Perturbations of Aerosol Radiative Forcing on the Planetary Boundary Layer Thermal Dynamics in a Central China Megacity
Abstract
1. Introduction
2. Data and Methods
2.1. Introduction of Observation Site
2.2. Ground-Based Remote Sensing Data
2.2.1. Wind Profiling Radar
2.2.2. Microwave Radiometer
2.2.3. PM2.5 Data
2.3. ERA5 Reanalysis Data
2.4. Research Methods
2.4.1. Pressure–Altitude Conversion Methods
- (1).
- International Standard Atmosphere (ISA) model.
- (2).
- Hydrostatic integration method with virtual temperature correction.
- (3).
- Dry adiabatic lapse rate method.
2.4.2. Observation Minus Reanalysis (OMR)
2.4.3. Heating–Dimming Index (HD Index)
3. Results
3.1. Evaluation of Pressure–Altitude Conversion Techniques
3.2. Aerosol-Induced Dynamical Perturbations in the PBL
3.3. Aerosol-Induced Thermodynamic Perturbations in the PBL
4. Discussions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Hersbach, H.; Dee, D. ERA5 Reanalysis is in Production, ECMWF News Letter; Scientific Research: Atlanta, GA, USA, 2016; Volume 147, p. 7. Available online: https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production (accessed on 5 August 2025).
- Jiang, Q.; Li, W.; Fan, Z.; He, X.; Sun, W.; Chen, S.; Wang, J. Evaluation of the ERA5 Reanalysis Precipitation Dataset over Chinese Mainland. J. Hydrol. 2021, 595, 125660. [Google Scholar] [CrossRef]
- Sleem, R.E.; Abdelfatah, M.A.; Mousa, A.E.K.; El-Fiky, G.S. A new Egyptian Grid Weighted Mean Temperature (EGWMT) model using hourly ERA5 reanalysis data in GNSS PWV retrieval. Sci. Rep. 2024, 14, 14608. [Google Scholar] [CrossRef]
- Cardoso, I.P.; Santiago, M.M.; Rodrigues, A.A.; Nunes, A.B. Validation of precipitation data generated by ERA5 reanalysis for the Mirim-São Gonçalo watershed, Brazil. Rev. Bras. Geogr. Física 2024, 17, 824–837. [Google Scholar] [CrossRef]
- Peng, Y.; Duan, A.; Zhang, C.; Tang, B.; Zhao, X. Evaluation of the Surface Air Temperature over the Tibetan Plateau among Different Reanalysis Datasets. Front. Environ. Sci. 2023, 11, 1152129. [Google Scholar] [CrossRef]
- Yanase, W.; Yamaguchi, H. Representation of gravity wave momentum flux in ERA5 over Antarctica. Remote Sens. 2021, 13, 2789. [Google Scholar]
- Su, T.; Li, Z.; Zheng, Y.; Wu, T.; Wu, H. Aerosol–boundary layer interaction modulated entrainment process. npj Clim. Atmos. Sci. 2022, 5, 59. [Google Scholar] [CrossRef]
- Xi, X.; Yang, Q.; Liu, C.; Shupe, M.D.; Han, B.; Peng, S.; Chen, D. Evaluation of the Planetary Boundary Layer Height from ERA5 Reanalysis with MOSAiC Observations over the Arctic Ocean. J. Geophys. Res. Atmos. 2024, 129, e2024JD040779. [Google Scholar]
- Huang, X.; Ding, A.; Wang, Z.; Ding, K.; Gao, J.; Chai, F.; Fu, C. Amplified Transboundary Transport of Haze by Aerosol–Boundary Layer Interaction in China. Nat. Geosci. 2020, 13, 428–434. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, H.; Cai, X.; Song, Y.; Zhu, T. The Impacts of the Atmospheric Boundary Layer on Regional Haze in North China. Npj Clim. Atmos. Sci. 2021, 4, 9. [Google Scholar] [CrossRef]
- Su, T.; Li, Z.; Li, C.; Li, J.; Han, W.; Shen, C.; Tan, W.; Wei, J.; Guo, J. The Significant Impact of Aerosol Vertical Structure on Lower Atmosphere Stability and Its Critical Role in Aerosol–Planetary Boundary Layer (PBL) Interactions. Atmos. Chem. Phys. 2020, 20, 3713–3724. [Google Scholar] [CrossRef]
- Wei, Y.; Sun, Y.; Ma, Y.; Tan, Y.; Ren, X.; Peng, K.; Yang, S.; Lin, Z.; Zhou, X.; Ren, Y.; et al. Deviations of Boundary Layer Height and Meteorological Parameters Between Ground-Based Remote Sensing and ERA5 over the Complex Terrain of the Mongolian Plateau. Remote Sens. 2025, 17, 393. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Liu, C.; Zhang, X.; Li, Z.; Che, H. Aerosol Physical-Optical Properties and PBLH Under Different Air Pollution Conditions in Beijing. J. Geophys. Res. Atmos. 2021, 126, e2021JD035236. [Google Scholar]
