A Concept of New Generation Films for Haylage Production Which Meets the Condition of the Closed-Loop Material Cycle
Abstract
1. Introduction
1.1. Polymer Films in Silage Production—The Idea of Closed-Loop Material Cycle
- To increase the recyclability of used silage films (ideally up to 100%).
- To extend the storage period of haylage by designing a film with high oxygen barrier properties.
1.2. Conceptual Framework
2. Plastics in Agriculture—A Global Problem
2.1. Use of Plastic Films in Agriculture
2.2. Polymer Plastic Films in Silage Production
2.3. Environmental Impact of Using Plastics in Agriculture
3. Recycling of Plastics
Consumption and Recycling of Plastics
Recycling of Silage Films
4. Method
4.1. Aims of the Research
- Producing materials meeting the criterion for recycling or biodegradation.
- Assessing the properties of new materials with regard to the requirements for the production of haylage
- Comparing the characteristics of the new generation films to the films commonly used in silage.
4.2. Films Used in the Study
- A—a film produced according to a standard recipe (commonly used for silage preservation).
- B—a film with 8% microcellulose content.
- C—a film with 5% additive based on nanosilver.
- D—a film with a 5% zinc-based microbiological additive.
4.3. Scope of Field and Laboratory Work
- Enriched agar (EA)—2.5%, Biocorp. General medium for the determination of the bacterial count. Incubation at temp. 22–25 °C for 72 h.
- DeMan, Rogosa, Sharpe (MRS) medium—5.2%, Biocorp, with a 1% addition of bacteriological agar. Selective medium for lactic acid bacteria growing. Incubation at temp. 37 °C for 72 h.
- Sabourauda (SAB) medium—6.5%, Biocorp, with a 1% addition of bacteriological agar. General medium with the addition of chloramphenicol for the cultivation of yeast and mold fungi. Incubation at temp. 30 °C for 72–96 h.
- No growth of micro-organisms.
- Low abundant growth (a small number of colonies, below 30).
- Medium abundant growth (a large number of colonies, below 300).
- Abundant growth (uniform throughout the surface, so-called ‘lawn’).
- Standard laboratory methods were used to assess haylage quality:
- Total nitrogen content was determined by the Kjeldahl method, and total nitrogen was converted using a factor of 6.25 into crude protein.
- Ammonia content was determined by the Conway method.
- The content of monosaccharides was determined by the Luff–Schoorl method.
- pH was determined using a stationary pH-meter TOLEDO MA 235.
- The lactic acid content was determined using the Varian 3400 CX gas chromatograph, a flame ionization detector (FID), J&W Scientific DB-FFAP column (30 m long, 0.53 mm in diameter), and argon carrier gas, dispenser temperature of 200 °C, detector temperature of 240 °C, and column temperature of 60–210 °C.
- The acetic acid content was determined using an INGOS liquid chromatograph LCP 5020, with a steel column 8 × 250 mm filled with OSTION LG-KS 0800 H+ (Tessek company, Praha, Czech Republic), mobile phase: 5 mM H2SO4.
5. Results
5.1. Silage Quality Evaluation
5.2. Population of Micro-organisms on Films
5.3. Contamination of the Films
5.4. Recycling of Waste Films in the Study
- Sorting. This treatment includes waste sorting and discarding plastics that are not suitable for further processing in subsequent stages of the process.
- Grinding and washing. The goal of this stage is to prepare the processed material for the main process, namely, regranulation. The film strips must be completely cleaned and dried.
- Granulation of cleaned plastic flakes.
6. Discussion and Research Implications
- Type B film (with 8% microcellulose content) is not suitable for feed preservation.
- Deterioration of silage quality in bales wrapped with type A film (commonly used in agriculture) and type C film (with a 5% additive based on nanosilver) after 12 months of storage.
- A relatively small population of lactic acid bacteria on the inner side of type C film and type D film (with a 5% zinc-based microbiological additive).
- A positive relationship between the fungal and mold colony population and the amount of contamination of the inner side of the films with silage residues.
7. Conclusions
- The ability to maintain the quality of silage and its storage period.
- The possibility of recycling the waste film.
- The film widely used in agriculture (type A) and the film with a 5% additive based on nanosilver (type C) provided good silage quality for a storage period of approximately one year.
- The film containing the zinc-based microbiological additive (type D) is a material that guarantees both meeting the technological requirements of feed production and is fully recyclable.
- The lowest contamination on the film type D due to its specific characteristics makes it easier to recycle the burdensome waste.
