Does the Digital Economy Promote Green Land Use Efficiency?
Abstract
1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. Influencing Mechanism of DE on GLUE
2.2. Nonlinear Effect of DE on GLUE
2.3. Spatial Spillover Effect of DE on GLUE
3. Research Methods and Data
3.1. Research Methods
3.1.1. Empirical Model
3.1.2. Other Research Methods
3.2. Description of Variables
3.2.1. Digital Economy (DE)
3.2.2. Green Land Use Efficiency (GLUE)
First-Level Indicator | Second-Level Indicator | Third-Level Indicator | Unit | Weight | |
---|---|---|---|---|---|
DE | Internet penetration rate | Internet users per 100 people | / | 0.0865 | |
Internet-related employees | The percentage of employees in the computer and software industry | % | 0.1896 | ||
Internet-related output | Total number of telecommunications services available per capita | / | 0.0166 | ||
Mobile Internet Users | Mobile phone users per 100 individuals | / | 0.0358 | ||
Digital finance development | China Digital Financial Inclusion Index | / | 0.6716 | ||
GLUE | Input | Capital | Investment in urban fixed assets | Million RMB | / |
Land | Urban construction land area | km2 | / | ||
Labor | Employees in the secondary and tertiary industries | Ten thousand people | / | ||
Energy | Coal, oil, natural gas, and electricity are converted to standard coal | Ten thousand tons | / | ||
Desirable output | Economic output | Value added by the secondary and tertiary sectors | Million RMB | / | |
Social output | General government budget revenue | Million RMB | / | ||
Ecological output | Park and green area | m2 | / | ||
Undesirable output | Environmental pollution | Index of environmental pollution | / | / |
3.2.3. Other Variables
- (1)
- Green technology innovation (Pat): The quantity of patent applications could represent well the quantity of technological innovations of an enterprise [97,98]. Since exterior design patents are not considered green patents, this study focuses exclusively on the quantity of the utility model and green invention patents. Thus, the logarithm of the total number of the above two types of patent applications represents green technical advancement.
- (2)
- Industrial structure optimization (Str): This study represents it by dividing the added value of the secondary industry by that of the tertiary industry [56].
- (3)
- Control variables (CVs): Referring to the existing literature [20,99], this study selects the following control variables: The economic development (PGDP) is denoted by the logarithm of GDP per capita. The ratio of educational expenditure to government financial expenditure denotes the level of education (Edu). Opening (Open) is denoted by the proportion of actual foreign capital utilized relative to GDP. The logarithm of population density represents urban population size (Pop). The ratio of the deposit and loan balance of financial institutions to GDP denotes financial development (Fin). The logarithm of road mileage data in each city represents the level of infrastructure (Road).
3.3. Data Sources
4. Empirical Results
4.1. Benchmark and Mechanism Results
4.2. Robust Test
4.2.1. Endogeneity Test
4.2.2. Change the Empirical Model
4.2.3. Replace the Explained Variable
4.2.4. Exclude Municipalities and Sub-Provincial Cities
4.3. Heterogeneity Analysis
5. Extended Analysis
5.1. Threshold Effect Analysis
5.2. Spatial Spillover Effect Analysis
6. Discussion
7. Conclusions and Recommendations
7.1. Research Conclusion
7.2. Policy Implications
7.3. Limitations and Future Research Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ullah, S.; Ozturk, I.; Majeed, M.T.; Ahmad, W. Do technological innovations have symmetric or asymmetric effects on environmental quality? Evidence from Pakistan. J. Clean. Prod. 2021, 316, 128239. [Google Scholar] [CrossRef]
- Criado, C.O.; Valente, S.; Stengos, T. Growth and pollution convergence: Theory and evidence. J. Environ. Econ. Manag. 2010, 62, 199–214. [Google Scholar] [CrossRef]
- Hosan, S.; Karmaker Shamal, C.; Rahman Md, M.; Chapman Andrew, J.; Baran, S.B. Dynamic links among the demographic dividend, digitalization, energy intensity and sustainable economic growth: Empirical evidence from emerging economies. J. Clean. Prod. 2022, 330, 129858. [Google Scholar] [CrossRef]
- Chen, H.; Jia, B. Sustainable urban form for Chinese compact cities: Challenges of a rapid urbanized economy. Habitat Int. 2007, 32, 28–40. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Zhou, Y. Efficiency of construction land allocation in China: An econometric analysis of panel data. Land Use Policy 2018, 74, 261–272. [Google Scholar] [CrossRef]
