The Multiscale Spatiotemporal Heterogeneity of Ecosystem Service Trade-Offs/Synergies and Bundles and Socioecological Drivers in the Yangtze River Delta Region of China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Quantification of Ecosystem Services
2.4. Data Analysis Methods
2.4.1. Data Preprocessing
2.4.2. Trade-Off and Synergy Analyses Between ESs
2.4.3. Identifying Ecosystem Service Bundles
2.4.4. Identification and Analysis of the Socioeconomic and Ecological Drivers of ESs
3. Results
3.1. Spatiotemporal Variation in Ecosystem Services
3.2. TOS Between ESs
3.2.1. Overall TOS Between ES Pairs
3.2.2. Spatiotemporal Characteristics of the TOS Between ES Pairs
3.3. Identification and Spatiotemporal Dynamic Patterns of ESBs
3.4. Socioecological Drivers of ESs
- (1)
- CP was driven the most by P_C at all scales and years, and its impact continued to increase over time. In addition, CP was driven mainly by SOC and PRE at the grid scale and by NTL and PD at the county scale.
- (2)
- CS was driven mainly by P_F, DEM, PRE, SOC, and Sand at the 1 km grid scale; by PRE, DEM, NDVI, and Sand at the 10 km grid scale; and by P_B, PD, NTL, P_F, and DEM at the county scale. At the 1 km grid scale, P_F had strong explanatory power for CS, whereas at the 10 km grid and county scales, the explanatory power of P_F was greatly weakened. The explanatory power of DEM for CS decreased with increasing scale. The driving forces of PD and NTL to CS gradually increased with time at the county scale.
- (3)
- SC was driven mainly by DEM, P_F, PRE, and SOC at all scales and years. The q value of DEM was between 0.68 and 0.85, the q value of P_F was between 0.66 and 0.78, the q value of PRE was between 0.49 and 0.71, and the q value of SOC was between 0.44 and 0.55. At the county scale, SC was also driven by P_B (0.50 < q < 0.68).
- (4)
- WY was driven mainly by PRE (0.44 < q < 0.70) in 2000 and 2010 at the 1 km and 10 km grid scales and was driven by TSR in 2010. WY was driven by P_B, PD, and NTL in all years at the county level.
- (5)
- HQ was driven mainly by P_C, P_B, and P_F in all years at the 1 km and 10 km grid scales and was also driven by PD, DEM, and SOC in all years at the 10 km grid scale. At the county scale, HQ in all years was driven mainly by P_B, P_F, PD, DEM, and AET. The explanatory power of P_F and P_B for HQ increased with increasing scale, whereas that of P_C first increased but then decreased.
- (6)
- In all years, LR was driven mainly by P_F, SOC, DEM, and P_C at the 1 km and 10 km grid scales and by SOC, P_C, PRE, and P_F at the county scale. The explanatory power of SOC for LR increased with increasing scale.
4. Discussion
4.1. Complexity of TOS Among ESs
4.2. Driving Mechanism of ESs
4.3. Management Insights Based on ESBs in the YRDR
4.4. Limitations and Prospects of Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MA). Ecosystems and Human Well-Being, 1st ed.; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Wang, J.; Zhai, T.; Lin, Y.; Kong, X.; He, T. Spatial imbalance and changes in supply and demand of ecosystem services in China. Sci. Total Environ. 2019, 657, 781–791. [Google Scholar] [CrossRef]
- Tong, L.; Liang, X.; Zhang, J.; Geng, Y.; Geng, T.; Shi, J. Ecosystem service trade-off and synergy relationship and its driving factor analysis based on Bayesian belief network: A case study of the Loess Plateau in northern Shaanxi Province. Acta Ecol. Sin. 2023, 43, 6758–6771. (In Chinese) [Google Scholar]
- Xu, J.; Wang, S.; Xiao, Y.; Xie, G.; Lei, G. Mapping the spatiotemporal heterogeneity of ecosystem service relationships and bundles in Ningxia. J. Clean. Prod. 2021, 294, 126216. [Google Scholar] [CrossRef]
- Xia, H.; Yuan, S.; Prishchepov, A.V. Spatial-temporal heterogeneity of ecosystem service interactions and their social-ecological drivers: Implications for spatial planning and management. Resour. Conserv. Recycl. 2023, 189, 106767. [Google Scholar] [CrossRef]
