Biomimicry and Green Architecture: Nature-Inspired Innovations for Sustainable Buildings
Abstract
1. Introduction
2. Research Methodology
2.1. Research Questions
2.2. Search Strategy
3. Literature Review
3.1. Sustainability as a Key Factor in the Construction Sector
3.2. Passive Building Design
3.3. Renewable Energy Sources
3.4. Biomimicry in Green and Sustainable Construction
3.5. Integrating Bioenergy with Biomimicry in Architecture
3.6. Algae as a Sustainable Building Technology in Green Architecture
3.7. Slime Mold-Based Model for Integrating Renewable Energy Sources and Eco-Friendly Materials
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Metwally, W.M.; Ibrahim, V.A.R. The integration of bio-active elements into building façades as a sustainable concept. Buildings 2024, 14, 3086. [Google Scholar] [CrossRef]
- Umoh, A.A.; Adefemi, A.; Ibewe, K.I.; Etukudoh, E.A.; Ilojianya, V.I.; Nwokediegwu, Z.Q.S. Green architecture and energy efficiency: A review of innovative design and construction techniques. Eng. Sci. Technol. J. 2024, 5, 185–200. [Google Scholar] [CrossRef]
- Akadiri, P.O.; Chinyio, E.A.; Olomolaiye, P.O. Design of a sustainable building: A conceptual framework for implementing sustainability in the building sector. Buildings 2012, 2, 126–152. [Google Scholar] [CrossRef]
- Ahmed Ali, K.; Ahmad, M.I.; Yusup, Y. Issues, impacts, and mitigations of carbon dioxide emissions in the building sector. Sustainability 2020, 12, 7427. [Google Scholar] [CrossRef]
- United Nations. (n.d.). Transforming Our World: The 2030 Agenda for Sustainable Development|Department of Economic and Social Affairs. United Nations. Available online: https://sdgs.un.org/2030agenda (accessed on 6 August 2025).
- United Nations. Available online: https://sdgs.un.org/goals/goal7 (accessed on 6 August 2025).
- Sustainable Development Goal on Energy (SDG7) and the World Bank Group. Available online: https://www.worldbank.org/en/topic/energy/brief/sustainable-development-goal-on-energy-sdg7-and-the-world-bank-group (accessed on 26 May 2016).
- Halkos, G.; Gkampoura, E.C. Where do we stand on the 17 Sustainable Development Goals? An overview on progress. Econ. Anal. Policy 2021, 70, 94–122. [Google Scholar] [CrossRef]
- Mio, C.; Panfilo, S.; Blundo, B. Sustainable development goals and the strategic role of business: A systematic literature review. Bus. Strategy Environ. 2021, 29, 3220–3245. [Google Scholar] [CrossRef]
- Trends, G. Challenges and Opportunities in the Implementation of the Sustainable Development Goals; United Nations Development Programme& United Nations Research Institute for Social Development: Geneva, Switzerland, 2017; p. 3. [Google Scholar]
- United Nations Environment Programme (UNEP). 2021 Global Status Report for Buildings and Construction. Available online: https://www.unep.org/resources/report/2021-global-status-report-buildings-and-construction (accessed on 19 October 2021).
