Spatiotemporal Evolution and Influencing Factors of Zhangjiajie National Forest Park Tourism Network Attention
Abstract
1. Introduction
2. Literature Review
2.1. Digital Tourism Attention Analysis
2.2. Forest Park Digital Management
2.3. Spatiotemporal Analysis
2.4. Influencing Factors
2.5. The Theoretical Framework
3. Methodology
3.1. Study Area
3.2. Data Sources and Processing
3.3. Analytical Methodology
3.3.1. Temporal Analysis Methods
- (1)
- Inter-Annual Change Index
- (2)
- Seasonal Intensity Index
- (3)
- Intra-Week Distribution Skewness Index
3.3.2. Spatial Analysis Methods
- (4)
- Geographic Concentration Index
- (5)
- Primacy Index
- (6)
- Coefficient of Variation
- (7)
- Herfindahl–Hirschman Index
- (8)
- Geodetector
- 1.
- Factor Detection
- 2.
- Interaction Detection
4. Results
4.1. Temporal Evolution Analysis
4.2. Spatial Distribution Evolution
4.3. Geodetection of Impact Factors
4.3.1. The Factor Detection Framework
4.3.2. Single-Factor Detection Results
4.3.3. Factor Interaction Detection Analysis
5. Discussion
5.1. Theoretical Contributions
5.2. Push–Pull Dynamics and Causal Mechanisms
5.3. Comparative Analysis with Other Natural Tourism Destinations
5.4. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Peking | 22.54 | 44.28 | 53.00 | 58.28 | 51.80 | 48.90 | 44.58 | 36.28 | 40.70 | 23.91 | 41.48 |
Tianjin | 11.29 | 21.79 | 25.51 | 26.69 | 23.46 | 21.70 | 21.57 | 15.59 | 17.60 | 12.46 | 19.02 |
Hebei | 11.59 | 30.97 | 41.80 | 45.02 | 44.71 | 41.19 | 41.76 | 28.95 | 34.06 | 23.36 | 38.97 |
Shanghai | 15.93 | 33.49 | 47.83 | 49.70 | 48.70 | 42.68 | 39.27 | 30.13 | 34.79 | 23.31 | 32.71 |
Jiangsu | 17.70 | 47.98 | 62.71 | 68.66 | 68.46 | 60.11 | 55.68 | 39.99 | 53.54 | 34.21 | 54.26 |
Zhejiang | 19.98 | 42.82 | 55.70 | 63.91 | 57.98 | 52.07 | 54.16 | 34.65 | 39.46 | 28.66 | 45.53 |
Fujian | 10.52 | 26.68 | 33.38 | 40.18 | 40.16 | 34.54 | 35.48 | 22.05 | 23.74 | 17.62 | 27.68 |
Shandong | 14.53 | 40.28 | 52.75 | 57.31 | 57.54 | 55.07 | 53.34 | 37.80 | 45.28 | 31.78 | 52.25 |
Guangdong | 27.31 | 65.50 | 85.06 | 99.76 | 93.16 | 80.42 | 76.63 | 54.79 | 54.04 | 42.87 | 71.56 |
Hainan | 4.17 | 9.74 | 11.42 | 12.76 | 13.04 | 12.78 | 11.84 | 8.74 | 9.54 | 7.61 | 12.18 |
Shanxi | 7.88 | 21.49 | 29.17 | 32.19 | 33.21 | 30.10 | 30.14 | 18.90 | 21.98 | 15.48 | 25.65 |
Anhui | 9.67 | 24.54 | 31.79 | 35.67 | 40.84 | 36.66 | 33.69 | 23.94 | 27.22 | 20.30 | 32.27 |
Jiangxi | 8.99 | 22.98 | 32.86 | 36.92 | 38.12 | 34.03 | 30.65 | 21.63 | 21.19 | 16.43 | 27.36 |
Henan | 16.84 | 40.87 | 57.92 | 64.17 | 59.93 | 54.35 | 48.55 | 32.12 | 37.19 | 25.73 | 46.92 |
Hubei | 16.98 | 37.29 | 54.01 | 57.66 | 55.46 | 46.82 | 43.63 | 27.57 | 30.54 | 23.32 | 39.05 |
Hunan | 39.47 | 80.86 | 103.8 | 96.06 | 94.32 | 76.89 | 74.23 | 62.92 | 66.15 | 54.62 | 71.47 |