- Shen, J.; Li, S.; Liu, L.; Liang, Z.; Wang, Y.; Wang, H.; Wu, S. Uncovering the relationships between ecosystem services and social-ecological drivers at different spatial scales in the Beijing-Tianjin-Hebei region. J. Clean. Prod. 2021, 290, 125193. [Google Scholar] [CrossRef]
- Liu, Q.; Qiao, J.; Li, M.; Huang, M. Spatiotemporal heterogeneity of ecosystem service interactions and their drivers at different spatial scales in the Yellow River Basin. Sci. Total Environ. 2024, 908, 168486. [Google Scholar] [CrossRef]
- Cord, A.F.; Bartkowski, B.; Beckmann, M.; Dittrich, A.; Hermans-Neumann, K.; Kaim, A.; Lienhoop, N.; Locher-Krause, K.; Priess, J.; Schröter-Schlaack, C.; et al. Towards systematic analyses of ecosystem service trade-offs and synergies: Main concepts, methods and the road ahead. Ecosyst. Serv. 2017, 28, 264–272. [Google Scholar] [CrossRef]
- Kareiva, P.; Watts, S.; McDonald, R.; Boucher, T. Domesticated nature: Shaping landscapes and ecosystems for human welfare. Science 2007, 316, 1866–1869. [Google Scholar] [CrossRef]
- Wang, K.; Gao, J.; Liu, C.; Zhang, Y.; Wang, C. Understanding the effects of socio-ecological factors on trade-offs and synergies among ecosystem services to support urban sustainable management: A case study of Beijing, China. Sustain. Cities Soc. 2023, 100, 105024. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, J. Spatial and temporal driving mechanisms of ecosystem service trade-off/synergy in national key urban agglomerations: A case study of the Yangtze River Delta urban agglomeration in China. Ecol. Indic. 2023, 154, 110800. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, S.; Cao, Q.; Wang, H.; Li, Y. The spatiotemporal dynamics of ecosystem services bundles and the social-economic-ecological drivers in the Yellow River Delta region. Ecol. Indic. 2022, 135, 108573. [Google Scholar] [CrossRef]
- Baró, F.; Gómez-Baggethun, E.; Haase, D. Ecosystem service bundles along the urban-rural gradient: Insights for landscape planning and management. Ecosyst. Serv. 2017, 24, 147–159. [Google Scholar] [CrossRef]
- Liu, D.; Chen, H.; Li, T.; Zhang, H.; Geng, Y. Spatiotemporal differentiation of village ecosystem service bundles in the loess hilly and gully region and terrain gradient analysis. Prog. Geogr. 2022, 41, 670–681. [Google Scholar] [CrossRef]
- Yan, X.; Li, X.; Liu, C.; Li, J.; Zhong, J. Scales and Historical Evolution: Methods to Reveal the Relationships between Ecosystem Service Bundles and Socio-Ecological Drivers—A Case Study of Dalian City, China. Int. J. Environ. Res. Public Health 2022, 19, 11766. [Google Scholar] [CrossRef]
- Mo, W.; Zhao, Y.; Yang, N.; Xu, Z. Ecological function zoning based on ecosystem service bundles and trade-offs: A study of Dongjiang Lake Basin, China. Environ. Sci. Pollut. Res. 2023, 30, 40388–40404. [Google Scholar] [CrossRef]
- Huang, F.; Zuo, L.; Gao, J.; Jiang, Y.; Du, F.; Zhang, Y. Exploring the driving factors of trade-offs and synergies among ecological functional zones based on ecosystem service bundles. Ecol. Indic. 2023, 146, 109827. [Google Scholar] [CrossRef]
- He, L.; Xie, Z.; Wu, H.; Liu, Z.; Zheng, B.; Wan, W. Exploring the interrelations and driving factors among typical ecosystem services in the Yangtze River economic belt, China. J. Environ. Manag. 2024, 351, 119794. [Google Scholar] [CrossRef]
- Zhang, X.; Han, R.; Yang, S.; Yang, Y.; Tang, X.; Qu, W. Identification of bundles and driving factors of ecosystem services at multiple scales in the eastern China region. Ecol. Indic. 2024, 158, 111378. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, W.; Cheng, C.; Tang, Z.; Qi, L. Trade-offs and driving factors of multiple ecosystem services and bundles under spatiotemporal changes in the Danjiangkou Basin. China. Ecol. Indic. 2022, 144, 109550. [Google Scholar] [CrossRef]
- Huang, J.; Zheng, F.; Dong, X.; Wang, X. Exploring the complex trade-offs and synergies among ecosystem services in the Tibet autonomous region. J. Clean. Prod. 2023, 384, 135483. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- National Bureau of Statistics. Available online: https://data.stats.gov.cn/index.htm (accessed on 3 July 2025).