- Ragheb, A.; El-Shimy, H.; Ragheb, G. Green architecture: A concept of sustainability. Procedia-Soc. Behav. Sci. 2016, 216, 778–787. [Google Scholar] [CrossRef]
- Saqib, N.; Shahzad, U. Pathways to sustainability: Evaluating the impact of green energy, natural resources, FinTech, and environmental policies in resource-abundant countries. Resour. Policy 2024, 97, 105264. [Google Scholar] [CrossRef]
- Edwards, B. Rough Guide to Sustainability; Riba Publishing: London, UK, 2010. [Google Scholar]
- Gowrishankar, P. Green architecture for environmental sustainability. Int. J. Adv. Technol. Eng. Sci. 2015, 3, 181–191. [Google Scholar]
- Mersal, A. The future of the sustainable green architecture through technology. HBRC J. 2023, 19, 33–62. [Google Scholar] [CrossRef]
- AlAli, M.; Mattar, Y.; Alzaim, M.A.; Beheiry, S. Applications of biomimicry in architecture, construction, and civil engineering. Biomimetics 2023, 8, 202. [Google Scholar] [CrossRef]
- Malik, M.; Ali, M.; Latan, H.; Chiappetta Jabbour, C.J. Green project management practices, green knowledge acquisition and sustainable competitive advantage: Empirical evidence. J. Knowl. Manag. 2023, 27, 2350–2375. [Google Scholar] [CrossRef]
- Al-qadami, E.H.H.; Mustaffa, Z.; Al-Atroush, M.E. Evaluation of the Pavement Geothermal Energy Harvesting Technologies towards Sustainability and Renewable Energy. Energies 2022, 15, 1201. [Google Scholar] [CrossRef]
- Bungau, C.C.; Bungau, T.; Prada, I.F.; Prada, M.F. Green buildings as a necessity for sustainable environment development: Dilemmas and challenges. Sustainability 2022, 14, 13121. [Google Scholar] [CrossRef]
- Liu, T.; Chen, L.; Yang, M.; Sandanayake, M.; Miao, P.; Shi, Y.; Yap, P.S. Sustainability considerations of green buildings: A detailed overview on current advancements and future considerations. Sustainability 2022, 14, 14393. [Google Scholar] [CrossRef]
- Zuo, J.; Zhao, Z.Y. Green building research–current status and future agenda: A review. Renew. Sustain. Energy Rev. 2014, 30, 271–281. [Google Scholar] [CrossRef]
- Meena, C.S.; Kumar, A.; Jain, S.; Rehman, A.U.; Mishra, S.; Sharma, N.K.; Eldin, E.T. Innovation in green building sector for sustainable future. Energies 2022, 15, 6631. [Google Scholar] [CrossRef]
- Xie, H.; Clements-Croome, D.; Wang, Q. Move beyond green building: A focus on healthy, comfortable, sustainable, and aesthetical architecture. Intell. Build. Int. 2017, 9, 88–96. [Google Scholar] [CrossRef]
- Masood, O.A.I.; Abd Al-Hady, M.I.; Ali, A.K.M. Applying the principles of green architecture for saving energy in buildings. Energy Procedia 2017, 115, 369–382. [Google Scholar] [CrossRef]
- GhaffarianHoseini, A.; Dahlan, N.D.; Berardi, U.; GhaffarianHoseini, A.; Makaremi, N.; GhaffarianHoseini, M. Sustainable energy performances of green buildings: A review of current theories, implementations, and challenges. Renew. Sustain. Energy Rev. 2013, 25, 1–17. [Google Scholar] [CrossRef]
- Metwally, W.M.; Ibrahim, V.A.R. The Future of the City: Towards Establishing Intelligent Cities. In Cities of the Future; Mohamed, M., Ibrahim, A., Fekry, M., Eds.; Springer: Cham, Switzerland, 2022; pp. 1–20. [Google Scholar] [CrossRef]
