Advances in Solid Particle Thermal Energy Storage: A Comprehensive Review
Abstract
1. Introduction
2. Correlation Between Solid Particle Characteristics and Reactor Performance
3. Advances in Flow Heat Transfer Characteristics of Solid Particle Heat Storage in Different Bed Reactors
3.1. Heat Transfer Characteristics of Solid Particles in Packed Beds
3.2. Heat Transfer Characteristics of Solid Particle Heat Storage in Moving Bed
3.3. Heat Transfer Characteristics of Solid Particle Heat Storage in Fluidized Beds
4. Advances in Solid Particle Thermal Energy Storage in Different Bed Reactors
4.1. Solid Particle Thermal Energy Storage of Packed Beds
4.2. Solid Particle Thermal Energy Storage of Moving Beds
4.3. Solid Particle Thermal Energy Storage of Fluidized Beds
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brunelli, L.; Borri, E.; Pisello, A.L.; Nicolini, A.; Mateu, C.; Cabeza, L.F. Thermal Energy Storage in Energy Communities: A Perspective Overview through a Bibliometric Analysis. Sustainability 2024, 16, 5895. [Google Scholar] [CrossRef]
- Rahjoo, M.; Goracci, G.; Martauz, P.; Rojas, E.; Dolado, J.S. Geopolymer Concrete Performance Study for High-Temperature Thermal Energy Storage (TES) Applications. Sustainability 2022, 14, 1937. [Google Scholar] [CrossRef]
- Zwierzchowski, R.; Ziomacka, M.; Niemyjski, O. The Impact of Thermal Energy Storage on the Emission of Particulate Pollutants into the Atmosphere. Sustainability 2024, 16, 10926. [Google Scholar] [CrossRef]
- Seyitini, L.; Belgasim, B.; Enweremadu, C.C. Solid state sensible heat storage technology for industrial applications—A review. J. Energy Storage 2023, 62, 106919. [Google Scholar] [CrossRef]
- Kesserwani, J.; Lahoud, C.; Al Asmar, J.; Lahoud, C. On the Technical, Economic, and Environmental Impact of Mobilized Thermal Energy Storage: A Case Study. Sustainability 2025, 17, 2542. [Google Scholar] [CrossRef]
- Georgousis, N.; Diriken, J.; Speetjens, M.; Rindt, C. Comprehensive review on packed-bed sensible heat storage systems. J. Energy Storage 2025, 121, 116516. [Google Scholar] [CrossRef]
- Yu, Q.; Li, X.; Yang, Y.; Li, Z.; Nie, F. Dynamic simulation and parametric influence analysis on thermal performance of a quartz tube solid particle receiver in solar tower power plants. Particuology 2023, 79, 161–171. [Google Scholar] [CrossRef]
- Too, Y.C.S.; Kim, J.-S.; Kuruneru, S.T.W.; Stiff, R.; Dawson, A. Development of a staged particle heat exchanger for particle thermal energy storage systems. Sol. Energy 2021, 220, 111–118. [Google Scholar] [CrossRef]
- Xu, Y.; Yue, C.; Gao, P. Investigation of Heat Storage Characteristics of Solar Radiation Packed Bed. Acta Energiae Solaris Sin. 2022, 43, 531–539. [Google Scholar] [CrossRef]
- Ji, M.; Lv, L.; Li, H.; Zhou, H. Experimental study of solid particles in thermal energy storage systems for shell and tube heat exchanger: Effect of particle size and flow direction. Renew. Energy 2024, 231, 120863. [Google Scholar] [CrossRef]
- Sharifian, M.; Hudon, N.; Sarpy, G.; Pahija, E.; Patience, G.S. Experimental modeling to design a heat exchanger control strategy for a Fischer–Tropsch fluidized bed. Appl. Therm. Eng. 2024, 246, 122911. [Google Scholar] [CrossRef]
- Davenport, P.; Ma, Z.; Schirck, J.; Nation, W.; Morris, A.; Wang, X.; Lambert, M. Characterization of solid particle candidates for application in thermal energy storage and concentrating solar power systems. Sol. Energy 2023, 262, 111908. [Google Scholar] [CrossRef]
- Cheng, Z.; Guo, Z.; Tan, Z.; Yang, J.; Wang, Q. Waste heat recovery from high-temperature solid granular materials: Energy challenges and opportunities. Renew. Sustain. Energy Rev. 2019, 116, 109428. [Google Scholar] [CrossRef]
- Ji, Y.; Song, G.; Han, Y.; Song, W.; Tang, Z.; Wang, H. Experimental study on heat storage characteristics of an air-sand moving bed heat exchanger. Int. Commun. Heat Mass Transf. 2024, 159, 107966. [Google Scholar] [CrossRef]
- Rusin, K.; Ochmann, J.; Bartela, Ł.; Rulik, S.; Stanek, B.; Jurczyk, M.; Waniczek, S. Influence of geometrical dimensions and particle diameter on exergy performance of packed-bed thermal energy storage. Energy 2022, 260, 125204. [Google Scholar] [CrossRef]