- The film with 8% addition of microcellulose (type B), due to the low oxygen barrier capacity, did not provide adequate conditions for the preservation of silage.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murray, A.; Skene, K.; Haynes, K. The circular economy: An interdisciplinary exploration of the concept and application in a global context. J. Bus. Ethics 2017, 140, 369–380. [Google Scholar] [CrossRef]
- Stefanakis, A.; Nikolaou, I. Circular Economy and Sustainability: Volume 1: Management and Policy; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Georgeson, L.; Maslin, M.; Poessinouw, M. The global green economy: A review of concepts, definitions, measurement methodologies and their interactions. Geo Geogr. Environ. 2017, 4, e00036. [Google Scholar] [CrossRef]
- Maharjan, P.; Peyriere, H.; Galotto, L.; Mamiit, R.J.; Flores, B.H.; Anastasia, O. Green Growth Index: Concepts, Methods and Applications (GGGI Technical Report No. 5); Global Green Growth Institute: Seoul, Republic of Korea, 2019. Available online: http://greengrowthindex.gggi.org/?page_id=2937 (accessed on 18 June 2025).
- Bonafe, S. The importance of the circular economy model. In The Circular Economy in the European Union: An Interim Review; Eisenriegler, S., Ed.; Springer Nature: Cham, Switzerland, 2020; pp. 55–56. [Google Scholar] [CrossRef]
- Le Moine, B.; Ferry, X. Plasticulture: Economy of resources. Acta Hortic. 2019, 1252, 121–130. [Google Scholar] [CrossRef]
- Agricultural films market—A global and regional analysis: Focus on product, application, supply chain, and country-wise analysis—Analysis and forecast, 2022–2027; BIS Research: Fremont, CA, USA, 2022. Available online: https://www.researchandmarkets.com/reports/5597841/agricultural-films-market-a-global-and-regional?gclid=Cj0KCQjwuO6WBhDLARIsAIdeyDJDGpqwEN2qjQzX-31y910CIGrB80fHR1k2qsCVZYDfwW4bj9yYyf0aAn0XEALw_wcB (accessed on 20 July 2022).
- Low-density polyethylene (LDPE) market—Growth, trends, COVID-19 impact, and forecasts (2022–2027); Mordor Intelligence: Telangana, India, 2022. Available online: https://www.mordorintelligence.com/industry-reports/low-density-polyethylene-market (accessed on 22 July 2022).
- Statista Research Department. Global Plastic Production 1950–2020; Statista: Hamburg, Germany, 2022. Available online: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/ (accessed on 24 July 2022).
- PlasticsEurope—Association of Plastic Manufacturers. Plastics—The Facts 2020; PlasticsEurope: Bruxelles, Belgium, 2020. [Google Scholar]
- Vox, G.; Loisi, R.V.; Blanco, I.; Mugnozza, G.S.; Schettini, E. Mapping of agriculture plastic waste. Agric. Agric. Sci. Procedia 2016, 8, 583–591. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Assessment of Agricultural Plastics and Their Sustainability: A Call for Action; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Pazienza, P.; De Lucia, C. For a new plastics economy in agriculture: Policy reflections on the EU strategy from a local perspective. J. Clean. Prod. 2020, 253, 119844. [Google Scholar] [CrossRef]
- Orzolek, M.D. (Ed.) A Guide to the Manufacture, Performance, and Potential of Plastics in Agriculture; Elsevier/William Andrew Applied Science Publishers: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Plasticulture Magazine; No. 141; CIPA: Gaborone, Botswana, 2022.
- Scarascia-Mugnozza, G.; Sica, C.; Russo, G. Plastic materials in European agriculture: Actual use and perspectives. J. Agric. Eng. 2012, 42, 15–28. [Google Scholar] [CrossRef]
- Brown, R.P. Polymers in Agriculture and Horticulture; Rapra Technology: Shrewsbury, UK, 2004. [Google Scholar]
- Espí Guzmán, E.; Díaz Serrano, T.; Fontecha, A.; Jiménez, J.C.; Lopez, J.; Salmeron, A. Los Filmes Plásticos en la Producción Agrícola; Repsol YPF, Ediciones Mundi-Prensa: Madrid, Spain, 2001. [Google Scholar]
- Garnaud, J.C. Agricultural and Horticultural Applications of Polymers; Rapra Technology Ltd. & Pergamon Press: Shrewsbury, UK, 1988. [Google Scholar]
- Jansen, L.; Henskens, M.; Hiemstra, F. Report on Use of Plastics in Agriculture; Schuttelaar & Partners: Hague, The Netherlands, 2019; Available online: https://saiplatform.org/wp-content/uploads/2019/06/190528-report_use-of-plastics-in-agriculture.pdf (accessed on 5 September 2022).