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Chen, T.; Feng, Z.; Zhao, H.; Wu, K. Identification of ecosystem service bundles and driving factors in Beijing and its surrounding areas. Sci. Total Environ. 2020, 711, 134687. [Google Scholar] [CrossRef]
- Chang, B.; Chen, B.; Chen, W.; Xu, S.; He, X.; Yao, J.; Huang, Y. Analysis of tradeoff and synergy of ecosystem services and driving forces in urban agglomerations in Northern China. Ecol. Indic. 2024, 165, 112210. [Google Scholar] [CrossRef]
- Dittrich, A.; Seppelt, R.; Vaclavik, T.; Cord, A.F. Integrating ecosystem service bundles and socio-environmental conditions—A national scale analysis from Germany. Ecosyst. Serv. 2017, 28, 273–282. [Google Scholar] [CrossRef]
- Lyu, R.; Clarke, K.C.; Zhang, J.; Feng, J.; Jia, X.; Li, J. Dynamics of spatial relationships among ecosystem services and their determinants: Implications for land use system reform in Northwestern China. Land Use Policy 2021, 102, 105231. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, T.; Fu, B. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Wang, S.; Hu, M.; Wang, Y.; Xia, B. Dynamics of ecosystem services in response to urbanization across temporal and spatial scales in a mega metropolitan area. Sustain. Cities Soc. 2022, 77, 103561. [Google Scholar] [CrossRef]
- Boeraeve, F.; Dendoncker, N.; Cornelis, J.-T.; Degrune, F.; Dufrene, M. Contribution of agroecological farming systems to the delivery of ecosystem services. J. Environ. Manage. 2020, 260, 109576. [Google Scholar] [CrossRef]
- Cao, Y.; Li, G.; Tian, Y.; Fang, X.; Li, Y.; Tan, Y. Linking ecosystem services trade-offs, bundles and hotspot identification with cropland management in the coastal Hangzhou Bay area of China. Land Use Policy 2020, 97, 104689. [Google Scholar] [CrossRef]
- Yang, G.; Ge, Y.; Xue, H.; Yang, W.; Shi, Y.; Peng, C.; Du, Y.; Fan, X.; Ren, Y.; Chang, J. Using ecosystem service bundles to detect trade-offs and synergies across urban–rural complexes. Landsc. Urban Plan. 2015, 136, 110–121. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, Y.; Hao, S.; Xu, W.; Lv, L.; Yu, S. Spatial-temporal variation and tradeoffs/synergies analysis on multiple ecosystem services: A case study in the Three-River Headwaters region of China. Ecol. Indic. 2020, 116, 106494. [Google Scholar] [CrossRef]
- Sun, X.; Wu, J.; Tang, H.; Yang, P. An urban hierarchy-based approach integrating ecosystem services into multiscale sustainable land use planning: The case of China. Resour. Conserv. Recycl. 2022, 178, 106097. [Google Scholar] [CrossRef]
- China Key Words. Available online: http://keywords.china.org.cn/2015-09/07/content_36521200.html (accessed on 25 July 2025).