- Luo, Q.; Majó, M.; Calderón, A.; Barreneche, C.; Li, J.; Tian, Y.; Fernández, A.I.; Liu, X. Thermodynamic modelling of a thermal energy storage packed bed tank: Exploring the influence of different particle sizes on overall performance. J. Energy Storage 2025, 119, 116345. [Google Scholar] [CrossRef]
- Baumann, T.; Zunft, S. Development and Performance Assessment of a Moving Bed Heat Exchanger for Solar Central Receiver Power Plants. Energy Procedia 2015, 69, 748–757. [Google Scholar] [CrossRef]
- Cheng, Z.; Tan, Z.; Guo, Z.; Yang, J.; Wang, Q. Technologies and fundamentals of waste heat recovery from high-temperature solid granular materials. Appl. Therm. Eng. 2020, 179, 115703. [Google Scholar] [CrossRef]
- Ma, R.; Ren, S.; Cheng, H.; Wang, F.; Wu, Y. Effect of arrangement form and particle size on waste heat recovery of high temperature particles in moving bed. Appl. Therm. Eng. 2025, 268, 125930. [Google Scholar] [CrossRef]
- Singh, D.; Goswami, R.; Mishra, P.; Kumar, V.; Mishra, I.M. Heat transfer characteristics in a liquid-solids fluidisation bed: Effect of particle di-ameter and fluids. Powder Technol. 2025, 460, 121013. [Google Scholar] [CrossRef]
- Ma, Z.; Martinek, J. Analysis of a Fluidized-Bed Particle/Supercritical-CO2 Heat Exchanger in a Concentrating Solar Power System. J. Sol. Energy Eng. 2021, 143, 031010. [Google Scholar] [CrossRef]
- Albrecht, K.J.; Ho, C.K. High-temperature flow testing and heat transfer for a moving packed-bed particle/sCO2 heat exchanger. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2018. [Google Scholar]
- Jiang, B.; Xia, D.; Zhang, H.; Pei, H.; Liu, X. Effective waste heat recovery from industrial high-temperature granules: A Moving Bed Indirect Heat Exchanger with embedded agitation. Energy 2020, 208, 118346. [Google Scholar] [CrossRef]
- Lungu, M.; Wang, J.; Yang, Y. On fluidization dynamics of Geldart D particles. Powder Technol. 2025, 459, 121014. [Google Scholar] [CrossRef]
- Nemś, M.; Nemś, A.; Gębarowska, K. The Influence of the Shape of Granite on the Heat Storage Process in a Rock Bed. Energies 2020, 13, 5662. [Google Scholar] [CrossRef]
- Shen, Y.; Zheng, B.; Sun, P.; Qi, C.; Wang, M.; Dong, Y.; Wang, Y.; Lv, J.; Wang, Y. Effects of ellipsoidal and regular hexahedral particles on the performance of the waste heat recovery equipment in a methanol reforming hydrogen production system. Int. J. Hydrogen Energy 2023, 48, 11141–11152. [Google Scholar] [CrossRef]
- Wu, W.; Duan, L.; Li, L.; Pallarès, D. Movement behavior of char particles in a bubbling fluidized bed at high temperature—The influence of particle shape. Powder Technol. 2023, 430, 121014. [Google Scholar] [CrossRef]
- van der Merwe, W.; du Toit, C.; Kruger, J.-H. Influence of the packing structure on the flow through packed beds with small cylinder diameter to particle diameter ratios. Nucl. Eng. Des. 2020, 365, 110700. [Google Scholar] [CrossRef]
- Zhang, S.; Wen, Z.; Liu, X.; Liu, X.; Wang, S.; Zhang, H. Experimental study on the permeability and resistance characteristics in the packed bed with the multi-size irregular particle applied in the sinter vertical waste heat recovery technology. Powder Technol. 2021, 384, 304–312. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, X.; Guo, Z.; Yang, J.; Wang, Q. Numerical study of heat transfer for gravity-driven binary size particle flow around circular tube. Powder Technol. 2023, 413, 118070. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, Y.; An, X.; Yu, A.; Xie, J. Numerical prediction on the minimum fluidization velocity of a supercritical water fluidized bed reactor: Effect of particle size distributions. Powder Technol. 2021, 389, 119–130. [Google Scholar] [CrossRef]
- Tiskatine, R.; Eddemani, A.; Gourdo, L.; Abnay, B.; Ihlal, A.; Aharoune, A.; Bouirden, L. Experimental evaluation of thermo-mechanical performances of candidate rocks for use in high temperature thermal storage. Appl. Energy 2016, 171, 243–255. [Google Scholar] [CrossRef]
- Frazzica, A.; Cabeza, L.F. (Eds.) Green Energy and Technology Recent Advancements in Materials and Systems for Thermal Energy Storage. 2019. Available online: http://www.springer.com/series/8059 (accessed on 11 May 2025).