- Serrano-Ruiz, H.; Martin-Closas, L.; Pelacho, A.M. Biodegradable plastic mulches: Impact on the agricultural biotic environment. Sci. Total Environ. 2020, 750, 141228. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, V.P. Plasticulture Engineering and Technology; Taylor & Francis: Oxfordshire, UK, 2022. [Google Scholar] [CrossRef]
- Snell, H.G.; Oberndorfer, C.; Lücke, W.; Van den Weghe, H.F. Effects of the colour and thickness of polyethylene film on ensiling conditions and silage quality of chopped maize, as investigated under ambient conditions and in mini-silos. Grass Forage Sci. 2002, 57, 342–350. [Google Scholar] [CrossRef]
- Bisaglia, C.; Tabacco, E.; Borreani, G. The use of plastic film instead of netting when tying round bales for wrapped baled silage. Biosyst. Eng. 2011, 108, 1–8. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Muck, R.E. Ensiling in 2050: Some challenges and opportunities. Grass Forage Sci. 2019, 74, 178–187. [Google Scholar] [CrossRef]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef] [PubMed]
- Hancock, D.W.; Collins, M. Forage preservation method influences alfalfa nutritive value and feeding characteristics. Crop Sci. 2006, 46, 688. [Google Scholar] [CrossRef]
- Borreani, G.; Tabacco, E. Plastics in animal production. In A Guide to the Manufacture, Performance, and Potential of Plastics in Agriculture; Orzolek, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 145–186. [Google Scholar]
- Espí, E.; Salmerón, A.; Fontecha, A.; García, Y.; Real, A.I. Plastic films for agricultural applications. J. Plast. Film. Sheeting 2006, 22, 85–102. [Google Scholar] [CrossRef]
- Shemesh, R.; Krepker, M.; Goldman, D.; Danin-Poleg, Y.; Kashi, Y.; Nitzan, N.; Vaxman, A.; Segal, E. Antibacterial and antifungal LDPE films for active packaging. Polym. Adv. Technol. 2015, 26, 110–116. [Google Scholar] [CrossRef]
- Lauer, M.K.; Smith, R.C. Recent advances in starch-based films toward food packaging applications: Physicochemical, mechanical, and functional properties. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3031–3083. [Google Scholar] [CrossRef]
- Briassoulis, D.; Hiskakis, M.; Babou, E. Technical specifications for mechanical recycling of agricultural plastic waste. Waste Manag. 2013, 33, 1516–1530. [Google Scholar] [CrossRef]
- Gregory, M.R.; Andrady, A.L. Plastics in the environment. In Plastics and the Environment; Andrady, A.L., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2003; pp. 379–401. [Google Scholar] [CrossRef]
- Maraveas, C. Environmental sustainability of plastic in agriculture. Agriculture 2020, 10, 310. [Google Scholar] [CrossRef]
- González-Sánchez, C.; Martínez-Aguirre, A.; Pérez-García, B.; Martínez-Urreaga, J.; de la Orden, M.U.; Fonseca-Valero, C. Use of residual agricultural plastics and cellulose fibers for obtaining sustainable eco-composites prevents waste generation. J. Clean. Prod. 2014, 83, 228–237. [Google Scholar] [CrossRef]
- Maraveas, C. Environmental sustainability of greenhouse covering materials. Sustainability 2019, 11, 6129. [Google Scholar] [CrossRef]
- Maraveas, C. The sustainability of plastic nets in agriculture. Sustainability 2020, 12, 3625. [Google Scholar] [CrossRef]
- Oz, H.; Coskan, A.; Atilgan, A. Determination of effects of various plastic covers and biofumigation on soil temperature and soil nitrogen form in greenhouse solarization: New solarization cover material. J. Polym. Environ. 2017, 25, 370–377. [Google Scholar] [CrossRef]
- Ya, H.; Jiang, B.; Xing, Y.; Zhang, T.; Lv, M.; Wang, X. Recent advances on ecological effects of microplastics on soil environment. Sci. Total Environ. 2021, 798, 149338. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, X.; Zhang, S.; Zhang, S.; Sun, Y. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere 2020, 254, 126791. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.-W.; Tang, J.; Yu, C.; He, J. Advances in research on the ecological effects of microplastic pollution on soil ecosystems. J. Agro-Environ. Sci. 2018, 37, 1045–1058. [Google Scholar] [CrossRef]
- Carbery, M.; O’Connor, W.; Thavamani, P. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ. Int. 2018, 115, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, S.; Wufuer, R.; Duo, J.; Pan, X. Microplastic contamination in urban, farmland and desert environments along a highway in Southern Xinjiang, China. Int. J. Environ. Res. Public Health 2022, 19, 8890. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, L.; Wang, T.; Chen, Q.; Ji, R. Microplastics as vectors of chemicals and microorganisms in the environment. In Particulate Plastics in Terrestrial and Aquatic Environments; Bolan, N.S., Kirkham, M.B., Halsband, C., Nugegoda, D., Ok, Y.S., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 209–230. [Google Scholar] [CrossRef]
- Hansen, E.; Nilsson, N.H.; Lithner, D.; Lassen, C. Hazardous Substances in Plastic Materials; (TA 3017); COWI, in cooperation with Danish Technological Institute: Singapore, 2013. [Google Scholar]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef]
- Kortenkamp, A. Ten years of mixing cocktails: A review of combination effects of endocrine-disrupting chemicals. Environ. Health Perspect. 2007, 115, 98–105. [Google Scholar] [CrossRef]
- Larsson, G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total Environ. 2011, 409, 3309–3324. [Google Scholar] [CrossRef]
- Oldfield, T.L.; Chen, W.; Murphy, F.; Holden, N.M. Case study: Agricultural crop production. In Life Cycle Assessment: A Metric for the Circular Economy; Borrion, A., Black, M.J., Mwabonje, O., Eds.; Royal Society of Chemistry: London, UK, 2021; pp. 262–289. [Google Scholar] [CrossRef]
- Voet, V.; Jager, J.; Folkersma, R. Plastics in the Circular Economy; De Gruyter: Berlin, Germany, 2021. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Eurostat. Waste—Overview. 2022. Available online: https://ec.europa.eu/eurostat/web/waste/overview (accessed on 10 December 2023).