- Fahmy, M.; Kamel, H.; Mokhtar, H.; Elwy, I.; Gimiee, A.; Ibrahim, Y.; Abdelalim, M. On the Development and Optimization of an Urban Design Comfort Model (UDCM) on a Passive Solar Basis at Mid-Latitude Sites. Energies 2019, 7, 1. [Google Scholar] [CrossRef]
- Mahmoud, S.; Fahmy, M.; Mahdy, M.; Elwya, I.; Abdelalim, M. Comparative energy performance simulation for passive and conventional design: A case study in Cairo, Egypt. Energy Rep. 2020, 6, 699–704. [Google Scholar] [CrossRef]
- Mohammad, F.; Mahdy, M.; Nikolopoulou, M. Prediction of future energy consumption reduction using GRC envelope optimization for residential buildings in Egypt. Energy Build. 2014, 70, 186–193. [Google Scholar] [CrossRef]
- Shi, L.; Chew, M.Y.L. A review on sustainable design of renewable energy systems. Renew. Sustain. Energy Rev. 2012, 16, 192–207. [Google Scholar] [CrossRef]
- Xie, Y.; Gilmour, M.S.; Yuan, Y.; Jin, H.; Wu, H. A review on house design with energy saving system in the UK. Renew. Sustain. Energy Rev. 2017, 71, 29–52. [Google Scholar] [CrossRef]
- Knippers, J.; Speck, T. Design and construction principles in nature and architecture. Bioinspiration Biomim. 2012, 7, 015002. [Google Scholar] [CrossRef]
- Samuele, L.P.; Kozo, M. Toward an integrated assessment of the performance of photovoltaic systems for electricity generation. Appl. Energy 2017, 186, 167–174. [Google Scholar] [CrossRef]
- Krstić–Furundžić, A.; Scognamiglio, A.; Devetakovic, M.; Frontini, F.; Sudimac, B. Trends in the integration of photovoltaic facilities into the built environment. Open House Int. 2020, 45, 195–207. [Google Scholar] [CrossRef]
- Sailor, D.J.; Anand, J.; King, R.R. Photovoltaics in the built environment: A critical review. Energy Build. 2021, 253, 111479. [Google Scholar] [CrossRef]
- La Tegola, A.; Longo, F.; Lanzilotti, A. The pavilions of Expo 2015 in Milan, as a privileged observatory about the concept of sustainable construction in all languages of the world. Sustain. Build. 2019, 4, 1. [Google Scholar] [CrossRef]
- Devetaković, M.; Djordjević, D.; Radojević, M.; Krstić-Furundžić, A.; Burduhos, B.G.; Martinopoulos, G.; Lobaccaro, G. Photovoltaics on landmark buildings with distinctive geometries. Appl. Sci. 2020, 10, 6696. [Google Scholar] [CrossRef]
- Juchimiuk, J. Renewable Energy Sources in Architecture of the World Expo. Archit. Artibus 2020, 14, 75–91. [Google Scholar]
- Fields of Ideas. SCHMIDHUBER. (n.d.). Available online: https://www.schmidhuber.de/en/expo-mailand-2015-en/ (accessed on 6 August 2025).
- Bazilian, M.; Onyeji, I.; Liebreich, M.; MacGill, I.; Chase, J.; Shah, J.; Gielen, D.; Arent, D.; Landfear, D.; Zhengrong, S. Re-considering the economics of photovoltaic power. Renew. Energy 2013, 53, 329–338. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration. Available online: https://www.eia.gov/ (accessed on 6 August 2025).
- Solar Power. Available online: https://www.arup.com/services/solar-power/ (accessed on 6 August 2025).
- Bhushan, B.; Jung, Y.C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 2011, 56, 1–108. [Google Scholar] [CrossRef]
- Vogel, S. The Life of a Leaf; University of Chicago Press: Chicago, IL, USA, 2012. [Google Scholar]
- U.S. Department of Energy (DOE). Solar Energy Technologies Office: Photovoltaic Research. 2020. Available online: https://www.energy.gov/eere/solar/photovoltaics (accessed on 6 August 2025).
