How Does Global Supply Chain Pressure Affect Oil Prices in Futures Markets?
Abstract
1. Introduction
2. Variables and Model Specification
2.1. Empirical Model and Selection of Variables
2.2. Identifying Restrictions
3. Empirical Results
3.1. Baseline Results
3.2. Comparison of Responses to GSCP Shocks in Different Periods
3.3. Comparison of Responses to GSCP Shocks with Different Commodities
4. Explanations for the Movement of Global Supply Chain Pressure
5. Robustness Test
5.1. Replacing the Speculation Variable with the Inventory Variable
5.2. Using Different Identifying Restrictions in the SVAR Model
5.3. Splitting the Sample Period into Pre- and Post-Pandemic Periods
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Benigno, G.; Giovanni, J.; Groen, J.; Noble, A. A New Barometer of Global Supply Chain Pressures. Federal Reserve Bank of New York Liberty Street Economics, 4 January 2022. Available online: https://libertystreeteconomics.newyorkfed.org/2022/01/a-new-barometer-of-global-supply-chain-pressures/ (accessed on 16 May 2025).
- Akinci, O.; Benigno, G.; Heymann, R.; Giovanni, J.; Groen, J.; Lin, L.; Noble, A. The Global Supply Side of Inflationary Pressures. Federal Reserve Bank of New York, 28 January 2022. Available online: https://libertystreeteconomics.newyorkfed.org/2022/01/the-global-supply-side-of-inflationary-pressures/ (accessed on 16 May 2025).
- Nugroho, A.D.; Ma’ruf, M.I.; Nasir, M.A.; Fekete-Farkas, M.; Lakner, Z. Impact of global trade agreements on agricultural producer prices in Asian countries. Heliyon 2024, 10. Available online: https://www.cell.com/action/showPdf?pii=S2405-8440%2824%2900666-2 (accessed on 16 May 2025). [CrossRef] [PubMed]
- Diaz, E.M.; Cunado, J.; de Gracia, F.P. Commodity price shocks, supply chain disruptions and U.S. inflation. Financ. Res. Lett. 2023, 58, 104495. [Google Scholar] [CrossRef]
- Ascari, G.; Bonam, D.; Smadu, A. Global supply chain pressures, inflation, and implications for monetary policy. J. Int. Money Financ. 2024, 142, 103029. [Google Scholar] [CrossRef]
- Ginn, W. Global supply chain disruptions and financial conditions. Econ. Lett. 2024, 239, 111739. [Google Scholar] [CrossRef]
- Finck, D.; Tillman, P. The Macroeconomic Effects of Global Supply Chain Disruptions; Bank of Finland Institute for Emerging Economies BOFIT Discussion Papers; Bank of Finland Institute for Emerging Economies BOFIT: Helsinki, Finland, 2022; BOFIT Discussion Papers 14. [Google Scholar]
- Hu, G.; Gozgor, G.; Lu, Z.; Mahalik, M.K.; Pal, S. Determinants of renewable stock returns: The role of global supply chain pressure. Renew. Sustain. Energy Rev. 2024, 191, 114182. [Google Scholar] [CrossRef]
- Kong, F.; Gao, Z.; Camelia, O. Green bond in China: An effective hedge against global supply chain pressure? Energy Econ. 2023, 128, 107167. [Google Scholar] [CrossRef]
- Li, Z.Z.; Su, C.W.; Moldovan, N.C.; Umar, M. Energy consumption within policy uncertainty: Considering the climate and economic factors. Renew. Energy 2023, 208, 567–576. [Google Scholar] [CrossRef]
- Qin, M.; Su, C.W.; Pirtea, M.G.; Peculea, A.D. The essential role of Russian geopolitics: A fresh perception into the gold market. Resour. Policy 2023, 81, 103310. [Google Scholar] [CrossRef]
- Rajput, H.; Changotra, R.; Rajput, P.; Gautam, S.; Gollakota, A.R.K.; Arora, A.S. A shock like no other: Coronavirus rattles commodity markets. Environ. Dev. Sustain. 2021, 23, 6564–6575. [Google Scholar] [CrossRef]
- Gozgor, G.; Khalfaoui, R.; Yarovaya, L. Global supply chain pressure and commodity markets: Evidence from multiple wavelet and quantile connectedness analyses. Financ. Res. Lett. 2023, 54, 103791. [Google Scholar] [CrossRef]
- Baumeister, C.; Hamilton, J.D. Structural interpretation of vector autoregressions with incomplete identification: Revisiting the role of oil supply and demand shocks. Am. Econ. Rev. 2019, 109, 1873–1910. [Google Scholar] [CrossRef]