- Plastics Europe. Plastics—The Facts 2019; PlasticsEurope: Bruxelles, Belgium, 2019. [Google Scholar]
- Grand View Research. Linear Low-Density Polyethylene Market Size, Share & Trends Analysis Report by Application, Regional Outlook, Competitive Strategies, and Segment Forecasts, 2019 to 2025 (Report ID: GVR1142). 2019. Available online: https://www.grandviewresearch.com/industry-analysis/lldpe-linear-low-density-polyethylene-market (accessed on 1 August 2022).
- Ellen MacArthur Foundation, SUN, & McKinsey & Co. Growth within: A Circular Economy Vision for a Competitive Europe. 2015. Available online: https://www.ellenmacarthurfoundation.org/assets/downloads/publications/EllenMacArthurFoundation_Growth-Within_July15.pdf (accessed on 1 August 2022).
- Castillo-Díaz, F.J.; Belmonte-Ureña, L.J.; Camacho-Ferre, F.; Tello-Marquina, J.C. The management of agriculture plastic waste in the framework of circular economy: Case of the Almeria greenhouse (Spain). Int. J. Environ. Res. Public Health 2021, 18, 12042. [Google Scholar] [CrossRef]
- Briassoulis, D.; Aristopoulou, A.; Bonora, M.; Verlodt, I. Degradation characterisation of agricultural low-density polyethylene films. Biosyst. Eng. 2004, 88, 131–143. [Google Scholar] [CrossRef]
- Wong, J.K.H.; Lee, K.K.; Tang, K.H.D.; Yap, P.S. Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions. Sci. Total Environ. 2020, 719, 137512. [Google Scholar] [CrossRef]
- Qi, R.; Jones, D.L.; Li, Z.; Liu, Q.; Yan, C. Behavior of microplastics and plastic film residues in the soil environment: A critical review. Sci. Total Environ. 2019, 703, 134722. [Google Scholar] [CrossRef]
- Qi, Y.; Ossowicki, A.; Yang, X.; Lwanga, E.H.; Dini-Andreote, F.; Geissen, V.; Garbeva, P. Effects of plastic mulch film residues on wheat rhizosphere and soil properties. J. Hazard. Mater. 2020, 387, 121711. [Google Scholar] [CrossRef] [PubMed]
- Briassoulis, D.; Babou, E.; Hiskakis, M.; Scarascia-Mugnozza, G.; Picuno, P.; Guarde, D.; Dejean, C. Review, mapping and analysis of the agricultural plastic waste generation and consolidation in Europe. Waste Manag. Res. 2013, 31, 1262–1278. [Google Scholar] [CrossRef]
- San Miguel, G.; Serrano, D.P.; Aguado, J. Valorization of waste agricultural polyethylene film by sequential pyrolysis and catalytic reforming. Ind. Eng. Chem. Res. 2009, 48, 8697–8703. [Google Scholar] [CrossRef]
- Ramos, L.; Berenstein, G.; Hughes, E.A.; Zalts, A.; Montserrat, J.M. Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina. Sci. Total Environ. 2015, 523, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M. Disposal of plastics. In A Guide to the Manufacture, Performance, and Potential of Plastics in Agriculture; Orzolek, M., Ed.; Elsevier: Oxford, UK, 2017; pp. 187–196. [Google Scholar]
- Goldberger, J.R.; DeVetter, L.W.; Dentzman, K.E. Polyethylene and biodegradable plastic mulches for strawberry production in the United States: Experiences and opinions of growers in three regions. HortTechnology 2019, 29, 619–628. [Google Scholar] [CrossRef]