- Alkofahi, K.; Duran, I.A.; Saqib, N. Net-Zero Emissions Pathways in BRICS Economies: The Impact of Environmental Innovations, Policy, and Human Capital on Carbon Footprint Reduction. Econjournals 2024, 14, 106–113. [Google Scholar] [CrossRef]
- Verbrugghe, N.; Rubinacci, E.; Khan, A.Z. Biomimicry in architecture: A review of definitions, case studies, and design methods. Biomimetics 2023, 8, 107. [Google Scholar] [CrossRef]
- Kuru, A.; Oldfield, P.; Bonser, S.; Fiorito, F. Biomimetic adaptive building skins: Design and performance. In Rethinking Building Skins; Woodhead Publishing: New Delhi, India, 2022; pp. 181–200. [Google Scholar]
- Meyers, M.A.; McKittrick, J.; Chen, P.Y. Structural biological materials: Critical mechanics-materials connections. Science 2013, 339, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Kellert, S.R.; Heerwagen, J.; Mador, M. Biophilic Design: The Theory, Science, and Practice of Bringing Buildings to Life; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Chayaamor-Heil, N. From bioinspiration to biomimicry in architecture: Opportunities and challenges. Encyclopedia 2023, 3, 202–223. [Google Scholar] [CrossRef]
- Sanchez, C.; Arribart, H.; Giraud Guille, M.M. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat. Mater. 2005, 4, 277–288. [Google Scholar] [CrossRef]
- Zari, M.P. Regenerative Urban Design and Ecosystem Biomimicry; Routledge: Oxfordshire, UK, 2018. [Google Scholar]
- Nkandu, M.I.; Alibaba, H.Z. Biomimicry as an alternative approach to sustainability. Archit. Res. 2018, 8, 1–11. [Google Scholar]
- Yetkin, E.G. Effects of biomimicry on architecture. Eur. J. Nat. Sci. Med. 2021, 4, 100–113. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, W.; Dong, C.; Sreeprasad, T.S.; Xia, Z. Biomimetic self-cleaning surfaces: Synthesis, mechanism, and applications. J. R. Soc. Interface 2016, 13, 20160300. [Google Scholar] [CrossRef]
- Al-Obaidi, K.M.; Ismail, M.A.; Hussein, H.; Rahman, A.M.A. Biomimetic building skins: An adaptive approach. Renew. Sustain. Energy Rev. 2017, 79, 1472–1491. [Google Scholar] [CrossRef]
- Speck, O.; Speck, T. An overview of bioinspired and biomimetic self-repairing materials. Biomimetics 2019, 4, 26. [Google Scholar] [CrossRef]
- Pedersen Zari, M.; Hecht, K. Biomimicry for regenerative built environments: Mapping design strategies for producing ecosystem services. Biomimetics 2020, 5, 18. [Google Scholar] [CrossRef]
- Bhushan, B. Biomimetics: Lessons from nature–an overview. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 1445–1486. [Google Scholar] [CrossRef]
- Barthelat, F.; Yin, Z.; Buehler, M.J. Structure and mechanics of interfaces in biological materials. Nat. Rev. Mater. 2016, 1, 16007. [Google Scholar] [CrossRef]
- Berardi, U.; Khaled, K. Architectural glass solar and thermal control coating technologies. In Encyclopedia of Sustainable Technologies, 2nd ed.; Abraham, M.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 361–386. [Google Scholar]
- Dufresne, A. Nanocellulose: From Nature to High Performance Tailored Materials; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2017. [Google Scholar]
- Jones, M.; Mautner, A.; Luenco, S.; Bismarck, A.; John, S. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Mater. Des. 2020, 187, 108397. [Google Scholar] [CrossRef]
- Rezaei, D. Nanotechnology, a step toward sustainable architecture. J. Eng. Appl. Sci. 2018, 13, 6692–6699. [Google Scholar]