- Kilian, L.; Zhou, X. Oil prices, exchange rates and interest rates. J. Int. Money Financ. 2022, 126, 102679. [Google Scholar] [CrossRef]
- Robe, M.A.; Wallen, J. Fundamentals, derivatives market information and oil price volatility. J. Futures Mark. 2016, 36, 317–344. [Google Scholar] [CrossRef]
- Adrian, T.; Shin, H.S. Liquidity and leverage. J. Financ. Intermediation 2010, 19, 418–437. [Google Scholar] [CrossRef]
- Manera, M.; Nicolini, M.; Vignati, I. Modelling futures price volatility in energy markets: Is there a role for financial speculation? Energy Econ. 2016, 53, 220–229. [Google Scholar] [CrossRef]
- Sims, C.A. Macroeconomics and reality. Econometrica 1980, 48, 1–48. [Google Scholar] [CrossRef]
- Toda, H.Y.; Yamamoto, T. Statistical inference in vector autoregressions with possibly integrated processes. J. Econom. 1995, 66, 225–250. [Google Scholar] [CrossRef]
- Chen, H.; Liao, H.; Tang, B.J.; Wei, Y.M. Impacts of OPEC’s political risk on the international crude oil prices: An empirical analysis based on the SVAR models. Energy Econ. 2016, 57, 42–49. [Google Scholar] [CrossRef]
- Basher, S.A.; Haug, A.A.; Sadorsky, P. Oil price, exchange rates and emerging stock markets. Energy Econ. 2012, 34, 227–240. [Google Scholar] [CrossRef]
- Kilian, L. Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market. Am. Econ. Rev. 2009, 99, 1053–1069. [Google Scholar] [CrossRef]
- Li, J.; Ruan, X.; Zhang, J. The price of COVID-19-induced uncertainty in the options market. Econ. Lett. 2022, 211, 110265. [Google Scholar] [CrossRef]
- McKibbin, W.; Fernando, R. The global economic impacts of the COVID-19 pandemic. Econ. Model. 2023, 129, 106551. [Google Scholar] [CrossRef]
- Benk, S.; Gillman, M. Identifying money and inflation expectation shocks to real oil prices. Energy Econ. 2023, 126, 106878. [Google Scholar] [CrossRef]
- Bessembinder, H. Systematic risk, hedging pressure, and risk premiums in futures markets. Rev. Financ. Stud. 1992, 5, 637–667. [Google Scholar] [CrossRef]
- De Roon, F.A.; Nijman, T.E.; Veld, C. Hedging pressure effects in futures markets. J. Financ. 2000, 55, 1437–1456. [Google Scholar] [CrossRef]
- Acharya, V.V.; Lochstoer, L.A.; Ramadorai, T. Limits to arbitrage and hedging: Evidence from commodity markets. J. Financ. Econ. 2013, 109, 441–465. [Google Scholar] [CrossRef]
- Li, B. Speculation, risk aversion, and risk premiums in the crude oil market. J. Bank. Financ. 2018, 95, 64–81. [Google Scholar] [CrossRef]
- Etula, E. Broker-dealer risk appetite and commodity returns. J. Financ. Econom. 2013, 11, 486–521. [Google Scholar] [CrossRef]
- Sanders, D.R.; Irwin, S.H. The impact of index funds in commodity futures markets: A systems approach. J. Altern. Invest. 2011, 14, 40–49. [Google Scholar] [CrossRef]
- Cheng, I.H.; Xiong, W. The financialization of commodity markets. Annu. Rev. Financ. Econ. 2014, 6, 419–441. [Google Scholar] [CrossRef]
- Fernandez-Perez, A.; Fuertes, A.-M.; Gonzalez-Fernandez, M.; Miffre, J. Fear of hazards in commodity futures markets. J. Bank. Financ. 2020, 119, 105902. [Google Scholar] [CrossRef]
- Amiti, M.; Heise, S.; Wang, A. High Import Prices along the Global Supply Chain Feed Through to U.S. Domestic Prices. Federal Reserve Bank of New York Liberty Street Economics, 8 November 2021. Available online: https://libertystreeteconomics.newyorkfed.org/2021/11/high-import-prices-along-the-global-supply-chain-feed-through-to-u-s-domestic-prices/ (accessed on 16 May 2025).
- Abel, J.; Bram, J.; Deitz, R.; Lu, J. Severe Supply Disruptions Are Impeding Business Activity in the Region. Federal Reserve Bank of New York Liberty Street Economics, 21 October 2021. Available online: https://libertystreeteconomics.newyorkfed.org/2021/10/severe-supply-disruptions-are-impeding-business-activity-in-the-region/ (accessed on 16 May 2025).