- Koitabashi, M.; Sameshima-Yamashita, Y.; Watanabe, T.; Shinozaki, Y.; Kitamoto, H. Phylloplane fungal enzyme accelerate decomposition of biodegradable plastic film in agricultural settings. Jpn. Agric. Res. Q. 2016, 50, 229–234. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, J.; Zhang, H.; Shi, H.; Fei, Y.; Huang, S.; Tong, Y.; Wei, D.; Luo, Y.; Barceló, D. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, East China: Multiple sources other than plastic mulching film. J. Hazard. Mater. 2019, 388, 121814. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, Y.; Zhang, X.; Wu, H.; Shen, J.; Chen, R.; Xiong, Y.; Li, J.; Guo, S. Progress on the layer-by-layer assembly of multilayered polymer composites: Strategy, structural control and applications. Prog. Polym. Sci. 2019, 89, 76–107. [Google Scholar] [CrossRef]
- Horodytska, O.; Valdés, F.J.; Fullana, A. Plastic flexible films waste management—A state of art review. Waste Manag. 2018, 77, 413–425. [Google Scholar] [CrossRef]
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef] [PubMed]
- Schyns, Z.; Shaver, M.P. Mechanical recycling of packaging plastics: A review. Macromol. Rapid Commun. 2021, 42, 2000415. [Google Scholar] [CrossRef]
- Zweifel, H.; Maier, R.D.; Schiller, M. Plastics Additives Handbook; Hanser Publications: Cincinnati, OH, USA, 2009. [Google Scholar]
- Dostál, J.; Kašpárková, V.; Zatloukal, M.; Muras, J.; Šimek, L. Influence of the repeated extrusion on the degradation of polyethylene: Structural changes in low density polyethylene. Eur. Polym. J. 2008, 44, 2652. [Google Scholar] [CrossRef]
- Dordinejad, A.K.; Sharif, F.; Ebrahimi, M.; Rashedi, R. Rheological and thermorheological assessment of polyethylene in multiple extrusion process. Thermochim. Acta 2018, 668, 19–27. [Google Scholar] [CrossRef]
- Luzuriaga, S.; Kovářová, J.; Fortelný, I. Degradation of pre-aged polymers exposed to simulated recycling: Properties and thermal stability. Polym. Degrad. Stab. 2006, 91, 1226–1232. [Google Scholar] [CrossRef]
- Iyer, K.A.; Zhang, L.; Torkelson, J.M. Direct use of natural antioxidant-rich agro-wastes as thermal stabilizer for polymer: Processing and recycling. ACS Sustain. Chem. Eng. 2016, 4, 881–889. [Google Scholar] [CrossRef]
- Peña, J.M.; Allen, N.S.; Edge, M.; Liauw, C.M.; Valange, B. Studies of synergism between carbon black and stabilisers in LDPE photodegradation. Polym. Degrad. Stab. 2001, 72, 259–270. [Google Scholar] [CrossRef]
- Maringer, L.; Himmelsbach, M.; Nadlinger, M.; Wallner, G.; Buchberger, W. Structure elucidation of photoluminescent degradation products from polyolefins and evaluation of stabilizer formulations. Polym. Degrad. Stab. 2015, 121, 378–384. [Google Scholar] [CrossRef]
- LeMoine, B.; Erälinna, L.; Trovati, G.; Casallo, I.M.; Amate, J.; Zlatar, K.; Butlewski, K.; Ojanpera, M.; Picun, P. The Agri-Plastic End-of-Life Management; EIP-AGRI: Brussels, Belgium, 2021. [Google Scholar]
- Plasteurope. Agricultural Films Recycling. 2019. Available online: https://www.plasteurope.com/news/AGRICULTURAL_FILMS_RECYCLING_t242812/ (accessed on 10 July 2022).
- K-Mag. ERDE Recycling: Recovery and Recycling Systems for Agricultural Plastics. 2022. Available online: https://mag.k-online.com/en/Menue/Hot_Topics/Archive_Hot_Topics/ERDE_Recycling_recovery_and_recycling_systems_for_agricultural_plastics (accessed on 12 June 2024).
