Starch-Regolith Aerogel Bricks as a Sustainable Building Material for In Situ Extraterrestrial Constructions
Abstract
1. Introduction
2. Materials and Methods
2.1. Composition and Granulometry of LRS
2.2. LRS Brick Preparation
2.3. Density and Porosity of LRS and LRS-PS2/4
2.4. Thermal Tests
2.4.1. Thermal Properties
2.4.2. Thermal Fatigue (Cycling)
2.4.3. Prolonged Thermal Exposure
2.4.4. Thermal Shock to Extreme Temperatures
2.5. Radiation Exposure
2.6. Mechanical Testing (Compression Test)
- untreated reference specimens LRS-PS2 and LRS-PS4
- thermally cycled specimens (named LRS-PS2c and LRS-PS4c)
- prolonged thermal exposure specimens (named LRS-PS2p and LRS-PS4p)
- thermal shock specimens (named LRS-PS2ts and LRS-PS4ts)
- irradiated specimens (named LRS-PS2r and LRS-PS4r)
3. Results and Discussion
3.1. Thermal Properties of Reference Samples (LRS-PS2 and LRS-PS4)
3.2. Aspect of Irradiation and Double Stress (Thermal and Radiation)
3.3. Mechanical Properties, Compression Tests
3.3.1. Compression Test on Reference LRS-PS2 and LRS-PS4 Composite
3.3.2. Thermal Cycling Tests
3.3.3. Prolonged Thermal Exposure Tests
3.3.4. Thermal Shock Tests
3.3.5. Irradiation Tests
3.3.6. Irradiation and Thermal Cycling Tests
3.4. Recycling Properties
3.5. Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NASA Website. Available online: https://www.nasa.gov/commercial-lunar-payload-services/ (accessed on 16 March 2025).
- Sacksteder, K.R.; Sanders, G.B. In-Situ Resource Utilization for Lunar and Mars Exploration (ISRU). In Proceedings of the 14th AIAA Aerospace Science Meeting & Exhibit, Reno, NV, USA, 8–11 January 2007. [Google Scholar] [CrossRef]
- Heiken, G.H.; Vaniman, D.T.; French, B.M. Lunar Sourcebook; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Beyer, L.A. Lunarcrete—A Novel Approach to Extraterrestrial Construction. In Space Manufacturing 5: Engineering with Lunar and Asterodial Materials, Proceedings of the Seventh Princeton/AIAA/SSI Conference 8–11 May 1985; Faughnan, B., Maryniak, G., Eds.; American Institute of Aeronautics and Astronautics: New York, NY, USA, 1985; p. 172. ISBN 978-0-930403-07-2. [Google Scholar]
- Farries, K.W.; Visintin, P.; Smith, S.T.; van Eyk, P. Sintered or melted regolith for lunar construction: State-of-the-art review and future research directions. Constr. Build. Mater. 2021, 296, 123627. [Google Scholar] [CrossRef]
- Hintze, P.; Curran, J.; Back, T. Lunar surface stabilization via sintering or the use of heat cured polymers. In Proceedings of the 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2009; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2009. [Google Scholar] [CrossRef]
- Spedding, C.P.; Nuttall, W.J.; Lim, S. Energy requirements of a thermally processed ISRU radiation shield for a lunar habitat. Adv. Space Res. 2020, 65, 2467–2474. [Google Scholar] [CrossRef]
- Fateri, M.; Kaouk, A.; Cowley, A.; Siarov, S.; Palou, M.V.; Gobartt González, F.; Marchant, R.; Cristoforetti, S.; Sperl, M. Feasibility study on additive manufacturing of recyclable objects for space applications. Addit. Manuf. 2018, 24, 400–404. [Google Scholar] [CrossRef]
- Roberts, A.D.; Scrutton, N. Starcrete: A starch-based biocomposite for off-world construction. Open Eng. 2023, 13, 20220390. [Google Scholar] [CrossRef]