- Tang, K.; Xiong, W. Index investment and the financialization of commodities. Financ. Anal. J. 2012, 68, 54–74. [Google Scholar] [CrossRef]
- Singleton, K. Investor flows and the 2008 boom/bust in oil prices. Manag. Sci. 2014, 60, 300–318. [Google Scholar] [CrossRef]
- Kilian, L.; Vega, C. Do energy prices respond to U.S. macroeconomic news? A test of the hypothesis of predetermined energy prices. Rev. Econ. Stat. 2011, 93, 660–671. [Google Scholar] [CrossRef]
- Amiti, M.; Redding, S.J.; Weinstein, D. The Impact of the 2018 Trade War on U.S. Prices and Welfare; NBER Working Paper; National Bureau of Economic Re: Cambridge, MA, USA, 2019; No. 25672. [Google Scholar]
- Bown, C.P. The US-China Trade War and Phase One Agreement; Peterson Institute for International Economics Working Paper; Peterson Institute for International Economics: Washington, DC, USA, 2021; Working Paper 21-29. [Google Scholar]
- Carlomagno, G.; Albagli, E. Trade wars and asset prices. J. Int. Money Financ. 2022, 124, 102631. [Google Scholar] [CrossRef]
- Burggraf, T.; Fendel, R.; Huynh, T.L.D. Political news and stock prices: Evidence from Trump’s trade war. Appl. Econ. Lett. 2020, 27, 1485–1488. [Google Scholar] [CrossRef]
- Stuermer, M. 150 years of boom and bust: What drives mineral commodity prices? Macroecon. Dyn. 2018, 22, 702–717. [Google Scholar] [CrossRef]
- Sørensen, C. Modeling seasonality in agricultural commodity futures. J. Futures Mark. 2002, 22, 393–426. [Google Scholar] [CrossRef]
- Nugroho, A.D.; Masyhuri, M. Comparing the impacts of economic uncertainty, climate change, COVID-19, and the Russia-Ukraine conflict: Which is the most dangerous for EU27 food prices? Stud. Agric. Econ. 2024, 126, 18–25. [Google Scholar] [CrossRef]
- Kilian, L.; Murphy, D. Why Agnostic Sign Restrictions Are Not Enough: Understanding the Dynamics of Oil Market VAR Models. J. Eur. Econ. Assoc. 2012, 10, 1166–1188. [Google Scholar] [CrossRef]
Variable | N | Mean | Std. Dev. | Minimum | Maximum | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
GSCPI | 318 | 0.01 | 1.01 | −1.56 | 4.39 | 2.02 | 7.50 |
LnVIX | 318 | 2.95 | 0.35 | 2.32 | 4.14 | 0.54 | 3.21 |
LnPRD | 318 | 11.22 | 0.08 | 11.06 | 11.34 | −0.47 | 2.14 |
LnWIP | 318 | 4.72 | 0.18 | 4.37 | 4.98 | −0.40 | 1.95 |
s | 318 | 0.10 | 0.10 | −0.16 | 0.29 | −0.20 | 2.29 |
LnF | 318 | −1.43 | 0.45 | −2.67 | −0.48 | −0.41 | 2.74 |
r | 318 | 2.02 | 2.05 | 0.01 | 6.36 | 0.64 | 1.89 |
GSCPI | LnVIX | LnPRD | LnWIP | s | LnF | r | ||
---|---|---|---|---|---|---|---|---|
ADF | Level | −3.480 | −4.491 | −1.429 | −3.191 | −5.038 | −2.943 | −2.756 |
(0.0005) | (0.0002) | (0.1426) | (0.0881) | (0.0002) | (0.0417) | (0.2149) | ||
First difference | −16.332 | −14.750 | −18.203 | −7.094 | −14.313 | −13.621 | −5.576 | |
(0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | ||
PP | Level | −3.521 | −4.277 | −2.720 | −2.696 | −3.273 | −2.576 | −1.283 |
(0.0075) | (0.0005) | (0.2294) | (0.2390) | (0.0161) | (0.0981) | (0.1841) | ||
First difference | −17.180 | −21.101 | −18.911 | −14.896 | −20.499 | −13.205 | −11.339 | |
(0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) |
Month | 6 | 12 | 18 | 24 | 30 | 36 |
---|---|---|---|---|---|---|
Full sample period | 5.42% | 6.49% | 6.82% | 6.99% | 7.09% | 7.16% |
Period 1 | 0.18% | 0.91% | 2.36% | 3.95% | 5.30% | 6.31% |