- Korol, J.; Hejna, A.; Wypiór, K.; Mijalski, K.; Chmielnicka, E. Wastes from agricultural silage film recycling line as a potential polymer materials. Polymers 2021, 13, 1383. [Google Scholar] [CrossRef]
- Coblentz, W.K.; Akins, M.S. Silage review: Recent advances and future technologies for baled silages. J. Dairy Sci. 2018, 101, 4075–4092. [Google Scholar] [CrossRef] [PubMed]
- Coblentz, W.K.; Coffey, K.P.; Chow, E.A. Storage characteristics, nutritive value, and fermentation characteristics of alfalfa packaged in large-round bales and wrapped in stretch film after extended time delays. J. Dairy Sci. 2016, 99, 3497–3511. [Google Scholar] [CrossRef] [PubMed]
- Baldasano, J.M.; Gassó, S.; Pérez, C. Environmental performance review and cost analysis of MSW landfilling by baling-wrapping technology versus conventional system. Waste Manag. 2003, 23, 795–806. [Google Scholar] [CrossRef]
- Han, K.J.; McCormick, M.E.; Blouin, D.C. Bale location effects on nutritive value and fermentation characteristics of annual ryegrass bale stored in in-line wrapping silage. Asian-Australas. J. Anim. Sci. 2014, 27, 1276–1284. [Google Scholar] [CrossRef]
- Nowak, J. Analysis and Evaluation of the Round Bale Silage Production; AR Publishing House: Lublin, Poland, 1997. [Google Scholar]
- Zdobytskyy, A. Mathematical modeling and research results of the strainedly state of polymer tape in the sealing tape rolls. ECONTECHMOD 2015, 4, 49–54. [Google Scholar]
- Stankiewicz, A.; Stępniewski, A.; Nowak, J. On the mathematical modelling and optimization of foil consumption for cylindrical bale wrapping. ECONTECHMOD 2016, 5, 101–110. [Google Scholar]
- Wilkinson, J.M.; Rinne, M. Highlights of progress in silage conservation and future perspectives. Grass Forage Sci. 2017, 73, 40–52. [Google Scholar] [CrossRef]
- Snell, H.G.J.; Oberndorfer, C.; Lücke, W.; Van den Weghe, H.F. Effects of polyethylene colour and thickness on grass silage quality. Grass Forage Sci. 2003, 58, 239–248. [Google Scholar] [CrossRef]
- Wilkins, R.J. Grassland in the twentieth century. In IGER Innovations 2000; Institute of Grassland and Environmental Research: Aberystwyth, UK, 2000; pp. 26–33. [Google Scholar]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage; Chalcombe Publications: Buckinghamshire, UK, 1991. [Google Scholar]
- Borreani, G.; Piano, S.; Tabacco, E. Aerobic stability of maize silage stored under plastic films with different oxygen permeability. J. Sci. Food Agric. 2014, 94, 2684–2690. [Google Scholar] [CrossRef]
- Borreani, G.; Tabacco, E. Bio-based biodegradable film to replace the standard polyethylene cover for silage conservation. J. Dairy Sci. 2014, 98, 386–394. [Google Scholar] [CrossRef]
- Senanayake, L.; Kodithuwakku, H.; Wickramasinghe, J.P. Effect of polythene film on grass silage quality as investigated under ambient conditions. In Proceedings of the 15th Agricultural Research Symposium, Gonawila, Sri Lanka, 28–29 June 2016; Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka: Gonawila, Sri Lanka, 2016; pp. 1–5. [Google Scholar]
- Wilkinson, J.M.; Fenlon, J.S. A meta-analysis comparing standard polyethylene and oxygen barrier film in terms of losses during storage and aerobic stability of silage. Grass Forage Sci. 2014, 69, 385–392. [Google Scholar] [CrossRef]
- Orosz, S.; Wilkinson, J.M.; Wigley, S.; Bìrò, Z.; Gallo, J. Microbial status, aerobic stability and fermentation of maize silage sealed with an oxygen barrier film. Agric. Food Sci. 2013, 22, 182–188. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Davies, D.R. The aerobic stability of silage: Key findings and recent developments. Grass Forage Sci. 2012, 68, 1–19. [Google Scholar] [CrossRef]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Oude Elferink, S.J.; Spoelstra, S.F. Microbiology of ensiling. In Silage Science and Technology; Buxton, D.R., Muck, R.E., Harrison, H.J., Eds.; Agronomy Series No. 42; American Society of Agronomy: Madison, WI, USA, 2003; pp. 31–93. [Google Scholar]
- Ávila, C.L.S.; Carvalho, B.F. Silage fermentation—Updates focusing on the performance of micro-organisms. J. Appl. Microbiol. 2019, 128, 966–984. [Google Scholar] [CrossRef] [PubMed]