- Ahmad, I.; Abdullah, N.; Koji, I.; Mohamad, S.E.; Al-Dailami, A.; Yuzir, A. Role of algae in built environment and green cities: A holistic approach towards sustainability. Int. J. Built Environ. Sustain. 2022, 9, 69–80. [Google Scholar] [CrossRef]
- Hassan, S.T.; Wang, P.; Khan, I.; Zhu, B. The impact of economic complexity, technology advancements, and nuclear energy consumption on the ecological footprint of the USA: Towards circular economy initiatives. Gondwana Res. 2023, 113, 237–246. [Google Scholar] [CrossRef]
- Solano, T.; Bernal, A.; Mora, D.; Chen Austin, M. How bio-inspired solutions have influenced the built environment design in hot and humid climates. Front. Built Environ. 2023, 9, 1267757. [Google Scholar] [CrossRef]
- Elmeligy, D.; Elhassan, Z. The Bio-adaptive algae contribution for sustainable architecture. IOP Conf. Ser. Earth Environ. Sci. 2019, 397, 012007. [Google Scholar] [CrossRef]
- Wilkinson, S.; Biloria, N.; Ralph, P. The technical issues associated with algae building technology. Int. J. Build. Pathol. Adapt. 2020, 38, 673–688. [Google Scholar] [CrossRef]
- Warren, K.; Milovanovic, J.; Kim, K.H. Effect of a microalgae facade on design behaviors: A pilot study with architecture students. Buildings 2023, 13, 611. [Google Scholar] [CrossRef]
- Sommese, F.; Badarnah, L.; Ausiello, G. A critical review of biomimetic building envelopes: Towards a bio-adaptive model from nature to architecture. Renew. Sustain. Energy Rev. 2022, 169, 112850. [Google Scholar] [CrossRef]
- Elrayies, G.M. Microalgae: Prospects for greener future buildings. Renew. Sustain. Energy Rev. 2018, 81, 1175–1191. [Google Scholar] [CrossRef]
- Sedighi, M.; Pourmoghaddam Qhazvini, P.; Amidpour, M. Algae-powered buildings: A review of an innovative, sustainable approach in the built environment. Sustainability 2023, 15, 3729. [Google Scholar] [CrossRef]
- Kumar, R.P.; Parameswaran, B.; Bharathiraja, B.; Magesh, A. (Eds.) Bioenergy: Impacts on Environment and Economy; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Touloupakis, E.; Faraloni, C.; Silva Benavides, A.M.; Torzillo, G. Recent achievements in microalgal photobiological hydrogen production. Energies 2021, 14, 7170. [Google Scholar] [CrossRef]
- Masojídek, J.; Lhotský, R.; Štěrbová, K.; Zittelli, G.C.; Torzillo, G. Solar bioreactors used for the industrial production of microalgae. Appl. Microbiol. Biotechnol. 2023, 107, 6439–6458. [Google Scholar] [CrossRef]
- Tokuç, A.; Özkaban, F.F.; Çakır, Ö.A. Biomimetic Facade Applications for a More Sustainable. In Interdisciplinary Expansions in Engineering and Design with the Power of Biomimicry; BoD: Norderstedt, Germany, 2018; p. 77. [Google Scholar]
- Biloria, N.; Thakkar, Y. Integrating algae building technology in the built environment: A cost and benefit perspective. Front. Archit. Res. 2020, 9, 370–384. [Google Scholar] [CrossRef]
- Kim, K.H. Microalgae Building Enclosures: Design and Engineering Principles; Routledge: Oxfordshire, UK, 2022. [Google Scholar]
- Nakagaki, T.; Yamada, H.; Tóth, Á. Maze-solving by an amoeboid organism. Nature 2000, 407, 470. [Google Scholar] [CrossRef]
- Rognoli, V.; Ferraro, V. ICS Materials: Interactive, Connected, and Smart Materials; FrancoAngeli: Milan, Italy, 2022; p. 224. [Google Scholar]
- Adamatzky, A. Steering plasmodium with light: Dynamical programming of Physarum machine. arXiv 2009, arXiv:0908.0850. [Google Scholar] [CrossRef]