Period 2 | 5.37% | 9.77% | 16.10% | 18.60% | 19.10% | 19.00% |
Month | 6 | 12 | 18 | 24 | 30 | 36 | |
---|---|---|---|---|---|---|---|
gold | Full sample period | 6.62% | 6.31% | 6.07% | 5.85% | 5.70% | 5.62% |
Period 1 | 5.03% | 3.67% | 3.29% | 3.19% | 3.21% | 3.28% | |
Period 2 | 12.80% | 12.40% | 10.00% | 9.42% | 9.70% | 10.10% | |
copper | Full sample period | 8.36% | 11.50% | 13.80% | 15.00% | 15.60% | 15.80% |
Period 1 | 11.00% | 9.69% | 9.40% | 9.28% | 9.20% | 9.13% | |
Period 2 | 19.40% | 31.90% | 34.20% | 34.30% | 34.40% | 34.40% | |
heating oil | Full sample period | 0.39% | 1.62% | 2.76% | 3.57% | 4.04% | 4.26% |
Period 1 | 5.91% | 7.62% | 8.29% | 8.50% | 8.52% | 8.46% | |
Period 2 | 4.97% | 8.58% | 18.00% | 22.00% | 22.60% | 22.30% | |
soybean | Full sample period | 0.16% | 0.44% | 1.01% | 1.30% | 1.33% | 1.27% |
Period 1 | 1.17% | 0.81% | 0.68% | 0.62% | 0.58% | 0.57% | |
Period 2 | 0.35% | 11.50% | 16.30% | 16.70% | 15.50% | 13.80% | |
corn | Full sample period | 0.76% | 2.36% | 4.32% | 5.64% | 6.23% | 6.34% |
Period 1 | 1.87% | 2.08% | 2.60% | 3.12% | 3.50% | 3.72% | |
Period 2 | 1.02% | 11.70% | 12.00% | 10.30% | 10.10% | 11.10% | |
wheat | Full sample period | 3.40% | 4.83% | 5.93% | 6.70% | 7.21% | 7.53% |
Period 1 | 2.26% | 1.48% | 1.39% | 1.57% | 1.84% | 2.11% | |
Period 2 | 7.97% | 23.80% | 27.30% | 25.20% | 21.70% | 19.80% |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | |
---|---|---|---|---|---|---|---|---|---|---|---|
−0.0554 | −0.0241 | ||||||||||
(0.1614) | (0.0954) | ||||||||||
2.2491 ** | −0.2143 | ||||||||||
(1.0036) | (0.5929) | ||||||||||
−0.5060 | −0.4659 | ||||||||||
(0.3086) | (0.2873) | ||||||||||
0.7205 | 1.0273 * | ||||||||||
(1.0108) | (0.5855) | ||||||||||
0.2835 | 0.5785 | ||||||||||
(1.0115) | (0.5847) | ||||||||||
0.6648 *** | 0.6365 *** | ||||||||||
(0.0265) | (0.0430) | ||||||||||
1.2923 *** | |||||||||||
(0.1097) | |||||||||||
0.0748 *** | 0.0066 | ||||||||||
(0.0060) | (0.0074) | ||||||||||
−0.3485 | 0.2513 | ||||||||||
(0.3611) | (0.3126) | ||||||||||
0.9544 ** | |||||||||||
(0.3585) | |||||||||||
Constant term | 0.2594 | −0.0006 | 0.0239 | 0.0042 | 0.0055 | −0.2847 *** | −0.3105 *** | −0.3052 *** | 0.0152 | −0.1843 | −1.4225 |
(0.7395) | (0.0563) | (0.0574) | (0.0567) | (0.0567) | (0.0347) | (0.0544) | (0.0528) | (0.0573) | (0.4357) | (1.3974) | |
N | 318 | 318 | 318 | 318 | 318 | 318 | 318 | 318 | 318 | 318 | 36 |
0.0004 | 0.0156 | 0.0084 | 0.0016 | 0.0002 | 0.6665 | 0.3050 | 0.3273 | 0.0029 | 0.6739 | 0.1725 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Jiao, D.; Wei, Y.; Wang, Q. How Does Global Supply Chain Pressure Affect Oil Prices in Futures Markets? Sustainability 2025, 17, 7241. https://doi.org/10.3390/su17167241
Yu C, Jiao D, Wei Y, Wang Q. How Does Global Supply Chain Pressure Affect Oil Prices in Futures Markets? Sustainability. 2025; 17(16):7241. https://doi.org/10.3390/su17167241
Chicago/Turabian StyleYu, Cong, Dongdan Jiao, Yuchen Wei, and Qi Wang. 2025. "How Does Global Supply Chain Pressure Affect Oil Prices in Futures Markets?" Sustainability 17, no. 16: 7241. https://doi.org/10.3390/su17167241
APA StyleYu, C., Jiao, D., Wei, Y., & Wang, Q. (2025). How Does Global Supply Chain Pressure Affect Oil Prices in Futures Markets? Sustainability, 17(16), 7241. https://doi.org/10.3390/su17167241