Data Type | Format/Spatial Resolution | Data Source | Application |
---|---|---|---|
Land use/land cover | GeoTIFF/30 m | The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019 [25] | CP, CS, SC, WY, HQ, LR, GeoDetector |
Digital elevation model (DEM) | GeoTIFF/30 m | Geospatial Data Cloud (https://www.gscloud.cn/) | SC, GeoDetector |
Potential evapotranspiration | GeoTIFF/1000 m | National Qinghai Tibet Plateau Science Data Center (https://data.tpdc.ac.cn) | WY |
Annual total evapotranspiration | GeoTIFF/500 m | MODIS (https://modis.gsfc.nasa.gov/) | WY |
Annual total precipitation | GeoTIFF/1000 m | National Qinghai Tibet Plateau Science Data Center (https://data.tpdc.ac.cn) | GeoDetector |
Annual mean temperature | GeoTIFF/1000 m | National Qinghai Tibet Plateau Science Data Center (https://data.tpdc.ac.cn) | GeoDetector |
Annual total solar radiation | GeoTIFF/1000 m | Geographic Data Sharing Infrastructure, global resources data cloud (www.gis5g.com) | GeoDetector |
Rainfall erosivity index | GeoTIFF/30 m | Geographic remote sensing ecological network platform (www.gisrs.cn) | SC |
Soil erodibility index | GeoTIFF/300 m | Geographic Data Sharing Infrastructure, global resources data cloud (www.gis5g.com) | SC |
Soil organic carbon content | GeoTIFF/1000 m | ISRIC—World Soil Information (https://www.isric.org) | GeoDetector |
Clay content in soil | GeoTIFF/1000 m | ISRIC—World Soil Information (https://www.isric.org) | GeoDetector |
Silt content in soil | GeoTIFF/1000 m | ISRIC—World Soil Information (https://www.isric.org) | GeoDetector |
Sand content in soil | GeoTIFF/1000 m | ISRIC—World Soil Information (https://www.isric.org) | GeoDetector |
Volumetric coarse fragment content in soil | GeoTIFF/1000 m | ISRIC—World Soil Information (https://www.isric.org) | GeoDetector |
Volumetric water content in soil | GeoTIFF/1000 m | ISRIC—World Soil Information (https://www.isric.org) | GeoDetector |
Soil depth | GeoTIFF/250 m | ISRIC—World Soil Information (https://www.isric.org) | WY |
Available water content in plants | GeoTIFF/250 m | ISRIC—World Soil Information (https://www.isric.org) | WY |
Ecosystem carbon density | .xls file | National Ecosystem Science Data Center (https://nesdc.org.cn) | CS |
Net primary productivity (NPP) | GeoTIFF/500 m | The Land Processes Distributed Active Archive Center (https://lpdaac.usgs.gov) | CP |
Normalized vegetation index (NDVI) | GeoTIFF/1000 m | Geographic Data Sharing Infrastructure, global resources data cloud (www.gis5g.com) | GeoDetector |
Agricultural output | .xls file | Statistical Yearbook | CP |
Gross domestic product | GeoTIFF/1000 m | Resource and Environmental Science Data Platform (https://www.resdc.cn) | GeoDetector |