Inner Mongolia | 6.21 | 14.66 | 17.18 | 20.66 | 21.07 | 20.27 | 20.29 | 13.56 | 15.53 | 11.80 | 19.41 |
Guangxi | 9.39 | 21.91 | 28.03 | 31.51 | 31.19 | 32.41 | 32.05 | 17.50 | 17.97 | 14.25 | 26.38 |
Chongqing | 8.13 | 22.62 | 30.70 | 35.48 | 37.65 | 28.45 | 30.94 | 19.84 | 21.40 | 14.37 | 25.52 |
Sichuan | 10.13 | 27.34 | 46.42 | 68.26 | 59.78 | 45.95 | 46.70 | 30.90 | 32.73 | 21.55 | 38.93 |
Guizhou | 6.45 | 17.71 | 24.00 | 29.36 | 32.54 | 27.93 | 32.77 | 15.35 | 14.83 | 11.37 | 21.04 |
Yunnan | 6.25 | 14.76 | 18.70 | 22.81 | 24.89 | 23.00 | 24.80 | 15.18 | 15.72 | 12.13 | 21.68 |
Xizang | 1.10 | 2.56 | 3.66 | 4.04 | 4.32 | 4.66 | 4.32 | 3.32 | 3.50 | 2.93 | 4.24 |
Shaanxi | 10.09 | 26.27 | 35.70 | 40.15 | 38.03 | 33.14 | 31.31 | 20.26 | 23.00 | 17.59 | 27.18 |
Gansu | 5.11 | 12.75 | 15.06 | 18.34 | 18.99 | 18.78 | 18.40 | 12.06 | 12.18 | 9.13 | 16.74 |
Qinghai | 2.15 | 6.46 | 7.44 | 8.53 | 8.67 | 8.44 | 7.86 | 5.98 | 6.10 | 4.24 | 7.20 |
Ningxia | 3.19 | 8.82 | 9.70 | 11.32 | 10.80 | 10.38 | 9.99 | 6.91 | 7.59 | 5.88 | 9.30 |
Xinjiang | 5.19 | 11.90 | 12.05 | 14.48 | 15.98 | 13.47 | 13.06 | 8.38 | 10.38 | 8.60 | 14.41 |
Liaoning | 11.72 | 24.48 | 34.09 | 36.47 | 41.41 | 38.52 | 40.19 | 24.53 | 28.58 | 20.14 | 34.28 |
Jilin | 7.09 | 16.46 | 19.64 | 24.11 | 25.18 | 23.67 | 24.89 | 15.20 | 17.73 | 12.53 | 20.67 |
Amur River | 7.67 | 17.12 | 20.29 | 24.80 | 26.07 | 24.02 | 26.83 | 17.11 | 18.91 | 13.84 | 22.59 |
References
- Zhang, G.; Wang, S.; Zhang, L.; Li, Y. Spatio-temporal evolution characteristics and spatial interaction of tourism network attention: A case study of 5A-level tourist attractions in the Yangtze River Delta, China. Sustainability 2022, 14, 13252. [Google Scholar] [CrossRef]
- Lu, D.; Dai, Y. China afforested 2.783 million hectares of desertified and rocky land in 2024, according to the National Greening Bulletin. Tencent News, 12 March 2025. [Google Scholar]
- Li, J.; Xu, L.; Tang, L.; Wang, S.; Li, L. Big data in tourism research: A literature review. Tour. Manag. 2018, 68, 301–323. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L.; Ding, Y. The Baidu Index: Uses in predicting tourism flows—A case study of the Forbidden City. Tour. Manag. 2017, 58, 301–306. [Google Scholar] [CrossRef]
- Feng, X.B. Spatio-temporal Characterization of Potential Demand for Tourist Attractions Based on Internet Search. SAGE Open 2025, 15, 21582440251323550. [Google Scholar] [CrossRef]
- Chen, M.; Dong, D.; Ji, F.; Tai, Y.; Li, N.; Huang, R.; Xiao, T. A Study on Spatiotemporal Evolution and Influencing Factors of Chinese National Park Network Attention. Land 2024, 13, 826. [Google Scholar] [CrossRef]
- Blanco-Moreno, S.; González-Fernández, A.M.; Muñoz-Gallego, P.A. Big data in tourism marketing: Past research and future opportunities. Span. J. Mark.-Esic 2024, 28, 266–286. [Google Scholar] [CrossRef]