- Chen, J.; Duan, J.; Yang, L.; Chen, Y.; Guo, L.; Cai, J. Integration and Comparative Analysis of Remote Sensing and In Situ Observations of Aerosol Optical Characteristics Beneath Clouds. Remote Sens. 2025, 17, 17. [Google Scholar] [CrossRef]
- Xia, Y.; He, C.; Zhang, Y.; Wang, J.; Li, X.; Liu, H.; Zhao, L. Insights Into Urban Heat Island and Heat Waves Synergies in the Tokyo Metropolitan Area: A Land-Surface-Physics-Based Downscaling Approach. J. Geophys. Res. Atmos. 2023, 128, e2023JD040531. [Google Scholar]
- Guo, J.; Miao, Y.; Zhang, Y.; Liu, H.; Li, Z.; Zhang, W.; Zhai, P. Diurnal Climatology of Planetary Boundary Layer Height Over the Contiguous United States Derived From AMDAR and Reanalysis Data. J. Geophys. Res. Atmos. 2020, 125, e2020JD032803. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Luo, H.; Zhang, Q.; Li, X.; Wang, J. The climatology of surface inversion in Central China and its impact on aerosol pollution. Remote Sens. 2023, 15, 2639. [Google Scholar]
- Huang, R.; Zhang, Y.; Liu, C.; Wang, Z.; Chen, L.; Li, M. Impact of absorbing aerosols on the thermal structure of the boundary layer under dry winter conditions. Remote Sens. 2022, 14, 2955. [Google Scholar]
- Liu, M.; Matsui, H. Aerosol Radiative Forcings Induced by Substantial Changes in Anthropogenic Emissions in China from 2008 to 2016. Atmos. Chem. Phys. 2021, 21, 5965–5982. [Google Scholar] [CrossRef]
- Mattioli, V.; Westwater, E.R.; Gutman, S.I.; Morris, D.; Turner, D.D.; Ferrare, R.A. Forward Model Studies of Water Vapor Using Scanning Microwave Radiometers, Global Positioning System, and Radiosondes during the Cloudiness Intercomparison Experiment. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1012–1021. [Google Scholar] [CrossRef]
- Candlish, L.M.; Raddatz, R.L.; Asplin, M.G.; Barber, D.G. Atmospheric Temperature and Absolute Humidity Profiles over the Beaufort Sea and Amundsen Gulf from a Microwave Radiometer. J. Atmos. Ocean. Technol. 2012, 29, 1182–1201. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. China National Environmental Monitoring Centre. National Urban Air Quality Real-Time Publishing Platform. Available online: http://www.cnemc.cn/ (accessed on 20 April 2025).
- Sorteberg, A.; Kattsov, V.; Walsh, J.E.; Pavlova, T. The Arctic surface energy budget as simulated with the IPCC AR4 AOGCMs. Clim. Dyn. 2007, 29, 131–156. [Google Scholar] [CrossRef]
- Tjernström, M.; Graversen, R.G. The vertical structure of the lower Arctic troposphere analysed from observations and the ERA 40 reanalysis. Q. J. R. Meteorol. Soc. 2009, 135, 431–443. [Google Scholar] [CrossRef]
- Simmons, A. ERA-Interim: New ECMWF Reanalysis Products from 1989 Onwards. ECMWF Newsl. 2006, 110, 25–36. [Google Scholar]
- Jakobson, E.; Vihma, T.; Palo, T.; Jakobson, L.; Keernik, H.; Jaagus, J. Validation of atmospheric reanalyses over the central Arctic Ocean. Geophys. Res. Lett. 2012, 39, L10802. [Google Scholar] [CrossRef]
- Gettelman, A.; Hoor, P.; Pan, L.L.; Randel, W.; Hegglin, M.I.; Birner, T. The Extratropical Upper Troposphere and Lower Stratosphere. Rev. Geophys. 2011, 49, RG3003. [Google Scholar] [CrossRef]
- Lindsay, R.; Wensnahan, M.; Schweiger, A.; Zhang, J. Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Clim. 2014, 27, 2588–2606. [Google Scholar] [CrossRef]
- Ding, A.J.; Fu, C.B.; Yang, X.Q.; Sun, J.N.; Petäjä, T.; Kerminen, V.M.; Kulmala, M. Intense Atmospheric Pollution Modifies Weather: A Case of Mixed Biomass Burning with Fossil Fuel Combustion Pollution in Eastern China. Atmos. Chem. Phys. 2013, 13, 10545–10554. [Google Scholar] [CrossRef]