Population density | GeoTIFF/1000 m | Oak Ridge National Laboratory (https://landscan.ornl.gov) | LR, GeoDetector |
Night light remote sensing | GeoTIFF/500 m | National Earth System Science Data Center (https://www.geodata.cn) | GeoDetector |
Category | Ecosystem Service | Abbreviation | Unit | Method(s) | Description |
---|---|---|---|---|---|
Provisioning services | Crop production | CP | ton | Measurable proxies | Yield of staple food crops |
Regulating services | Carbon storage | CS | ton | Carbon storage and sequestration from the InVEST model | Amount of carbon stored by terrestrial ecosystems |
Soil conservation | SC | ton | Sediment delivery ratio from the InVEST model | Capacity of vegetation cover to retain soil | |
Water yield | WY | mm | Annual water yield from the InVEST model | Annual yield of water | |
Supporting services | Habitat quality | HQ | Index (dimensionless) | Habitat quality from the InVEST model | Ability to provide conditions suitable for the persistence of individuals and populations by ecosystems (ranges from 0 to 1) |
Cultural services | Leisure recreation | LR | Index (dimensionless) | Recreation opportunity spectrum model | Index compounded by naturalness, tourist attraction density, and population density (ranges from 1 to 100) |
Category | Factor | Abbreviation |
---|---|---|
Climate | Annual total precipitation | PRE |
Rainfall erosivity | RE | |
Annual mean temperature | TEM | |
Annual total solar radiation | TSR | |
Annual total evapotranspiration | AET | |
Biophysical indicators | Elevation | DEM |
Soil organic carbon content | SOC | |
Sand content in soil | Sand | |
Annual maximum normalized vegetation index | NDVI | |
Landscape composition | Percentage of cropland | P_C |
Percentage of forest | P_F | |
Percentage of water | P_W | |
Percentage of built-up land | P_B | |
Socioeconomic factors | Gross domestic product | GDP |
Population density | PD | |
Night light remote sensing | NTL |
Factors | CP2000 | CP2010 | CP2020 | CS2000 | CS2010 | CS2020 | SC2000 | SC2010 | SC2020 | WY2000 | WY2010 | WY2020 | HQ2000 | HQ2010 | HQ2020 | LR2000 | LR2010 | LR2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P_C | 0.567 | 0.630 | 0.614 | 0.194 | 0.186 | 0.156 | 0.418 | 0.469 | 0.454 | 0.031 | 0.048 | 0.092 | 0.497 | 0.477 | 0.442 | 0.518 | 0.500 | 0.444 |
P_F | 0.339 | 0.352 | 0.332 | 0.725 | 0.732 | 0.728 | 0.739 | 0.737 | 0.735 | 0.141 | 0.316 | 0.068 | 0.423 | 0.431 | 0.410 | 0.579 | 0.598 | 0.604 |
P_W | 0.063 | 0.061 | 0.048 | 0.237 | 0.232 | 0.196 | 0.109 | 0.146 | 0.139 | 0.150 | 0.102 | 0.150 | 0.100 | 0.100 | 0.098 | 0.055 | 0.067 | 0.067 |
P_B | 0.302 | 0.340 | 0.343 | 0.273 | 0.328 | 0.383 | 0.307 | 0.409 | 0.424 | 0.015 | 0.054 | 0.085 | 0.421 | 0.471 | 0.480 | 0.432 | 0.455 | 0.486 |