- Li, X.; Jiang, H.; Su, Z.; Xiong, L.; Liang, C.; Liu, D.; Duan, L.; Chen, H.; Chen, X. Integrated attrition model of mechanical-thermal-reaction for CaCO3/CaO thermochemical energy storage. Appl. Therm. Eng. 2024, 257, 124247. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Solar Heat for Industrial Processes, Technology Brief; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2015. [Google Scholar]
- Calderón-Vásquez, I.; Segovia, V.; Cardemil, J.M.; Barraza, R. Assessing the use of copper slags as thermal energy storage material for packed-bed systems. Energy 2021, 227, 120370. [Google Scholar] [CrossRef]
- Fernandez, A.I.; Martínez, M.; Segarra, M.; Martorell, I.; Cabeza, L.F. Selection of materials with potential in sensible thermal energy storage. Sol. Energy Mater. Sol. Cells 2010, 94, 1723–1729. [Google Scholar] [CrossRef]
- Majó, M.; Calderón, A.; Svobodova-Sedlackova, A.; Segarra, M.; Fernández, A.I.; Barreneche, C. New database of sustainable solid particle materials to perform a material-based design for a thermal energy storage in concentrating solar power. Sol. Energy Mater. Sol. Cells 2025, 281, 113309. [Google Scholar] [CrossRef]
- Ghorbani, B.; Mehrpooya, M.; Sharifzadeh, M.M.M. Introducing a hybrid photovoltaic-thermal collector, ejector refrigeration cycle and phase change material storage energy system (Energy, exergy and economic analysis). Int. J. Refrig. 2019, 103, 61–76. [Google Scholar] [CrossRef]
- Bianco, N.; Fragnito, A.; Iasiello, M.; Mauro, G.M. Multiscale analysis of a seasonal latent thermal energy storage with solar collectors for a single-family building. Therm. Sci. Eng. Prog. 2024, 50, 102538. [Google Scholar] [CrossRef]
- Schmidt, M.; Linder, M. Power generation based on the Ca(OH)2/CaO thermochemical storage system—Experimental investigation of discharge operation modes in lab scale and corresponding conceptual process design. Appl. Energy 2017, 203, 594–607. [Google Scholar] [CrossRef]
- Pelay, U.; Luo, L.; Fan, Y.; Stitou, D.; Castelain, C. Integration of a thermochemical energy storage system in a Rankine cycle driven by concentrating solar power: Energy and exergy analyses. Energy 2019, 167, 498–510. [Google Scholar] [CrossRef]
- de Gracia, A.; Cabeza, L.F. Phase change materials and thermal energy storage for buildings. Energy Build. 2015, 103, 414–419. [Google Scholar] [CrossRef]
- Gutierrez, A.; Miró, L.; Gil, A.; Rodríguez-Aseguinolaza, J.; Barreneche, C.; Calvet, N.; Py, X.; Fernández, A.I.; Grágeda, M.; Ushak, S.; et al. Industrial waste materials and by-products as thermal energy storage (TES) materials: A review. AIP Conf. Proc. 2016, 1734, 050019. [Google Scholar] [CrossRef]
- Gurtubay, L.; Gallastegui, G.; Elias, A.; Rojo, N.; Barona, A. Accelerated ageing of an EAF black slag by carbonation and percolation for long-term behaviour assessment. J. Environ. Manag. 2014, 140, 45–50. [Google Scholar] [CrossRef]
- Jayaranjan, M.L.D.; van Hullebusch, E.D.; Annachhatre, A.P. Reuse options for coal fired power plant bottom ash and fly ash. Rev. Environ. Sci. Bio/Technol. 2014, 13, 467–486. [Google Scholar] [CrossRef]
- Majó, M.; Calderón, A.; Salgado-Pizarro, R.; Svodobova-Sedlackova, A.; Barreneche, C.; Chimenos, J.M.; Fernández, A.I. Assessment of Solid Wastes and By-Products as Solid Particle Materials for Concentrated Solar Power Plants. Sol. RRL 2022, 6, 2100884. [Google Scholar] [CrossRef]
- Longhi, M.A.; Rodríguez, E.D.; Bernal, S.A.; Provis, J.L.; Kirchheim, A.P. Valorisation of a kaolin mining waste for the production of geopolymers. J. Clean. Prod. 2016, 115, 265–272. [Google Scholar] [CrossRef]