- Follain, N.; Joly, C.; Dole, P.; Bliard, C. Mechanical properties of starch-based materials. I. Short review and complementary experimental analysis. J. Appl. Polym. Sci. 2005, 97, 1783–1794. [Google Scholar] [CrossRef]
- Karaky, H.; Maalouf, C.; Bliard, C.; Moussa, T.; El Wakil, N.; Lachi, M.; Polidori, G. Hygrothermal and Acoustical Performance of Starch-Beet Pulp Composites for Building Thermal Insulation. Materials 2018, 11, 1622. [Google Scholar] [CrossRef] [PubMed]
- Ming, D.W.; Henninger, D.L. Use of lunar regolith as a substrate for plant growth. Adv. Space Res. 1994, 14, 435–443. [Google Scholar] [CrossRef]
- Wheeler, R.M.; Tibbitts, T.W. Utilization of potatoes for life support systems in space. IV. Effect of CO2 enrichment. Am. Potato J. 1989, 66, 25–34. [Google Scholar] [CrossRef]
- Brown, C.S.; Tibbitts, T.W.; Croxdale, J.G.; Wheeler, R.M. Potato tuber formation in the spaceflight environment. Life Support Biosph. Sci. 1997, 4, 71–76. [Google Scholar]
- Feldman, W.C.; Maurice, S.; Lawrence, D.J.; Little, R.C.; Lawson, S.L.; Gasnault, O.; Wiens, R.C.; Barraclugh, B.L.; Elphic, R.C.; Pretty-Man, T.H.; et al. Evidence for Water Ice Near the Lunar Poles. J. Geophys. Res. 2001, 106, 23232–23252. [Google Scholar] [CrossRef]
- Deutsch, A.N.; Head, J.W., III; Neumann, G.A. Analyzing the ages of south polar craters on the Moon: Implications for the sources and evolution of surface water ice. Icarus 2020, 336, 113455. [Google Scholar] [CrossRef]
- Sargeant, H.M.; Barber, S.J.; Anand, M.; Abernethy, F.A.J.; Sheridan, S.; Wright, I.P.; Morse, A.D. Hydrogen reduction of lunar samples in a static system for a water production demonstration on the Moon. Planet. Space Sci. 2021, 205, 10528. [Google Scholar] [CrossRef]
- NASA Growing, Plants in Space. 2021. Available online: https://www.nasa.gov/content/growing-plants-in-space (accessed on 16 March 2025).
- Setiawan, G.D.; Treesubsuntorn, C.; Krobthong, S.; Yingchutrakul, Y.; Thiravetyan, P. Using multi-omics approach to investigate the effect of a Moon soil simulant on Vigna radiata seedling root and shoot growth, stress responses, and photosynthesis. Acta Astronaut. 2023, 202, 550–563. [Google Scholar] [CrossRef]
- Wang, S.; Zhan, P.; Li, Y.; Li, J.; Li, X.; Yang, J.; Ji, M.; Li, F.; Zhang, C. Recent advances and future challenges of the starch-based bio-composites for engineering applications. Carbohydr. Polym. 2023, 307, 120627. [Google Scholar] [CrossRef] [PubMed]
- Gibney, E. How to build a Moon base. Nature 2018, 562, 474. [Google Scholar] [CrossRef]
- Edhirej, A.; Sapuan, S.M.; Jawaid, M.; Zahari, N.I. Cassava/sugar palm fiber reinforced cassava starch hybrid composites: Physical, thermal and structural properties. Int. J. Biol. Macromol. 2017, 101, 75–83. [Google Scholar] [CrossRef]
- Harb, E.; Maalouf, C.; Bliard, C.; Tenpierik, M.; Lachi, M.; Bogard, F.; Polidori, G. Thermal performance of starch/beet-pulp composite bricks for building insulation at a wall scale. Case Stud. Constr. Mater. 2023, 18, e01851. [Google Scholar] [CrossRef]
- Badouard, C.; Maalouf, C.; Bliard, C.; Polidori, G.; Bogard, F. Hygric Behavior of Viticulture By-Product Composites for Building Insulation. Material 2022, 15, 815. [Google Scholar] [CrossRef]
- Williams, J.-P.; Paige, D.A.; Greenhagen, B.T.; Sefton-Nash, E. The global surface temperatures of the Moon as measured by the Diviner Lunar Radiometer Experiment. Icarus 2017, 283, 300–325. [Google Scholar] [CrossRef]