PRE | 0.288 | 0.415 | 0.391 | 0.562 | 0.543 | 0.453 | 0.659 | 0.517 | 0.497 | 0.450 | 0.698 | 0.334 | 0.234 | 0.242 | 0.300 | 0.434 | 0.440 | 0.348 |
RE | 0.120 | 0.156 | 0.214 | 0.248 | 0.229 | 0.216 | 0.205 | 0.198 | 0.171 | 0.193 | 0.337 | 0.117 | 0.100 | 0.094 | 0.090 | 0.205 | 0.199 | 0.190 |
TEM | 0.070 | 0.118 | 0.184 | 0.187 | 0.160 | 0.148 | 0.107 | 0.051 | 0.077 | 0.295 | 0.313 | 0.204 | 0.051 | 0.037 | 0.038 | 0.048 | 0.046 | 0.069 |
TSR | 0.189 | 0.273 | 0.166 | 0.420 | 0.374 | 0.227 | 0.340 | 0.305 | 0.149 | 0.178 | 0.450 | 0.180 | 0.164 | 0.139 | 0.078 | 0.373 | 0.341 | 0.170 |
AET | 0.116 | 0.163 | 0.141 | 0.366 | 0.426 | 0.273 | 0.193 | 0.218 | 0.141 | 0.055 | 0.124 | 0.040 | 0.136 | 0.139 | 0.147 | 0.288 | 0.238 | 0.183 |
DEM | 0.320 | 0.321 | 0.303 | 0.712 | 0.711 | 0.701 | 0.689 | 0.738 | 0.753 | 0.134 | 0.283 | 0.109 | 0.394 | 0.388 | 0.375 | 0.508 | 0.527 | 0.530 |
SOC | 0.264 | 0.365 | 0.409 | 0.520 | 0.521 | 0.520 | 0.527 | 0.501 | 0.519 | 0.183 | 0.324 | 0.173 | 0.282 | 0.269 | 0.258 | 0.459 | 0.458 | 0.451 |
Sand | 0.207 | 0.233 | 0.245 | 0.476 | 0.492 | 0.490 | 0.383 | 0.466 | 0.495 | 0.092 | 0.210 | 0.084 | 0.246 | 0.242 | 0.234 | 0.236 | 0.246 | 0.251 |
NDVI | 0.081 | 0.091 | 0.099 | 0.372 | 0.354 | 0.499 | 0.086 | 0.112 | 0.304 | 0.186 | 0.108 | 0.222 | 0.061 | 0.067 | 0.193 | 0.019 | 0.027 | 0.120 |
GDP | 0.134 | 0.135 | 0.160 | 0.261 | 0.278 | 0.281 | 0.195 | 0.195 | 0.248 | 0.140 | 0.142 | 0.106 | 0.183 | 0.195 | 0.199 | 0.078 | 0.077 | 0.087 |
PD | 0.330 | 0.365 | 0.249 | 0.260 | 0.205 | 0.195 | 0.245 | 0.317 | 0.298 | 0.132 | 0.046 | 0.119 | 0.344 | 0.373 | 0.369 | 0.291 | 0.346 | 0.282 |
NTL | 0.010 | 0.017 | 0.047 | 0.044 | 0.097 | 0.155 | 0.009 | 0.041 | 0.102 | 0.032 | 0.009 | 0.090 | 0.030 | 0.081 | 0.167 | 0.003 | 0.010 | 0.046 |
Factors | CP2000 | CP2010 | CP2020 | CS2000 | CS2010 | CS2020 | SC2000 | SC2010 | SC2020 | WY2000 | WY2010 | WY2020 | HQ2000 | HQ2010 | HQ2020 | LR2000 | LR2010 | LR2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P_C | 0.610 | 0.676 | 0.676 | 0.155 | 0.173 | 0.254 | 0.493 | 0.540 | 0.553 | 0.025 | 0.081 | 0.157 | 0.547 | 0.515 | 0.487 | 0.474 | 0.499 | 0.511 |
P_F | 0.396 | 0.435 | 0.441 | 0.394 | 0.435 | 0.438 | 0.665 | 0.731 | 0.780 | 0.080 | 0.296 | 0.065 | 0.440 | 0.445 | 0.448 | 0.556 | 0.577 | 0.583 |
P_W | 0.164 | 0.137 | 0.117 | 0.254 | 0.240 | 0.211 | 0.241 | 0.289 | 0.317 | 0.168 | 0.115 | 0.116 | 0.185 | 0.194 | 0.192 | 0.045 | 0.063 | 0.077 |
P_B | 0.373 | 0.364 | 0.386 | 0.186 | 0.226 | 0.257 | 0.408 | 0.482 | 0.534 | 0.029 | 0.123 | 0.038 | 0.462 | 0.471 | 0.488 | 0.316 | 0.304 | 0.325 |
PRE | 0.406 | 0.533 | 0.434 | 0.540 | 0.555 | 0.414 | 0.714 | 0.650 | 0.552 | 0.504 | 0.696 | 0.358 | 0.282 | 0.317 | 0.344 | 0.475 | 0.482 | 0.422 |