- Sbai, I.; Krichen, S.; Elgammal, I. An Adapted NSGA-II Algorithm for Integrated Timetabling and Bus Packing Problems: A Case of Pilgrims Transportation Problem. In Proceedings of the International Conference on Decision Aid and Artificial Intelligence (ICODAI 2024); Springer Nature: Berlin/Heidelberg, Germany, 2025; Volume 12, p. 78. [Google Scholar]
- Guo, J.; Wang, J.; Xu, C.; Song, Y. Modeling of spatial stratified heterogeneity. GIScience Remote Sens. 2022, 59, 1660–1677. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, Y.; Mao, Y.; Cai, W.; Zhao, B. What are the factors influencing recreational visits to national forest parks in China? Experiments using crowdsourced geospatial data. Urban For. Urban Green. 2022, 72, 127570. [Google Scholar] [CrossRef]
- Hu, M.; Li, H.; Song, H.; Li, X. Tourism demand forecasting using short video information. Ann. Tour. Res. 2024, 109, 103838. [Google Scholar] [CrossRef]
- Ma, X.; Wang, L.; Sun, M.; Jiang, J. Analysis of spatial patterns and driving factors of provincial tourism demand in China using big data from web search engines. Sci. Rep. 2022, 12, 2260. [Google Scholar]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Zhang, S.; Chi, L.; Zhang, T.; Ju, H. Spatio-temporal pattern and influencing factors of border tourism efficiency in China. J. Geogr. Sci. 2024, 34, 2288–2312. [Google Scholar] [CrossRef]
- Wang, H.; Hu, T.; Wu, H. Tourism demand with subtle seasonality: Recognition and forecasting. Tour. Econ. 2023, 29, 1865–1889. [Google Scholar] [CrossRef]
- Wang, J.; Haining, R.; Zhang, T.; Xu, C.; Hu, M.; Yin, Q.; Li, L.; Zhou, C.; Li, G.; Chen, H. Statistical modeling of spatially stratified heterogeneous data. Ann. Am. Assoc. Geogr. 2024, 114, 499–519. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, H.; Lin, Q.; Lin, K.; Chong, K.M. Public network attention to hiking in China and its influencing factors. PLoS ONE 2024, 19, e0306726. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhang, Y.; Guo, W. Spatiotemporal characteristics and influencing factors of network attention to resort hotels in China. Heliyon 2024, 10, e35314. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Zhao, B.; Feng, Y. Spatial distribution and influencing factors of rural tourism: A case study of Henan Province. Heliyon 2024, 10, e29039. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Zhang, L.; Wang, X.; Liang, S. Structural characteristics and influencing factors of a spatial correlation network for tourism environmental efficiency in China. Sci. Rep. 2024, 14, 2658. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Pan, C.; Xu, F. The spatial structure and influencing factors of the tourism economic network in the Yangtze River Delta Urban Agglomeration. Tour. Hosp. 2024, 5, 60–79. [Google Scholar] [CrossRef]