- Muck, R.E. Recent advances in silage microbiology. Agric. Food Sci. 2013, 22, 3–15. [Google Scholar] [CrossRef]
- Driehuis, F.; Oude Elferink, S.J. The impact of the quality of silage on animal health and food safety: A review. Vet. Q. 2000, 22, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Vaičiulienė, G.; Bakutis, B.; Jovaišienė, J.; Falkauskas, R.; Gerulis, G.; Kerzienė, S.; Baliukonienė, V. Prevalence of mycotoxins and endotoxins in total mixed rations and different types of ensiled forages for dairy cows in Lithuania. Toxins 2021, 13, 890. [Google Scholar] [CrossRef]
- Youngjae, C.; Geumsoo, K. Forecasting waste agricultural plastics generation in the Republic of Korea and its policy implications. Agric. Food Sci. 2018, 5, 68–72. [Google Scholar]
- Prata, J.C.; Silva, A.L.P.; da Costa, J.P.; Mouneyrac, C.; Walker, T.R.; Duarte, A.C.; Rocha-Santos, T. Solutions and integrated strategies for the control and mitigation of plastic and microplastic pollution. Int. J. Environ. Res. Public Health 2019, 16, 2411. [Google Scholar] [CrossRef]
- Singh, N.; Hui, D.; Singh, R.; Ahuja, I.P.S.; Feo, L.; Fraternali, F. Recycling of plastic solid waste: A state of art review and future applications. Compos. Part B Eng. 2017, 115, 409–422. [Google Scholar] [CrossRef]
- Sobczak, L.; Brüggemann, O.; Putz, R.F. Polyolefin composites with natural fibers and wood-modification of the fiber/filler-matrix interaction. J. Appl. Polym. Sci. 2012, 127, 1–17. [Google Scholar] [CrossRef]
- Khan, R.; Srivastava, S.K.; Gupta, M.K. A state-of-the-art review on particulate wood polymer composites: Processing, properties and applications. Polym. Test. 2020, 89, 106721. [Google Scholar] [CrossRef]
- Ellis, W.D. Wood-polymer composites: Review of processes and properties. Mol. Cryst. Liq. Cryst. 2020, 353, 75–84. [Google Scholar] [CrossRef]
- Vroman, I.; Tighzert, L. Biodegradable polymers. Materials 2009, 2, 307–344. [Google Scholar] [CrossRef]
- Varyan, I.; Tyubaeva, P.; Kolesnikova, N.; Popov, A. Biodegradable polymer materials based on polyethylene and natural rubber: Acquiring, investigation, properties. Polymers 2022, 14, 2457. [Google Scholar] [CrossRef]
- Guerrini, S.; Borreani, G.; Voojis, H. Biodegradable materials in agriculture: Case histories and perspectives. In Soil Degradable Bioplastics for a Sustainable Modern Agriculture; Malinconico, M., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 35–65. [Google Scholar] [CrossRef]
- Saini, P.; Singh, A.; Ahmed, M.; Srivastava, U. Sustainability of biodegradable polymers for the environment: An alternative approach for the future. In Eco-Friendly Energy Processes and Technologies for Achieving Sustainable Development; Danish, S.S., Senjyu, T.S., Eds.; IGI Global: Hershey, PA, USA, 2021. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Misra, M.; Hinrichsen, G. Biofibres, biodegradable polymers and biocomposites: An overview. Macromol. Mater. Eng. 2000, 276, 1–24. [Google Scholar] [CrossRef]
- Rebouillat, S.; Pla, F. Recent strategies for the development of biosourced-monomers, oligomers and polymers-based materials: A review with an innovation and a bigger data focus. J. Biomater. Nanobiotechnol. 2016, 7, 167–213. [Google Scholar] [CrossRef]
- Gadhave, R.; Vineeth, S.K.; Gadekar, P. Polymers and polymeric materials in COVID-19 pandemic: A review. Open J. Polym. Chem. 2020, 10, 66–75. [Google Scholar] [CrossRef]
- Lochab, B.; Varma, I.K.; Bijwe, J. Sustainable polymers derived from naturally occurring materials. Adv. Mater. Phys. Chem. 2013, 2, 221–225. [Google Scholar] [CrossRef]
- Sandoval, A.J.; Fernández, M.M.; Candal, M.V.; Safari, M.; Santamaria, A.; Müller, A.J. Rheology and tack properties of biodegradable isodimorphic poly(butylene succinate)-ran-poly(ε-caprolactone) random copolyesters and their potential use as adhesives. Polymers 2022, 14, 623. [Google Scholar] [CrossRef] [PubMed]
- Kyrikou, I.; Briassoulis, D. Biodegradation of agricultural plastic films: A critical review. J. Polym. Environ. 2007, 15, 125–150. [Google Scholar] [CrossRef]
- Picuno, P.; Sica, C.; Scarascia-Mugnozza, G.; Dimitrijevic, A. Mechanical and spectro-radiometrical characteristics of plastic film from agricultural recycled granule. Poljopr. Teh. 2011, 36, 29–37. [Google Scholar]