RE | 0.208 | 0.245 | 0.313 | 0.245 | 0.234 | 0.229 | 0.212 | 0.218 | 0.189 | 0.209 | 0.272 | 0.231 | 0.165 | 0.157 | 0.151 | 0.281 | 0.279 | 0.271 |
TEM | 0.118 | 0.168 | 0.230 | 0.312 | 0.290 | 0.155 | 0.089 | 0.070 | 0.063 | 0.349 | 0.313 | 0.193 | 0.040 | 0.029 | 0.029 | 0.062 | 0.064 | 0.133 |
TSR | 0.257 | 0.335 | 0.196 | 0.408 | 0.405 | 0.315 | 0.372 | 0.329 | 0.199 | 0.301 | 0.424 | 0.286 | 0.188 | 0.152 | 0.104 | 0.318 | 0.332 | 0.247 |
AET | 0.271 | 0.386 | 0.245 | 0.343 | 0.420 | 0.383 | 0.320 | 0.338 | 0.343 | 0.151 | 0.266 | 0.276 | 0.248 | 0.322 | 0.279 | 0.366 | 0.377 | 0.310 |
DEM | 0.361 | 0.346 | 0.324 | 0.503 | 0.523 | 0.531 | 0.744 | 0.805 | 0.816 | 0.135 | 0.314 | 0.099 | 0.418 | 0.417 | 0.406 | 0.460 | 0.492 | 0.503 |
SOC | 0.419 | 0.497 | 0.532 | 0.375 | 0.364 | 0.362 | 0.541 | 0.553 | 0.532 | 0.272 | 0.326 | 0.356 | 0.424 | 0.409 | 0.397 | 0.564 | 0.568 | 0.565 |
Sand | 0.291 | 0.256 | 0.246 | 0.415 | 0.417 | 0.417 | 0.444 | 0.513 | 0.560 | 0.233 | 0.281 | 0.268 | 0.301 | 0.303 | 0.297 | 0.240 | 0.257 | 0.268 |
NDVI | 0.123 | 0.148 | 0.180 | 0.448 | 0.444 | 0.502 | 0.153 | 0.179 | 0.470 | 0.289 | 0.180 | 0.255 | 0.063 | 0.082 | 0.266 | 0.050 | 0.053 | 0.162 |
GDP | 0.251 | 0.238 | 0.258 | 0.379 | 0.364 | 0.296 | 0.161 | 0.166 | 0.225 | 0.351 | 0.198 | 0.341 | 0.180 | 0.225 | 0.254 | 0.050 | 0.052 | 0.090 |
PD | 0.432 | 0.387 | 0.345 | 0.333 | 0.232 | 0.298 | 0.301 | 0.351 | 0.443 | 0.212 | 0.101 | 0.205 | 0.438 | 0.442 | 0.446 | 0.256 | 0.243 | 0.285 |
NTL | 0.038 | 0.060 | 0.208 | 0.016 | 0.045 | 0.096 | 0.029 | 0.097 | 0.226 | 0.052 | 0.006 | 0.051 | 0.074 | 0.155 | 0.273 | 0.004 | 0.006 | 0.061 |
Factors | CP2000 | CP2010 | CP2020 | CS2000 | CS2010 | CS2020 | SC2000 | SC2010 | SC2020 | WY2000 | WY2010 | WY2020 | HQ2000 | HQ2010 | HQ2020 | LR2000 | LR2010 | LR2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P_C | 0.365 | 0.492 | 0.578 | 0.256 | 0.244 | 0.209 | 0.554 | 0.506 | 0.446 | 0.195 | 0.242 | 0.113 | 0.345 | 0.281 | 0.334 | 0.578 | 0.596 | 0.592 |
P_F | 0.185 | 0.222 | 0.219 | 0.453 | 0.455 | 0.464 | 0.696 | 0.726 | 0.753 | 0.329 | 0.499 | 0.186 | 0.652 | 0.651 | 0.650 | 0.414 | 0.435 | 0.462 |
P_W | 0.018 | 0.018 | 0.033 | 0.195 | 0.197 | 0.191 | 0.239 | 0.231 | 0.214 | 0.146 | 0.149 | 0.063 | 0.133 | 0.144 | 0.149 | 0.028 | 0.050 | 0.071 |
P_B | 0.239 | 0.274 | 0.330 | 0.539 | 0.595 | 0.629 | 0.509 | 0.639 | 0.679 | 0.442 | 0.620 | 0.528 | 0.650 | 0.677 | 0.668 | 0.263 | 0.252 | 0.271 |
PRE | 0.182 | 0.285 | 0.282 | 0.183 | 0.269 | 0.297 | 0.620 | 0.583 | 0.535 | 0.253 | 0.468 | 0.225 | 0.446 | 0.505 | 0.496 | 0.482 | 0.503 | 0.394 |
RE | 0.105 | 0.126 | 0.175 | 0.083 | 0.086 | 0.087 | 0.228 | 0.222 | 0.176 | 0.106 | 0.183 | 0.059 | 0.290 | 0.276 | 0.272 | 0.277 | 0.278 | 0.285 |