- Dann, G.M.S. Anomie, ego-enhancement and tourism. Ann. Tour. Res. 1977, 4, 184–194. [Google Scholar] [CrossRef]
- Crompton, J.L. Motivations for pleasure vacation. Ann. Tour. Res. 1979, 6, 408–424. [Google Scholar] [CrossRef]
- Rasool, S.; Morelli, M.; Mubushar, M.; Centobelli, P.; Cerchione, R. Encouraging user-generated content to engage travellers in rural tourism of developing countries. Curr. Issues Tour. 2025, 1–27. [Google Scholar] [CrossRef]
- Yang, X.; Li, H.; Zhang, J.; Niu, S.; Miao, M. Urban economic resilience within the Yangtze River Delta urban agglomeration: Exploring spatially correlated network and spatial heterogeneity. Sustain. Cities Soc. 2024, 103, 105270. [Google Scholar] [CrossRef]
- Elgammal, I.; Jones, E. Using discourse analysis to explore the achievability of triple bottom line sustainability (TBLS): The case of the bluestone holiday village. Acad. Renew. Innov. Leis. Tour. Theor. Methods 2007, 2, LSA-97. [Google Scholar]
- Zhangjiajie National Forest Park Administration. (n.d.). Scenic Area Introduction. Available online: http://www.hnzjj.com/index.php/Product/list/7.html (accessed on 29 June 2024).
- Song, Z.; Coupé, T. Predicting Chinese consumption series with Baidu. J. Chin. Econ. Bus. Stud. 2023, 21, 429–463. [Google Scholar] [CrossRef]
- Nie, R.X.; Wu, C.; Liang, H.M. Exploring Appropriate Search Engine Data for Interval Tourism Demand Forecasting Responding a Public Crisis in Macao: A Combined Bayesian Model. Sustainability 2024, 16, 6892. [Google Scholar] [CrossRef]
- National Bureau of Statistics. [China Statistical Yearbook]. National Bureau of Statistics Official Website. 2025. Available online: https://www.stats.gov.cn/sj/ndsj/ (accessed on 20 May 2025).
- Rutty, M.; Scott, D.; Matthews, L.; Burrowes, R.; Trotman, A.; Mahon, R.; Charles, A. An inter-comparison of the Holiday Climate Index (HCI: Beach) and the Tourism Climate Index (TCI) to explain Canadian tourism arrivals to the Caribbean. Atmosphere 2020, 11, 412. [Google Scholar] [CrossRef]
- Rogowski, M.; Zawilińska, B.; Hibner, J. Managing tourism pressure: Exploring tourist traffic patterns and seasonality in mountain national parks to alleviate overtourism effects. J. Environ. Manag. 2025, 373, 123430. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Wei, Y.; Tsui, K.L.; Wang, S. Forecasting tourist arrivals with machine learning and internet search index. Tour. Manag. 2019, 70, 1–10. [Google Scholar] [CrossRef]
- Wu, L.; Liu, Y.; Liu, K.; Wang, Y.; Tian, Z. Analysis of tourist market structure and its driving factors in small cities before and after COVID-19. ISPRS Int. J. Geo-Inf. 2023, 12, 243. [Google Scholar] [CrossRef]
- Jefferson, M. Why geography? The law of the primate city. Geogr. Rev. 1989, 79, 226–232. [Google Scholar] [CrossRef]