- Vallverdú, J.; Castro, O.; Mayne, R.; Talanov, M.; Levin, M.; Baluška, F.; Adamatzky, A. Slime mould: The fundamental mechanisms of biological cognition. Biosystems 2018, 165, 57–70. [Google Scholar] [CrossRef]
- Durham, A.C.; Ridgway, E.B. Control of chemotaxis in Physarum polycephalum. J. Cell Biol. 1976, 69, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Ueda, T.; Hirose, T.; Kobatake, Y. Membrane biophysics: Chemoreception and taxis in the plasmodium of Physarum polycephalum. Biophys. Chem. 1980, 11, 461–473. [Google Scholar] [CrossRef]
- Latty, T.; Beekman, M. Irrational decision-making in an amoeboid organism: Transitivity and context-dependent preferences. Proc. R. Soc. B Biol. Sci. 2011, 278, 307–312. [Google Scholar] [CrossRef]
- Henney Jr, H.R.; Asgari, M. The function of slime from Physarum flavicomum in the control of cell division. Can. J. Microbiol. 1975, 21, 1866–1876. [Google Scholar] [CrossRef]
- Reid, C.R.; Latty, T.; Dussutour, A.; Beekman, M. Slime mold uses an externalized spatial “memory” to navigate in complex environments. Proc. Natl. Acad. Sci. USA 2012, 109, 17490–17494. [Google Scholar] [CrossRef]
- Reid, C.R.; Garnier, S.; Beekman, M.; Latty, T. Information integration and multiattribute decision making in non-neuronal organisms. Anim. Behav. 2015, 100, 44–50. [Google Scholar] [CrossRef]
- Haslhofer, B.; Warner, S.; Lagoze, C.; Klein, M.; Sanderson, R.; Nelson, M.L.; Van de Sompel, H. ResourceSync: Leveraging sitemaps for resource synchronization. In Proceedings of the 22nd International Conference on World Wide Web, Geneva, Switzerland, 7 May 2013; pp. 11–14. [Google Scholar]
- Tero, A.; Takagi, S.; Saigusa, T.; Ito, K.; Bebber, D.P.; Fricker, M.D.; Nakagaki, T. Rules for biologically inspired adaptive network design. Science 2010, 327, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Kay, R.; Mattacchione, A.; Katrycz, C.; Hatton, B.D. Stepwise slime mould growth as a template for urban design. Sci. Rep. 2022, 12, 1322. [Google Scholar] [CrossRef]
- Mazzetto, S. Sustainable heritage preservation to improve the tourism offer in Saudi Arabia. Urban Plan. 2022, 7, 1–12. [Google Scholar] [CrossRef]
- Singh, R.N.; Sharma, S. Development of suitable photobioreactor for algae production—A review. Renew. Sustain. Energy Rev. 2012, 16, 2347–2353. [Google Scholar] [CrossRef]
- Nakagaki, T.; Yamada, H.; Ueda, T. Interaction between cell shape and contraction pattern in the Physarum plasmodium. Biophys. Chem. 2000, 84, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Hanafi, W.H.H. Bio-algae: A study of an interactive facade for commercial buildings in populated cities. J. Eng. Appl. Sci. 2021, 68, 37. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metwally, W.M. Biomimicry and Green Architecture: Nature-Inspired Innovations for Sustainable Buildings. Sustainability 2025, 17, 7223. https://doi.org/10.3390/su17167223
Metwally WM. Biomimicry and Green Architecture: Nature-Inspired Innovations for Sustainable Buildings. Sustainability. 2025; 17(16):7223. https://doi.org/10.3390/su17167223
Chicago/Turabian StyleMetwally, Walaa Mohamed. 2025. "Biomimicry and Green Architecture: Nature-Inspired Innovations for Sustainable Buildings" Sustainability 17, no. 16: 7223. https://doi.org/10.3390/su17167223
APA StyleMetwally, W. M. (2025). Biomimicry and Green Architecture: Nature-Inspired Innovations for Sustainable Buildings. Sustainability, 17(16), 7223. https://doi.org/10.3390/su17167223