- Sarkar, S.; Patil, S.; Vasudeva, N. Comparative Analysis of Conventional and Contemporary Teaching Methods for Human Anatomy to Medical Undergraduates. J. Res. Med. Educ. Ethics 2015, 5, 39–43. [Google Scholar] [CrossRef]
- Alfocea-Roig, A.; Huete-Hernández, S.; García-Zubiri, Í.; Giro-Paloma, J.; Formosa, J. Can tundish deskulling waste be used as a magnesium oxide source to develop magnesium phosphate cement? J. Environ. Chem. Eng. 2023, 11, 110618. [Google Scholar] [CrossRef]
- Muñoz, I.; Soto, A.; Maza, D.; Bayón, F. Life cycle assessment of refractory waste management in a Spanish steel works. Waste Manag. 2020, 111, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jikar, P.; Dhokey, N. Overview on production of reduced iron powder from mill scale waste. Mater. Today Proc. 2021, 44, 4324–4329. [Google Scholar] [CrossRef]
- Gao, S.; Theuerkauf, J.; Pakseresht, P.; Kellogg, K.; Fan, Y. A modified Ergun equation for application in packed beds with bidisperse and polydisperse spherical particles. Powder Technol. 2024, 445, 120035. [Google Scholar] [CrossRef]
- Gaviño, D.; Cortés, E.; García, J.; Calderón-Vásquez, I.; Cardemil, J.; Estay, D.; Barraza, R. A discrete element approach to model packed bed thermal storage. Appl. Energy 2022, 325, 119821. [Google Scholar] [CrossRef]
- Feng, J.; Dong, H.; Dong, H. Modification of Ergun’s correlation in vertical tank for sinter waste heat recovery. Powder Technol. 2015, 280, 89–93. [Google Scholar] [CrossRef]
- Dixon, A.G. General correlation for pressure drop through randomly-packed beds of spheres with negligible wall effects. AIChE J. 2023, 69, e18035. [Google Scholar] [CrossRef]
- Dixon, A.G. Are there wall effects on pressure drop through randomly packed beds of spherical catalyst particles? AIChE J. 2023, 70, e18272. [Google Scholar] [CrossRef]
- Nishida, H.; Welling, T.A.; Namigata, H.; Hiromori, K.; Suga, K.; Nagao, D.; Watanabe, K. Visualization of the packing structure of packed beds with micron-sized particles using confocal microscopy to estimate their pressure drop. Chem. Eng. J. 2025, 515, 163519. [Google Scholar] [CrossRef]
- Wu, X.; Hibiki, T. Particle-fluid heat transfer for laminar and turbulent flows in packed beds of spherical particles. Int. J. Heat Mass Transf. 2025, 236, 126257. [Google Scholar] [CrossRef]
- Cerantola, D.; Lane, C. The existence of universal pressure loss and heat transfer correlations for packed beds. Appl. Therm. Eng. 2022, 212, 118468. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Cheng, Z.; Yang, J.; Wang, Q. Experimental investigation of fluid flow and heat transfer in a randomly packed bed of sinter particles. Int. J. Heat Mass Transf. 2016, 99, 589–598. [Google Scholar] [CrossRef]
- Singhal, A.; Cloete, S.; Radl, S.; Quinta-Ferreira, R.; Amini, S. Heat transfer to a gas from densely packed beds of monodisperse spherical particles. Chem. Eng. J. 2017, 314, 27–37. [Google Scholar] [CrossRef]
- Sun, B.; Tenneti, S.; Subramaniam, S. Modeling average gas–solid heat transfer using particle-resolved direct numerical simulation. Int. J. Heat Mass Transf. 2015, 86, 898–913. [Google Scholar] [CrossRef]
- Wu, X.; Hibiki, T. Analogy between the pressure drop coefficient and Nusselt number for packed beds of spherical particles. Int. Commun. Heat Mass Transf. 2025, 162, 108651. [Google Scholar] [CrossRef]
- Watkins, M.F.; Chilamkurti, Y.N.; Gould, R.D. Analytic Modeling of Heat Transfer to Vertical Dense Granular Flows. J. Heat Transf. 2020, 142, 022103. [Google Scholar] [CrossRef]
- Bartsch, P.; Zunft, S. Granular flow around the horizontal tubes of a particle heat exchanger: DEM-simulation and experimental validation. Sol. Energy 2019, 182, 48–56. [Google Scholar] [CrossRef]