- Xie, X.; Zhang, L.; Sun, H.; Chen, F.; Zhou, C. Spatiotemporal difference characteristics and influencing factors of tourism urbanization in China’s major tourist cities. Int. J. Environ. Res. Public Health 2021, 18, 10414. [Google Scholar] [CrossRef] [PubMed]
- Solarin, S.A. Convergence of tourism market diversification: Evidence from a new indicator based on Herfindahl–Hirschman index. Qual. Quant. 2025, 59, 663–681. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, W.; Wu, D.; Zheng, L.; Li, J. Spatiotemporal evolution and influencing factors of tourism development efficiency in the Yangtze River Economic Belt, China. J. Clean. Prod. 2022, 379, 134722. [Google Scholar] [CrossRef]
- Bi, J.W.; Liu, Y.; Fan, Z.P.; Zhang, J. Daily tourism volume forecasting for tourist attractions. Ann. Oper. Res. 2020, 287, 411–447. [Google Scholar] [CrossRef]
- Wang, H.; Ge, Q. Spatial association network of economic resilience and its influencing factors: Evidence from 31 Chinese provinces. Humanit. Soc. Sci. Commun. 2023, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
NO. | Judgment Basis | Interaction Type | Explanation |
---|---|---|---|
1 | q(X1 ∩ X2) < min(q(X1), q(X2)) | Nonlinearity attenuation | This scenario indicates that the interaction between the two factors reduces the individual contributions of each factor. It suggests that when these factors interact, their combined effect is less than expected, possibly due to conflicting influences. |
2 | min(q(X1), q(X2)) < q(X1 ∩ X2) < max(q(X1), q(X2)) | Single factor nonlinearity weaken | This situation describes an interaction, where the effect of one factor is enhanced, but not to the extent that it outweighs the stronger factor. It implies that the factors have a synergistic relationship without completely dominating one another. |
3 | q(X1 ∩ X2) > max(q(X1), q(X2) | Two-factor enhancement | In this case, the interaction between the two factors leads to a combined effect that exceeds their individual impacts, indicating a synergistic relationship, where both factors work together to amplify their effects on tourism attention. |
4 | q(X1 ∩ X2) = q(X1) + q(X2) | Independent | This indicates that the two factors do not influence each other, allowing for a clear assessment of their individual impacts on tourism network attention. Each factor operates independently without enhancing or diminishing the other’s effect. |
5 | q(X1 ∩ X2) > q(X1) + q(X2) | Nonlinear enhancement | This scenario highlights that the interaction produces a more significant effect than the simple sum of individual factors, suggesting complex interdependencies that can lead to unexpectedly high levels of tourism attention based on their interaction. |
E | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 17.62 | 43.01 | 20.69 | 27.51 | 42.39 | 23.66 | 31.52 | 21.95 | 11.87 | 11.75 | 28.39 |