- Ding, A.J.; Huang, X.; Nie, W.; Sun, J.N.; Kerminen, V.M.; Petäjä, T.; Kulmala, M. Enhanced Haze Pollution by Black Carbon in Megacities in China. Geophys. Res. Lett. 2016, 43, 2873–2879. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- International Civil Aviation Organization (ICAO). Manual of the ICAO Standard Atmosphere, 3rd ed.; ICAO: Montreal, QC, Canada, 1993. [Google Scholar]
- Rai, M.; Kang, S.; Yang, J.; Chen, X.; Hu, Y.; Rupakheti, D. Tracing Atmospheric Anthropogenic Black Carbon and Its Potential Radiative Response over Pan-Third Pole Region: A Synoptic-Scale Analysis Using WRF-Chem. J. Geophys. Res. Atmos. 2022, 127, e2021JD035772. [Google Scholar] [CrossRef]
- Wallace, J.M.; Hobbs, P.V. Water Vapor in Air. In Atmospheric Science: An Introductory Survey, 2nd ed.; Academic Press: San Diego, CA, USA, 2006; pp. 81–84. [Google Scholar]
- Vallis, G.K. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2017; pp. 64–66. [Google Scholar]
- Barry, R.G.; Chorley, R.J. Atmosphere, Weather and Climate, 9th ed.; Routledge: London, UK, 2010; pp. 64–66. [Google Scholar]
- Wallace, J.M.; Hobbs, P.V. Adiabatic Processes. In Atmospheric Science: An Introductory Survey, 2nd ed.; Academic Press: San Diego, CA, USA, 2006; pp. 76–78. [Google Scholar]
- Cheynet, E.; Diezel, J.M.; Haakenstad, H.; Breivik, Ø.; Peña, A.; Reuder, J. Tall Wind Profile Validation of ERA5, NORA3, and NEWA Datasets Using Doppler Wind Lidar. Wind Energy Sci. 2025, 10, 733–754. [Google Scholar] [CrossRef]
- Wei, Y.; Peng, K.; Ma, Y.; Sun, Y.; Zhao, D.; Ren, X.; Yang, S.; Ahmad, M.; Pan, X.; Wang, Z.; et al. Validation of ERA5 Boundary Layer Meteorological Variables by Remote-Sensing Measurements in the Southeast China Mountains. Remote Sens. 2024, 16, 548. [Google Scholar] [CrossRef]
- Chen, Y.; An, J.; Wang, X.; Sun, Y.; Wang, Z.; Duan, J. Observation of wind shear during evening transition and an estimation of submicron aerosol concentrations in Beijing using a Doppler wind lidar. J. Meteorol. Res. 2017, 31, 350–362. [Google Scholar] [CrossRef]
- Suo, C.; Sun, A.; Yan, C.; Cao, X.; Peng, K.; Tan, Y.; Wang, G. Quality Assessment of ERA5 Wind Speed and Its Impact on Atmosphere Environment Using Radar Profiles along the Bohai Bay Coastline. Atmosphere 2024, 15, 1153. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; King, T.S.; Roth, M.; Oke, T.R. Aerodynamic Roughness of Urban Areas Derived from Wind Observations. Bound.-Layer Meteorol. 1998, 89, 1–24. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Z.; Ding, A. Impact of Aerosol–PBL Interaction on Haze Pollution: Multiyear Observational Evidences in North China. Geophys. Res. Lett. 2018, 45, 8596–8603. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Zhang, M.; Kong, H.; Kang, Y.; Si, R.; Kong, L.; Zhang, W.; Zhang, X.; Hu, H.; Wang, Z. Perturbations of Aerosol Radiative Forcing on the Planetary Boundary Layer Thermal Dynamics in a Central China Megacity. Sustainability 2025, 17, 7217. https://doi.org/10.3390/su17167217
Liu Z, Zhang M, Kong H, Kang Y, Si R, Kong L, Zhang W, Zhang X, Hu H, Wang Z. Perturbations of Aerosol Radiative Forcing on the Planetary Boundary Layer Thermal Dynamics in a Central China Megacity. Sustainability. 2025; 17(16):7217. https://doi.org/10.3390/su17167217
Chicago/Turabian StyleLiu, Zengshou, Mingjie Zhang, Haijiang Kong, Yanzhen Kang, Ruirui Si, Lingbin Kong, Wenyu Zhang, Xuanyu Zhang, Hangfei Hu, and Zixuan Wang. 2025. "Perturbations of Aerosol Radiative Forcing on the Planetary Boundary Layer Thermal Dynamics in a Central China Megacity" Sustainability 17, no. 16: 7217. https://doi.org/10.3390/su17167217
APA StyleLiu, Z., Zhang, M., Kong, H., Kang, Y., Si, R., Kong, L., Zhang, W., Zhang, X., Hu, H., & Wang, Z. (2025). Perturbations of Aerosol Radiative Forcing on the Planetary Boundary Layer Thermal Dynamics in a Central China Megacity. Sustainability, 17(16), 7217. https://doi.org/10.3390/su17167217