- Sullivan, W.; Sabersky, R. Heat transfer to flowing granular media. Int. J. Heat Mass Transf. 1975, 18, 97–107. [Google Scholar] [CrossRef]
- Guo, Z.; Tian, X.; Wu, Z.; Yang, J.; Wang, Q. Heat transfer of granular flow around aligned tube bank in moving bed: Experimental study and theoretical prediction by thermal resistance model. Energy Convers. Manag. 2022, 257, 115435. [Google Scholar] [CrossRef]
- Guo, Z.; Tan, Z.; Tian, X.; Wu, Z.; Wang, T.; Yang, J.; Wang, Q. Heat transfer prediction of granular flow in moving bed heat exchanger: Characteristics of heat transfer enhancement and dynamic control. Sol. Energy 2021, 230, 1052–1069. [Google Scholar] [CrossRef]
- Guo, Z.; Tian, X.; Tan, Z.; Yang, J.; Zhang, S.; Wang, Q. Numerical investigation of heat resistances in uniform dense granular flows along a vertical plate. Powder Technol. 2021, 385, 396–408. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, H.; Lu, J.; Wu, Y. Theoretical and experimental analysis of bed-to-wall heat transfer in heat recovery processing. Powder Technol. 2013, 249, 186–195. [Google Scholar] [CrossRef]
- Niegsch, J.; Köneke, D.; Weinspach, P.-M. Heat transfer and flow of bulk solids in a moving bed. Chem. Eng. Process. Process Intensif. 1994, 33, 73–89. [Google Scholar] [CrossRef]
- Adapa, S.R.; Zhang, X.; Feng, T.; Zeng, J.; Chung, K.M.; Albrecht, K.J.; Ho, C.K.; Madden, D.A.; Chen, R. Heat transfer coefficients of moving particle beds from flow-dependent thermal conductivity and near-wall resistance. Sol. Energy 2024, 282, 112960. [Google Scholar] [CrossRef]
- Fang, W.; Chen, S.; Shi, S. Dynamic characteristics and real-time control of a particle-to-sCO2 moving bed heat exchanger assisted by BP neural network. Energy 2022, 256, 124597. [Google Scholar] [CrossRef]
- Yin, J.; Zheng, Q.; Zhang, X. Heat transfer model of a particle energy storage-based moving packed bed heat exchanger. Energy Storage 2019, 2, e113. [Google Scholar] [CrossRef]
- Pidaparti, S.R.; Anderson, M.H.; Ranjan, D. Experimental investigation of thermal-hydraulic performance of discontinuous fin printed circuit heat exchangers for supercritical CO2 power cycles. Exp. Therm. Fluid Sci. 2019, 106, 119–129. [Google Scholar] [CrossRef]
- Tao, S.; Yu, Q.; Wu, J.; Wang, H. Heat transfer enhancement of MBHE via structural optimization for high-temperature granular heat recovery. Chem. Eng. Res. Des. 2024, 203, 619–629. [Google Scholar] [CrossRef]
- Lv, S.; Jiang, F.; Qi, G.; Chen, X.; Li, X. Pressure drop of liquid–solid two-phase flow in a down-flow circulating fluidized bed. Powder Technol. 2020, 375, 136–145. [Google Scholar] [CrossRef]
- Jiang, F.; Dong, X.; Qi, G.; Mao, P.; Wang, J.; Li, X. Heat-transfer performance and pressure drop in a gas-solid circulating fluidized bed spiral-plate heat exchanger. Appl. Therm. Eng. 2020, 171, 115091. [Google Scholar] [CrossRef]
- Jiang, F.; Yan, S.; Qi, G.; Li, X. Particle distribution and pressure drop in a horizontal two-pass liquid–solid circulating fluidized bed heat exchanger. Powder Technol. 2023, 416, 118210. [Google Scholar] [CrossRef]
- Zheng, N.; Liu, H.; Fang, J.; Wei, J. Numerical investigation of bed-to-tube heat transfer in a shallow fluidized bed containing mixed-size particles. Int. J. Heat Mass Transf. 2023, 211, 124252. [Google Scholar] [CrossRef]
- Lee, M.J.; Kim, S.; Kim, S.W. Experimental investigation of wall-to-bed heat transfer of carbon nanotubes in a fluidized bed. Int. J. Heat Mass Transf. 2023, 204, 123858. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Sundén, B.; Wang, Q. A network model and numerical simulations of flow distributions in packed bed reactors with different packing structures. Appl. Therm. Eng. 2020, 172, 115141. [Google Scholar] [CrossRef]