- Luckachan, G.; Pillai, C.K.S. Biodegradable polymers: A review on recent trends and emerging perspectives. J. Polym. Environ. 2011, 19, 637–676. [Google Scholar] [CrossRef]
- Picuno, P.; Scarascia-Mugnozza, G. The management of agricultural plastic film wastes in Italy. In Proceedings of the International Agricultural Engineering Conference, Bangkok, Thailand, 6–9 December 1994; pp. 797–808. [Google Scholar]
- Dimitrijevic, A.; Sica, C.; Picuno, P.; Scarascia-Mugnozza, G. Using the glass fibres in recycling agricultural plastic waste. Poljopr. Teh. 2013, 38, 31–38. [Google Scholar]
- Xiong, J.; Huang, J.; Wang, W.; Mou, W.; Chen, Y. Study on shape memory behavior of ternary poly(lactic acid)/poly(methyl methacrylate)-grafted natural rubber/natural rubber thermoplastic vulcanizates. Polym.-Plast. Technol. Mater. 2020, 60, 550–561. [Google Scholar] [CrossRef]
- Anis, A.; Faiz, S.; Luqman, M.; Manjaly Poulose, A.; Gulrez, S.K.H.; Shaikh, H.; Al-Zahrani, S.M. Developments in shape memory polymeric materials. Polym.-Plast. Technol. Eng. 2013, 52, 1574–1589. [Google Scholar] [CrossRef]
- Bohlmann, G.; Toki, G. Chemical Economics Handbook; SRI International: Menlo Park, CA, USA, 2004. [Google Scholar]
- Borreani, G.; Tabacco, E.; Cavallarin, L. A new oxygen barrier film reduces aerobic deterioration in farm-scale corn silage. J. Dairy Sci. 2007, 90, 4701–4706. [Google Scholar] [CrossRef]
- Tabacco, E.; Ferrero, F.; Borreani, G. Feasibility of utilizing biodegradable plastic film to cover corn silage under farm conditions. Appl. Sci. 2020, 10, 2803. [Google Scholar] [CrossRef]
Film Type | Content (%) | |||||
---|---|---|---|---|---|---|
In Dry Matter | In Fresh Matter | |||||
Crude Protein | N-NH3 | Sugars | pH | Lactic Acid | Acetic Acid | |
1st evaluation | ||||||
A | 15.3 a | 0.07 a | 9.5 a | 4.5 a | 2.0 b | 1.3 a |
C | 14.9 a | 0.06 a | 12.1 b | 4.4 a | 1.5 a | 1.4 a |
D | 15.0 a | 0.05 a | 9.0 a | 4.4 a | 1.4 a | 1.5 a |
2nd evaluation | ||||||
A | 15.1 a | 0.07 a | 9.4 a | 4.3 a | 4.4 a | 1.7 a |
C | 14.9 a | 0.08 a | 11.4 b | 4.4 a | 4.9 b | 2.0 a |
D | 15.0 a | 0.07 a | 8.8 a | 4.3 a | 4.0 a | 1.3 a |
3rd evaluation | ||||||
A | 14.8 a | 0.07 a | 9.6 a | 4.5 a | 4.0 a | 1.5 a |
C | 12.9 a | 0.09 b | 10.5 a | 4.3 a | 3.5 a | 1.3 a |
D | 13.5 a | 0.08 a | 8.5 a | 4.4 a | 3.5 a | 1.1 a |
4th evaluation | ||||||
A | 14.4 a | 0.13 a | 7.6 a | 4.9 a | 2.7 a | 1.2 a |
C | 11.4 a | 0.11 a | 7.9 a | 4.6 a | 3.3 a | 1.5 a |
D | 13.5 a | 0.08 a | 8.3 a | 4.4 a | 3.5 a | 1.4 a |
Film Type | Lactic Acid Bacteria | Yeast and Mold Fungi | ||||||
---|---|---|---|---|---|---|---|---|
Time of Evaluation | ||||||||
1st | 2nd | 3rd | 4th | 1st | 2nd | 3rd | 4th | |
Degree of Colonization | ||||||||
A | 30–300 | 30–300 | 30–300 | 30–300 | 30–300 | 30–300 | 30–300 | lawn |
B | 0–30 | - | - | - | lawn | - | - | - |
C | 0–30 | 0–30 | 0–30 | 30–300 | 0–30 | 0–30 | 30–300 | lawn |
D | 0–30 | 0–30 | 0–30 | 0–30 | 0–30 | 0–30 | 0–30 | 0–30 |
Film Type | Time of Evaluation | |||
---|---|---|---|---|
1st | 2nd | 3rd | 4th | |
A | 0.07 a | 0.07 b | 0.12 c | 0.14 c |
B | 0.15 c | - | - | - |
C | 0.05 a | 0.06 b | 0.09 b | 0.11 b |
D | 0.05 a | 0.04 a | 0.06 a | 0.06 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kacorzyk, P.; Strojny, J.; Niewiadomski, M. A Concept of New Generation Films for Haylage Production Which Meets the Condition of the Closed-Loop Material Cycle. Sustainability 2025, 17, 7240. https://doi.org/10.3390/su17167240
Kacorzyk P, Strojny J, Niewiadomski M. A Concept of New Generation Films for Haylage Production Which Meets the Condition of the Closed-Loop Material Cycle. Sustainability. 2025; 17(16):7240. https://doi.org/10.3390/su17167240
Chicago/Turabian StyleKacorzyk, Piotr, Jacek Strojny, and Michał Niewiadomski. 2025. "A Concept of New Generation Films for Haylage Production Which Meets the Condition of the Closed-Loop Material Cycle" Sustainability 17, no. 16: 7240. https://doi.org/10.3390/su17167240
APA StyleKacorzyk, P., Strojny, J., & Niewiadomski, M. (2025). A Concept of New Generation Films for Haylage Production Which Meets the Condition of the Closed-Loop Material Cycle. Sustainability, 17(16), 7240. https://doi.org/10.3390/su17167240