2 | 17.38 | 48.43 | 53.50 | 60.17 | 99.16 | 79.37 | 83.68 | 41.39 | 38.67 | 40.03 | 58.20 |
3 | 29.95 | 58.86 | 77.65 | 80.07 | 89.67 | 96.77 | 85.81 | 39.47 | 70.67 | 38.17 | 82.79 |
4 | 37.00 | 74.13 | 97.79 | 91.46 | 95.69 | 113.70 | 105.14 | 41.01 | 98.69 | 37.65 | 122.69 |
5 | 36.15 | 73.57 | 94.31 | 103.30 | 110.43 | 101.94 | 100.39 | 60.94 | 74.73 | 42.21 | 147.08 |
6 | 34.91 | 78.38 | 99.48 | 102.43 | 111.31 | 92.11 | 90.21 | 61.98 | 68.61 | 54.77 | 90.61 |
7 | 81.59 | 86.30 | 139.37 | 152.76 | 142.83 | 116.23 | 116.64 | 66.48 | 169.96 | 80.37 | 80.23 |
8 | 69.48 | 89.94 | 136.58 | 165.87 | 136.72 | 105.49 | 109.51 | 86.64 | 72.26 | 68.62 | 70.13 |
9 | 70.77 | 81.31 | 104.65 | 122.02 | 108.18 | 82.62 | 95.18 | 81.16 | 45.40 | 49.17 | 55.15 |
10 | 64.39 | 79.05 | 96.26 | 124.09 | 90.56 | 86.39 | 73.68 | 76.45 | 45.04 | 42.30 | 56.26 |
11 | 43.18 | 51.29 | 63.97 | 80.59 | 66.06 | 70.84 | 57.11 | 54.96 | 33.32 | 50.39 | 51.38 |
12 | 42.82 | 57.91 | 65.01 | 63.39 | 62.11 | 64.56 | 54.50 | 48.39 | 35.70 | 34.53 | 54.56 |
S | 8.1899 | 8.1629 | 8.1857 | 8.1912 | 8.1820 | 8.1647 | 8.1662 | 8.1346 | 8.1663 | 8.1297 | 8.1761 |
Spring Festival (T1) | Labor Day (T2) | National Day (T3) | |
---|---|---|---|
2013 | 5.78 | −5.59 | −12.14 |
2014 | −1.92 | −1.23 | −2.71 |
2015 | 4.67 | −6.76 | −13.38 |
2016 | 6.54 | −3.43 | −11.52 |
2017 | 9.30 | −1.35 | −10.47 |
2018 | 8.47 | −2.16 | −13.24 |
2019 | 3.77 | 1.53 | −11.81 |
2020 | −7.54 | −10.64 | −6.29 |
2021 | −3.38 | −2.80 | −6.76 |
2022 | 11.05 | −3.36 | 4.62 |
2023 | 3.91 | −4.90 | −2.38 |
CV | G | H | P | |
---|---|---|---|---|
2013 | 0.6849 | 4.7390 | 0.0474 | 1.4454 |
2014 | 0.6206 | 4.4682 | 0.0447 | 1.2345 |
2015 | 0.6298 | 4.5054 | 0.0451 | 1.2202 |
2016 | 0.5905 | 4.3504 | 0.0435 | 1.0385 |
2017 | 0.5561 | 4.2235 | 0.0422 | 1.0124 |
2018 | 0.5263 | 4.1193 | 0.0412 | 1.0459 |
2019 | 0.5071 | 4.0554 | 0.0406 | 1.0323 |
2020 | 0.5758 | 4.2952 | 0.0430 | 1.1484 |
2021 | 0.5751 | 4.2927 | 0.0429 | 1.2240 |
2022 | 0.5881 | 4.3416 | 0.0434 | 1.2743 |
2023 | 0.5382 | 4.1603 | 0.0416 | 1.0012 |
Region | East | Central | West | Northeast |
---|---|---|---|---|
2013 | 15.56 | 16.64 | 6.12 | 8.83 |
2014 | 16.56 | 38.01 | 15.65 | 19.35 |
2015 | 17.56 | 51.59 | 20.72 | 24.67 |
2016 | 18.56 | 53.78 | 25.41 | 28.46 |
2017 | 19.56 | 53.65 | 25.33 | 30.89 |
2018 | 20.56 | 46.48 | 22.24 | 28.74 |
2019 | 21.56 | 43.48 | 22.71 | 30.64 |
2020 | 22.56 | 31.18 | 14.10 | 18.95 |
2021 | 23.56 | 34.05 | 15.08 | 21.74 |
2022 | 24.56 | 25.98 | 11.15 | 15.50 |
2023 | 25.56 | 40.45 | 19.34 | 25.85 |
Average (%) | 5.84% | 13.01% | 19.65% | 17.53% |
Influence Factor | Representative Index Interpretation | Parametric | Attribute |
---|---|---|---|
Level of economic development | Per-capita disposable income/Yuan | X1 | Forward |