- Zhang, T.; C Chao, Z.; Yao, K.; Xu, W.; Zhang, X.; Ding, S.; Liu, Z.; Zhao, Y.; Wang An, B.; Yu, S.; et al. The technology of lunar regolith environment construction on Earth. Acta Astronaut. 2021, 178, 216–232. [Google Scholar] [CrossRef]
- Zhang, X.; Osinski1, G.R.; Newson, T.; Ahmed, A.; Touqan, M.; Joshi, D.; Hill, H. A comparative study of lunar regolith simulants in relation to terrestrial test of lunar exploration missions. In Proceedings of the 50th Lunar and Planetary Science Conference, Woodlands, TX, USA, 18–22 March 2019. LPI Contrib. No. 2132. [Google Scholar]
- Wang, J.; Huntsinger, W.; Lapeyre, J.; Schofield, P.; Agbeworvi, G.; Banerjee, S.; Bullard, J.W. Sintering kinetics and microstructure development of synthetic lunar highlands and mare regolith. Appl. Mater. Today 2024, 37, 102145. [Google Scholar] [CrossRef]
- Morris, R.V. Ferromagnetic resonance and magnetic properties of ALHAS 1005. Geophys. Res. Lett. 1983, 10, 807–808. [Google Scholar] [CrossRef]
- Carrier, D. Lunar soil grain size distribution. In The Moon; 1973; Volume 6, pp. 250–263. [Google Scholar] [CrossRef]
- Collins, P.J.; Edmunson, J.; Fiske, M.; Radlin, A. Materials characterization of various lunar regolith simulants for use in geopolymer lunar concrete. Adv. Space Res. 2022, 69, 3941–3951. [Google Scholar] [CrossRef]
- Bourdot, A.; Moussa, T.; Gacoin, A.; Maalouf, C.; Vázquez, P.; Thomachot-Schneider, C.; Bliard, C.; Merabtine, A.; Lachi, M.; Douzane, O.; et al. Characterization of a hemp-based agro-material: Influence of starch ratio and hemp shive size on physical, mechanical, and hygrothermal properties. Energy Build. 2017, 153, 501–512. [Google Scholar] [CrossRef]
- Akisheva, Y.; Gourinat, Y. Utilisation of Moon Regolith for Radiation Protection and Thermal Insulation in Permanent Lunar Habitats. Appl. Sci. 2021, 11, 3583. [Google Scholar] [CrossRef]
- Reitz, G.; Berger, T.; Matthiae, D. Radiation exposure in the moon environment. Planet. Space Sci. 2012, 74, 78–83. [Google Scholar] [CrossRef]
- XP P13-901:2022; Blocs de Terre Comprimée Pour Murs et Cloisons: Définitions-Spécifications-Méthodes d’Essais-Conditions de Réception. AFNOR: La Plaine Saint-Denis, France, 2022.
- ISO 844:2021; Rigid Cellular Plastics—Determination of Compression Properties. AFNOR: Saint-Denis, France, 2021.
- Imanzadeh, S.; Jarno, A.; Hibouche, A.; Bouarar, A.; Taibi, S. Ductility analysis of vegetal-fiber reinforced raw earth concrete by mixture design. Constr. Build. Mater. 2020, 239, 117829. [Google Scholar] [CrossRef]
- Mitrus, M. Glass transition temperature of thermoplastic starches. Int. Agrophys. 2005, 19, 237–241. [Google Scholar]
- Miller, J.; Taylor, L.A.; DiGiuseppe, M.; Heilbronn, L.H.; Sanders, G.; Zeitlin, C.J. Radiation shielding properties of lunar regolith and regolith simulant. In Proceedings of the NLSI Lunar Science Conference 2008, Moffett Field, CA, USA, 20–23 July 2008. [Google Scholar]
- Miller, J.; Taylor, L.; Zeitlin, C.; Heilbronn, L.; Guetersloh, S.; DiGiuseppe, M.; Iwata, Y.; Murakami, T. Lunar soil as shielding against space radiation. Radiat. Meas. 2009, 44, 163–167. [Google Scholar] [CrossRef]