- Liang, S.; Xu, S. Optimization of filler structure in a packed bed with small diameter ratioof tube to particle based on CFD. Mod. Chem. Ind. 2019, 39, 215–219. [Google Scholar] [CrossRef]
- Gui, Y.; Zhang, Z.; Tang, S.; Li, L.; Gao, T.; Zheng, B. Effect of applied vibration on heat transfer characteristics of random packed granular bed. Energy 2025, 324, 136094. [Google Scholar] [CrossRef]
- Calderón-Vásquez, I.; Cardemil, J.M. A comparison of packed-bed flow topologies for high-temperature thermal energy storage under constrained conditions. Appl. Therm. Eng. 2024, 238, 121934. [Google Scholar] [CrossRef]
- Trevisan, S.; Guedez, R. Design optimization of an innovative layered radial-flow high-temperature packed bed thermal energy storage. J. Energy Storage 2024, 83, 110767. [Google Scholar] [CrossRef]
- Ameen, M.T.; Ma, Z.; Smallbone, A.; Norman, R.; Roskilly, A.P. Experimental study and analysis of a novel layered packed-bed for thermal energy storage applications: A proof of concept. Energy Convers. Manag. 2023, 277, 116648. [Google Scholar] [CrossRef]
- Lin, L.; Wang, L.; Bai, Y.; Lin, X.; Zhang, S.; Ge, Z.; Peng, L.; Chen, H. Experimental study on the storage performance of the innovative spray-type packed bed thermal energy storage. Appl. Therm. Eng. 2022, 219, 119415. [Google Scholar] [CrossRef]
- Modi, A.; Pérez-Segarra, C.D. Thermocline thermal storage systems for concentrated solar power plants: One-dimensional numerical model and comparative analysis. Sol. Energy 2014, 100, 84–93. [Google Scholar] [CrossRef]
- Geissbühler, L.; Becattini, V.; Zanganeh, G.; Zavattoni, S.; Barbato, M.; Haselbacher, A.; Steinfeld, A. Pilot-scale demonstration of advanced adiabatic compressed air energy storage, Part 1: Plant description and tests with sensible thermal-energy storage. J. Energy Storage 2018, 17, 129–139. [Google Scholar] [CrossRef]
- Daschner, R.; Binder, S.; Mocker, M. Pebble bed regenerator and storage system for high temperature use. Appl. Energy 2013, 109, 394–401. [Google Scholar] [CrossRef]
- Tiskatine, R.; Oaddi, R.; El Cadi, R.A.; Bazgaou, A.; Bouirden, L.; Aharoune, A.; Ihlal, A. Suitability and characteristics of rocks for sensible heat storage in CSP plants. Sol. Energy Mater. Sol. Cells 2017, 169, 245–257. [Google Scholar] [CrossRef]
- Türkakar, G. Performance analysis and optimal charging time investigation of solar air heater with packed bed sensible heat storage device. Sol. Energy 2021, 224, 718–729. [Google Scholar] [CrossRef]
- Georgousis, N.; Diriken, J.; Speetjens, M.F.; Rindt, C.C. Packed-Bed Thermal-Storage System Configurations for Shuttle Kiln Waste-Heat Recovery. In Proceedings of the 37th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2024), Rhodos, Greece, 30 June–5 July 2024; pp. 1469–1480. [Google Scholar]
- Tian, X.; Yang, J.; Guo, Z.; Wang, Q. Numerical Investigation of Gravity-Driven Granular Flow around the Vertical Plate: Effect of Pin-Fin and Oscillation on the Heat Transfer. Energies 2021, 14, 2187. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, J.; Guo, Z.; Yang, J.; Wang, Q. Flow and heat transfer characteristics of particles flowing along the plate with different mixing elements. CIESC J. 2022, 73, 4884–4892. [Google Scholar] [CrossRef]
- Yin, J.-M.; Zheng, Q.-Y.; Zhang, X.-R. Comparative study on the thermal-hydraulic performance of a shell and plate particle-SCO2 moving packed bed heat exchanger with various channel configurations. Appl. Therm. Eng. 2020, 181, 115946. [Google Scholar] [CrossRef]