GDP (100 million yuan) | X2 | Forward | |
Urbanization level | Urbanization rate (%) | X3 | Forward |
Degree of informatization | Number of internet users (10,000) | X4 | Forward |
Geographical accessibility | Geographical distance (km) | X5 | Forward |
Traffic aircraft time distance (minutes) | X6 | Forward | |
Ecological environment quality | Forest coverage (%) | X7 | Forward |
Air quality index | X8 | Forward |
Impact Factors | 2014 | 2023 | Change q | ||||
---|---|---|---|---|---|---|---|
q | p | Rank | q | p | Rank | ||
X1 | 0.465 | 0.034 | 1 | 0.365 | 0.301 | 5 | −0.1 |
X2 | 0.39 | 0.312 | 4 | 0.801 | 0 | 1 | 0.411 |
X3 | 0.295 | 0.189 | 7 | 0.323 | 0.306 | 6 | 0.028 |
X4 | 0.42 | 0.741 | 2 | 0.781 | 0 | 2 | 0.361 |
X5 | 0.257 | 0.316 | 8 | 0.757 | 0.002 | 3 | 0.5 |
X6 | 0.419 | 0.194 | 3 | 0.406 | 0.229 | 4 | −0.013 |
X7 | 0.309 | 0.547 | 5 | 0.256 | 0.533 | 7 | −0.053 |
X8 | 0.295 | 0.54 | 6 | 0.122 | 0.799 | 8 | −0.173 |
Factor Interaction | q | Factor Interaction | q | Factor Interaction | q | |||
---|---|---|---|---|---|---|---|---|
2014 | 2023 | 2014 | 2023 | 2014 | 2023 | |||
X1 ∩ X2 | 0.930 | 0.870 | X2 ∩ X6 | 0.997 | 0.889 | X4 ∩ X6 | 0.997 | 0.836 |
X1 ∩ X3 | 0.945 | 0.706 | X2 ∩ X7 | 0.895 | 0.978 | X4 ∩ X7 | 0.854 | 0.976 |
X1 ∩ X4 | 0.863 | 0.887 | X2 ∩ X8 | 0.945 | 0.907 | X4 ∩ X8 | 0.936 | 0.898 |
X1 ∩ X5 | 0.874 | 0.874 | X3 ∩ X4 | 0.926 | 0.903 | X5 ∩ X6 | 0.985 | 0.847 |
X1 ∩ X6 | 0.949 | 0.701 | X3 ∩ X5 | 0.968 | 0.843 | X5 ∩ X7 | 0.906 | 0.939 |
X1 ∩ X7 | 0.893 | 0.851 | X3 ∩ X6 | 0.985 | 0.814 | X5 ∩ X8 | 0.972 | 0.820 |
X1 ∩ X8 | 0.817 | 0.868 | X3 ∩ X7 | 0.999 | 0.719 | X6 ∩ X7 | 0.708 | 0.677 |
X2 ∩ X3 | 0.762 | 0.874 | X3 ∩ X8 | 0.745 | 0.624 | X6 ∩ X8 | 0.666 | 0.690 |
X2 ∩ X4 | 0.752 | 0.864 | X4 ∩ X5 | 0.796 | 0.864 | X7 ∩ X8 | 0.777 | 0.799 |
X2 ∩ X5 | 0.766 | 0.837 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Bidin, S.; Johari, S. Spatiotemporal Evolution and Influencing Factors of Zhangjiajie National Forest Park Tourism Network Attention. Sustainability 2025, 17, 7182. https://doi.org/10.3390/su17167182
Wu Y, Bidin S, Johari S. Spatiotemporal Evolution and Influencing Factors of Zhangjiajie National Forest Park Tourism Network Attention. Sustainability. 2025; 17(16):7182. https://doi.org/10.3390/su17167182
Chicago/Turabian StyleWu, Yurong, Sheena Bidin, and Shazali Johari. 2025. "Spatiotemporal Evolution and Influencing Factors of Zhangjiajie National Forest Park Tourism Network Attention" Sustainability 17, no. 16: 7182. https://doi.org/10.3390/su17167182
APA StyleWu, Y., Bidin, S., & Johari, S. (2025). Spatiotemporal Evolution and Influencing Factors of Zhangjiajie National Forest Park Tourism Network Attention. Sustainability, 17(16), 7182. https://doi.org/10.3390/su17167182