFI < 0.95 |
AGFI | 0.947 | 0.90 ≤ AGFI ≤ 1.00 | 0.85 ≤ AGFI < 0.90 |
NFI | 0.949 | 0.95 ≤ NFI ≤ 1.00 | 0.90 ≤ NFI < 0.95 |
PNFI | 0.833 | 0.95 ≤ PNFI ≤ 1.00 | 0.50 ≤ PNFI ≤ 0.95 |
PGFI | 0.823 | 0.95 ≤ PGFI ≤ 1.00 | 0.50 ≤ PGFI ≤ 0.95 |
TLI (NNFI) | 0.972 | 0.97 ≤ TLI ≤ 1.00 | 0.95 ≤ TLI < 0.97 |
IFI | 0.975 | 0.95 ≤ IFI ≤ 1.00 | 0.90 ≤ IFI < 0.95 |
CFI | 0.975 | 0.97 ≤ CFI ≤ 1.00 | 0.95 ≤ CFI < 0.97 |
RMSEA | 0.052 | 0 ≤ RMSEA ≤ 0.05 | 0.05 < RMSEA ≤ 0.08 |
SRMR | 0.035 | 0 ≤ SRMR ≤ 0.05 | 0.05 < SRMR ≤ 0.10 |
Dimension | Number of Items | Composite Reliability | Cronbach’s Alpha | AVE |
---|---|---|---|---|
Persuasion | 6 | 0.890 | 0.875 | 0.577 |
Collaboration | 5 | 0.855 | 0.829 | 0.544 |
Adaptability | 4 | 0.872 | 0.857 | 0.630 |
Emotional Intelligence | 6 | 0.893 | 0.870 | 0.583 |
Creativity | 3 | 0.848 | 0.804 | 0.652 |
Factor | Fornell–Larcker Criteria | ||||
---|---|---|---|---|---|
Persuasion | Collaboration | Adaptability | Emotional Intelligence | Creativity | |
Persuasion | 0.760 | ||||
Collaboration | 0.652 | 0.738 | |||
Adaptability | 0.553 | 0.604 | 0.794 | ||
Emotional Intelligence | 0.627 | 0.656 | 0.583 | 0.764 | |
Creativity | 0.507 | 0.520 | 0.673 | 0.541 | 0.807 |
Factor | HTMT Criteria | ||||
---|---|---|---|---|---|
Persuasion | Collaboration | Adaptability | Emotional Intelligence | Creativity | |
Persuasion | - | ||||
Collaboration | 0.678 | - | |||
Adaptability | 0.576 | 0.627 | - | ||
Emotional Intelligence | 0.638 | 0.643 | 0.601 | - | |
Creativity | 0.531 | 0.553 | 0.692 | 0.560 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sancar, N.; Cavus, N. Smart Skills for Smart Cities: Developing and Validating an AI Soft Skills Scale in the Framework of the SDGs. Sustainability 2025, 17, 7281. https://doi.org/10.3390/su17167281
Sancar N, Cavus N. Smart Skills for Smart Cities: Developing and Validating an AI Soft Skills Scale in the Framework of the SDGs. Sustainability. 2025; 17(16):7281. https://doi.org/10.3390/su17167281
Chicago/Turabian StyleSancar, Nuriye, and Nadire Cavus. 2025. "Smart Skills for Smart Cities: Developing and Validating an AI Soft Skills Scale in the Framework of the SDGs" Sustainability 17, no. 16: 7281. https://doi.org/10.3390/su17167281
APA StyleSancar, N., & Cavus, N. (2025). Smart Skills for Smart Cities: Developing and Validating an AI Soft Skills Scale in the Framework of the SDGs. Sustainability, 17(16), 7281. https://doi.org/10.3390/su17167281