- Izquierdo, J.; Hagan, C.; Cruz, S.; Lian, Y.; Atre, S.; Bhatia, B. Particle flow optimization for moving bed heat exchangers. Appl. Therm. Eng. 2024, 254, 123875. [Google Scholar] [CrossRef]
- Tian, X.; Yang, J.; Guo, Z.; Wang, Q.; Sunden, B. Numerical Study of Heat Transfer in Gravity-Driven Particle Flow around Tubes with Different Shapes. Energies 2020, 13, 1961. [Google Scholar] [CrossRef]
- Tian, X.; Guo, Z.; Jia, H.; Yang, J.; Wang, Q. Numerical investigation of a new type tube for shell-and-tube moving packed bed heat exchanger. Powder Technol. 2021, 394, 584–596. [Google Scholar] [CrossRef]
- NematpourKeshteli, A.; Iasiello, M.; Langella, G.; Bianco, N. Optimization of the thermal performance of a lobed triplex-tube solar thermal storage system equipped with a phase change material. Heliyon 2024, 10, e36105. [Google Scholar] [CrossRef]
- Lu, W.; Li, Z.; Tang, X.; Liu, D.; Ke, X.; Zhou, T. Simulation study on heat and mass transfer characteristics within tubular moving bed heat exchangers. Case Stud. Therm. Eng. 2024, 61, 105008. [Google Scholar] [CrossRef]
- Qi, C.; Zhang, Z.; Wang, M.; Li, Y.; Gong, X.; Sun, P.; Zheng, B. Effects of built-in tube bundle arrangements on solid particle flowcharacteristics in heat exchangers. Chem. Ind. Eng. Prog. 2023, 42, 2306–2314. [Google Scholar] [CrossRef]
- Guo, Z.; Yang, J.; Tan, Z.; Tian, X.; Wang, Q. Numerical study on gravity-driven granular flow around tube out-wall: Effect of tube inclination on the heat transfer. Int. J. Heat Mass Transf. 2021, 174, 121296. [Google Scholar] [CrossRef]
- Blaszczuk, A.; Jagodzik, S. Heat transfer characteristic in an external heat exchanger with horizontal tube bundle. Int. J. Heat Mass Transf. 2020, 149, 119253. [Google Scholar] [CrossRef]
- Ho, C.K.; Carlson, M.; Albrecht, K.J.; Ma, Z.; Jeter, S.; Nguyen, C.M. Evaluation of Alternative Designs for a High Temperature Particle-to-sCO2 Heat Exchanger. J. Sol. Energy Eng. 2019, 141, 021001. [Google Scholar] [CrossRef]
- Bisognin, P.C.; Bastos, J.C.S.C.; Meier, H.F.; Padoin, N.; Soares, C. Influence of different parameters on the tube-to-bed heat transfer coefficient in a gas-solid fluidized bed heat exchanger. Chem. Eng. Process.-Process Intensif. 2020, 147, 107693. [Google Scholar] [CrossRef]
- Wei, B.; Lv, G.; Meng, X.; Khalid, Z.; Huang, Q.; Jiang, X. Numerical investigation of the effect of the location of an immersed tube in a fluidized bed on heat transfer of surface-to-bed. Powder Technol. 2023, 430, 119001. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, X.; Flamant, G. Design of reactive particle fluidized bed heat exchangers for gas–solid thermochemical energy storage. Chem. Eng. J. 2024, 489, 151305. [Google Scholar] [CrossRef]
- Ma, Z.; Gifford, J.; Wang, X.; Martinek, J. Electric-thermal energy storage using solid particles as storage media. Joule 2023, 7, 843–848. [Google Scholar] [CrossRef]
- Li, A.; Jiménez, F.H.; Pleite, E.C.; Wang, Z.; Zhu, L. Numerical comparison of thermal energy performance between spouted, fluidized and fixed beds using supercritical CO2 as fluidizing agent. Case Stud. Therm. Eng. 2022, 39, 102469. [Google Scholar] [CrossRef]
- Gifford, J.; Ma, Z.; Wang, X.; Braun, R. Computational fluid dynamic analysis of a novel particle-to-air fluidized-bed heat exchanger for particle-based thermal energy storage applications. J. Energy Storage 2023, 73, 108635. [Google Scholar] [CrossRef]
- Wu, C.; Yang, H.; He, X.; Hu, C.; Yang, L.; Li, H. Principle, development, application design and prospect of fluidized bed heat exchange technology: Comprehensive review. Renew. Sustain. Energy Rev. 2022, 157, 112023. [Google Scholar] [CrossRef]