- Sunder, M.; Mumbrekar, K.D.; Mazumder, N. Gamma radiation as a modifier of starch—Physicochemical perspective. Curr. Res. Food Sci. 2022, 5, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Delville, J.; Joly, C.; Dole, P.; Bliard, C. Solid state photocrosslinked starch based films: A new family of homogeneous modified starches. Carbohydr. Polym. 2001, 49, 71–81. [Google Scholar] [CrossRef]
OPRH2N Composition | % by Weight |
---|---|
Aluminum Oxide (Al2O3) | 27.06 |
Ferric Oxide (Fe2O3) | 3.68 |
Magnesium Oxide (MgO) | 2.84 |
Calcium Oxide (CaO) | 14.19 |
Silicon Dioxide (SiO2) | 47.89 |
Sodium Oxide (Na2O) | 2.43 |
Titanium Oxide (TiO2) | 0.52 |
Potassium Oxide (K2O) | 0.25 |
Phosphorus Pentoxide (P2O5) | 0.20 |
Manganese(II) Oxide (MnO) | 0.06 |
Particulate Not Otherwise Regulated | 0.88 |
Samples Composition | Bulk Density (kg/m3) | Skeletal Density (kg/m3) | Porosity % |
---|---|---|---|
LRS (OPRH2N) | 1704 | 2422 | 29.6 |
LRS-PS2 | 1318 | 2420 | 45.5 |
LRS-PS4 | 1355 | 2418 | 44.0 |
Samples Composition | Conductivity Λ +/− 0.003 (W/(m·K)) | Diffusivity A +/− 0.05 (10−6 m2/s) | Specific Heat Capacity Cp (kJ/kg·K) |
---|---|---|---|
LRS (OPRH2N) | 0.246 | 1.25 | 0.115 |
PS aerogel | 0.065 | 0.38 | 3.6 |
LRS-PS2 | 0.159 | 0.273 | 0.443 |
LRS-PS4 | 0.145 | 0.212 | 0.504 |
Specimen | σmax (MPa) | εu (%) | E (MPa) | i′ = ε85%/εu |
---|---|---|---|---|
LRS-PS2 | 0.58 (0.08) | 3.33 (0.01) | 23.50 (4.55) | 1.65 (0.30) |
LRS-PS4 | 1.18 (0.15) | 3.94 (1.17) | 43.33 (13.54) | 1.93 (0.43) |
Regolith Sample with 2 wt% Starch: | ||||||
---|---|---|---|---|---|---|
LRS-PS2 | Cycling | 150j | Shock | Irra. | Cycl.+ Irra. | |
εu (%) | 3.33 | 3.9 | 4.3 | 3.6 | 4.3 | 9.0 |
σmax (MPa) | 0.58 | 0.56 | 0.23 | 0.38 | 0.30 | 0.23 |
E mean (MPa) | 23.50 | 24 | 9.7 | 20.5 | 12.9 | 18 |
σmax relative to LRS-PS2 | −3% | −60% | −34% | −34% | −60% | |
Regolith Sample with 4 wt% Starch: | ||||||
LRS-PS4 | Cycling | 150j | Shock | Irra. | Cycl.+ Irra. | |
εu (%) | 3.94 | 4.1 | 4.6 | 4.5 | 4.0 | 4.6 |
σmax (MPa) | 1.18 | 1.73 | 0.39 | 0.46 | 0.56 | 0.67 |
E mean (MPa) | 43.33 | 33.33 | 15 | 24.3 | 21.4 | 14 |
σmax relative to LRS-PS4 | +32% | −67% | −61% | −53% | −43% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bliard, C.; Maalouf, C.; Lachi, M.; Bogard, V.; Murer, S.; Beaumont, F.; Polidori, G.; Bogard, F. Starch-Regolith Aerogel Bricks as a Sustainable Building Material for In Situ Extraterrestrial Constructions. Sustainability 2025, 17, 7260. https://doi.org/10.3390/su17167260
Bliard C, Maalouf C, Lachi M, Bogard V, Murer S, Beaumont F, Polidori G, Bogard F. Starch-Regolith Aerogel Bricks as a Sustainable Building Material for In Situ Extraterrestrial Constructions. Sustainability. 2025; 17(16):7260. https://doi.org/10.3390/su17167260
Chicago/Turabian StyleBliard, Christophe, Chadi Maalouf, Mohammed Lachi, Virginie Bogard, Sébastien Murer, Fabien Beaumont, Guillaume Polidori, and Fabien Bogard. 2025. "Starch-Regolith Aerogel Bricks as a Sustainable Building Material for In Situ Extraterrestrial Constructions" Sustainability 17, no. 16: 7260. https://doi.org/10.3390/su17167260
APA StyleBliard, C., Maalouf, C., Lachi, M., Bogard, V., Murer, S., Beaumont, F., Polidori, G., & Bogard, F. (2025). Starch-Regolith Aerogel Bricks as a Sustainable Building Material for In Situ Extraterrestrial Constructions. Sustainability, 17(16), 7260. https://doi.org/10.3390/su17167260