TEM | 0.151 | 0.215 | 0.303 | 0.085 | 0.068 | 0.063 | 0.028 | 0.014 | 0.008 | 0.071 | 0.026 | 0.058 | 0.029 | 0.024 | 0.029 | 0.145 | 0.164 | 0.242 |
TSR | 0.140 | 0.212 | 0.105 | 0.189 | 0.163 | 0.140 | 0.347 | 0.291 | 0.184 | 0.200 | 0.281 | 0.135 | 0.341 | 0.326 | 0.270 | 0.314 | 0.414 | 0.228 |
AET | 0.124 | 0.155 | 0.164 | 0.208 | 0.318 | 0.356 | 0.332 | 0.393 | 0.424 | 0.198 | 0.370 | 0.231 | 0.521 | 0.583 | 0.577 | 0.397 | 0.344 | 0.341 |
DEM | 0.104 | 0.106 | 0.117 | 0.427 | 0.434 | 0.436 | 0.848 | 0.840 | 0.743 | 0.377 | 0.542 | 0.201 | 0.579 | 0.583 | 0.578 | 0.382 | 0.425 | 0.455 |
SOC | 0.213 | 0.284 | 0.295 | 0.187 | 0.188 | 0.190 | 0.517 | 0.445 | 0.361 | 0.165 | 0.246 | 0.052 | 0.530 | 0.498 | 0.486 | 0.639 | 0.665 | 0.665 |
Sand | 0.087 | 0.085 | 0.092 | 0.316 | 0.322 | 0.324 | 0.466 | 0.509 | 0.534 | 0.259 | 0.351 | 0.216 | 0.431 | 0.435 | 0.427 | 0.199 | 0.238 | 0.247 |
NDVI | 0.152 | 0.241 | 0.254 | 0.351 | 0.427 | 0.557 | 0.187 | 0.211 | 0.484 | 0.317 | 0.310 | 0.371 | 0.190 | 0.211 | 0.420 | 0.115 | 0.142 | 0.182 |
GDP | 0.083 | 0.095 | 0.130 | 0.109 | 0.024 | 0.122 | 0.154 | 0.102 | 0.208 | 0.083 | 0.017 | 0.064 | 0.225 | 0.108 | 0.314 | 0.106 | 0.089 | 0.108 |
PD | 0.249 | 0.307 | 0.310 | 0.545 | 0.592 | 0.622 | 0.404 | 0.579 | 0.662 | 0.409 | 0.536 | 0.510 | 0.508 | 0.605 | 0.595 | 0.199 | 0.295 | 0.261 |
NTL | 0.316 | 0.218 | 0.311 | 0.475 | 0.530 | 0.603 | 0.237 | 0.327 | 0.412 | 0.419 | 0.438 | 0.529 | 0.373 | 0.409 | 0.429 | 0.147 | 0.109 | 0.134 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Chang, Y.; Yao, C. The Multiscale Spatiotemporal Heterogeneity of Ecosystem Service Trade-Offs/Synergies and Bundles and Socioecological Drivers in the Yangtze River Delta Region of China. Sustainability 2025, 17, 7200. https://doi.org/10.3390/su17167200
Zhang Z, Chang Y, Yao C. The Multiscale Spatiotemporal Heterogeneity of Ecosystem Service Trade-Offs/Synergies and Bundles and Socioecological Drivers in the Yangtze River Delta Region of China. Sustainability. 2025; 17(16):7200. https://doi.org/10.3390/su17167200
Chicago/Turabian StyleZhang, Zhimin, Yachao Chang, and Chongchong Yao. 2025. "The Multiscale Spatiotemporal Heterogeneity of Ecosystem Service Trade-Offs/Synergies and Bundles and Socioecological Drivers in the Yangtze River Delta Region of China" Sustainability 17, no. 16: 7200. https://doi.org/10.3390/su17167200
APA StyleZhang, Z., Chang, Y., & Yao, C. (2025). The Multiscale Spatiotemporal Heterogeneity of Ecosystem Service Trade-Offs/Synergies and Bundles and Socioecological Drivers in the Yangtze River Delta Region of China. Sustainability, 17(16), 7200. https://doi.org/10.3390/su17167200