Source | Material | Specific Heat Capacity (kJ/kg·°C) | Density (kg/m3) | Thermal Conductivity (W/m·°C) | Energy Stored per Volume (kJ/m3) | Energy Stored per Cost (kJ/EUR) |
---|---|---|---|---|---|---|
construction industry | Asbestos wastes [44] | 0.80–1.03 | 3000–3120 | 1.40–2.10 | 2855 ± 355 | 2.73 ± 1.82 |
Concrete [45] | 0.85–1.17 | 2200–2400 | 1.25–1.50 | 2320 ± 380 | 133.85 ± 68.15 | |
Bricks [45] | 0.70–1.07 | 1640–1780 | 0.35–0.70 | 1510 ± 320 | 659 ± 245 | |
municipal solid waste | Fly ashes [46] | 0.71–1.12 | 2900–2960 | 1.16–1.59 | 2080 ± 700 | 15.50 ± 5.69 |
Bottom ashes [46] | 0.71–1.12 | 2900–2960 | 1.16–1.59 | 2680 ± 600 | 34.05 ± 15.30 | |
mining industry | Gossan [47] | 0.98–1.03 | 3720–3780 | 1–3 | 3770 ± 100 | 5500 ± 4500 |
Kaolinitic sludge [48] | 0.70–0.90 | 2850 | 0.5–2.5 | 2275 ± 285 | 11.96 ± 4.14 | |
steelmaking industry | Electric arc furnace slag [47,49] | 0.99–1.07 | 3350–3390 | 0.53–0.64 | 3470 ± 140 | 6.68 ± 3.43 |
Tundish [50,51] | 1.03–1.14 | 3180–3410 | 0.64–0.85 | 3575 ± 215 | 14.46 ± 7.24 | |
Refractory wastes [51] | 0.70–1 | 2970–3280 | 1–2.5 | 2655 ± 485 | 11.25 ± 5.75 | |
Mill scale [52] | 0.70–1 | 5170–5740 | 0.5–1.5 | 4635 ± 845 | 11.25 ± 5.75 | |
other metal industries | Waste from copper refinement [38] | 0.5–1 | 1870 | 1–2 | 1402 ± 466 | 0.43 ± 0.29 |
Dross from aluminum industry [53] | 0.63–0.75 | 2720–3310 | 1.16–2 | 2080 ± 270 | 2.41 ± 1.04 | |
Red mud [54] | 1.03–1.31 | 3050–3630 | 0.77–0.83 | 3905 ± 565 | 40.80 ± 17.80 |
Heat Transfer Correlation of | Definition and Scope of Application |
---|---|
[59] | |
[60] | |
[61] | |
[62] | |
[63] |
Application Situation | Heat Transfer Correlation of | Definition and Scope of Application |
---|---|---|
Vertical channel | [75] | |
Straight channel with offset rectangular fins | [76] | |
Straight passage with offset airfoil | [76] | |
Circular pipe staggered arrangement | [77] | |
Circular tube alignment arrangement | [77] | |
Elliptical pipe staggered arrangement | [77] | |
Hexagonal pipe staggered arrangement | [77] |
Heat Transfer Correlation of | Definition and Scope of Application |
---|---|
[81] | |
[82] | |
[82] |
Cost | Heat Transfer Efficiency | Structural Reliability | Manufacturability | Spurious Power | Heat Loss | Expandability | Compatibility | Erosion Resistance | Corrosion Resistance | |
---|---|---|---|---|---|---|---|---|---|---|
Fluidized bed | 0.24 | 0.43 | 0.37 | 0.32 | 0.24 | 0.39 | 0.31 | 0.28 | 0.30 | 0.41 |
Shell-and-tube type moving bed | 0.41 | 0.28 | 0.31 | 0.33 | 0.38 | 0.32 | 0.34 | 0.35 | 0.35 | 0.28 |
Plate-and-shell type moving bed | 0.35 | 0.29 | 0.32 | 0.35 | 0.37 | 0.29 | 0.34 | 0.36 | 0.35 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, G.; Hou, S.; Guo, Q.; Cai, Y.; Xu, M. Advances in Solid Particle Thermal Energy Storage: A Comprehensive Review. Sustainability 2025, 17, 7244. https://doi.org/10.3390/su17167244
Zeng G, Hou S, Guo Q, Cai Y, Xu M. Advances in Solid Particle Thermal Energy Storage: A Comprehensive Review. Sustainability. 2025; 17(16):7244. https://doi.org/10.3390/su17167244
Chicago/Turabian StyleZeng, Guang, Shijie Hou, Qiankun Guo, Yongtie Cai, and Mobei Xu. 2025. "Advances in Solid Particle Thermal Energy Storage: A Comprehensive Review" Sustainability 17, no. 16: 7244. https://doi.org/10.3390/su17167244
APA StyleZeng, G., Hou, S., Guo, Q., Cai, Y., & Xu, M. (2025). Advances in Solid Particle Thermal Energy Storage: A Comprehensive Review. Sustainability, 17(16), 7244. https://doi.org/10.3390/su17167244