- Liu, Y. Introduction to land use and rural sustainability in China. Land Use Policy 2018, 74, 1–4. [Google Scholar] [CrossRef]
- Lu, X.; Kuang, B.; Li, J. Regional difference decomposition and policy implications of China’s urban land use efficiency under the environmental restriction. Habitat Int. 2018, 77, 32–39. [Google Scholar] [CrossRef]
- Xu, T. Investigating Environmental Kuznets Curve in China–Aggregation bias and policy implications. Energy Policy 2018, 114, 315–322. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, F. How technological innovation impacts urban green economy efficiency in emerging economies: A case study of 278 Chinese cities. Resour. Conserv. Recycl. 2021, 169, 105534. [Google Scholar] [CrossRef]
- Chen, R.; Ye, C.; Cai, Y.; Xing, X.; Chen, Q. The impact of rural out-migration on land use transition in China: Past, present and trend. Land Use Policy 2014, 40, 101–110. [Google Scholar] [CrossRef]
- Zhang, N.; Wu, T.; Wang, B.; Dong, L.; Ren, J. Sustainable water resource and endogenous economic growth. Technol. Forecast. Soc. Change 2016, 112, 237–244. [Google Scholar] [CrossRef]
- Krekel, C.; Kolbe, J.; Wüstemann, H. The greener, the happier? The effect of urban land use on residential well-being. Ecol. Econ. 2016, 121, 117–127. [Google Scholar] [CrossRef]
- Shu, C.; Xie, H.; Jiang, J.; Chen, Q. Is Urban Land Development Driven by Economic Development or Fiscal Revenue Stimuli in China? Land Use Policy 2018, 77, 107–115. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y. Revitalize the world’s countryside. Nature 2017, 548, 275–277. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Li, Y.; Du, G. Quantifying spatio-temporal patterns of urban expansion in Beijing during 1985–2013 with rural-urban development transformation. Land Use Policy 2018, 74, 220–230. [Google Scholar] [CrossRef]
- Tan, S.; Hu, B.; Kuang, B.; Zhou, M. Regional differences and dynamic evolution of urban land green use efficiency within the Yangtze River Delta, China. Land Use Policy 2021, 106, 105449. [Google Scholar] [CrossRef]
- Peráček, T.; Kaššaj, M. Legal Easements as Enablers of Sustainable Land Use and Infrastructure Development in Smart Cities. Land 2025, 14, 681. [Google Scholar] [CrossRef]
- Wang, J.; Wang, B.; Dong, K.; Dong, X. How does the digital economy improve high-quality energy development? The case of China. Technol. Forecast. Soc. Change 2022, 184, 121960. [Google Scholar] [CrossRef]
- Ágnes, J. Inheriting Digital Assets–A Glimpse Into the Future. Jurid. Trib. Rev. Comp. Int. Law 2024, 14, 547–563. [Google Scholar]
- Zhang, W.; Liu, X.; Wang, D.; Zhou, J. Digital economy and carbon emission performance: Evidence at China’s city level. Energy Policy 2022, 165, 112927. [Google Scholar] [CrossRef]
- Pradhan, P.R.; Mak, B.A.; Mahendhiran, N.; Sara, E.B.; Sahar, B. Short-term and long-term dynamics of venture capital and economic growth in a digital economy: A study of European countries. Technol. Soc. 2019, 57, 125–134. [Google Scholar] [CrossRef]
- Song, M.; Chenbin, Z.; Jiangquan, W. The role of digital economy in China’s sustainable development in a post-pandemic environment. J. Enterp. Inf. Manag. 2021, 35, 58–77. [Google Scholar] [CrossRef]
- Ding, C.; Liu, C.; Zheng, C.; Li, F. Digital Economy, Technological Innovation and High-Quality Economic Development: Based on Spatial Effect and Mediation Effect. Sustainability 2021, 14, 216. [Google Scholar] [CrossRef]
- Martínez, J.M.; Puertas, R.; Martín, J.M.; Ribeiro-Soriano, D. Digitalization, innovation and environmental policies aimed at achieving sustainable production. Sustain. Prod. Consum. 2022, 32, 92–100. [Google Scholar] [CrossRef]
- Zhang, J.; Lyu, Y.; Li, Y.; Geng, Y. Digital economy: An innovation driving factor for low-carbon development. Environ. Impact Assess. Rev. 2022, 96, 106821. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J. The Dynamic Impact of Digital Economy on Carbon Emission Reduction: Evidence City-level Empirical Data in China. J. Clean. Prod. 2022, 351, 131570. [Google Scholar] [CrossRef]
- Zapadka, P.; Hanelt, A.; Firk, S. Digital at the edge—Antecedents and performance effects of boundary resource deployment. J. Strateg. Inf. Syst. 2022, 31, 101708. [Google Scholar] [CrossRef]
- Qi, L.; Yang, L.; Mier, T. The impact of digital economy on regional resource allocation efficiency: An analysis based on resource flow speed and direction. Financ. Res. Lett. 2025, 82, 107644. [Google Scholar] [CrossRef]
- Yi, G.; Gao, J.; Yuan, W. Digital economy, R&D resource allocation, and convergence of regional green economy efficiency. Sustainability 2025, 17, 384. [Google Scholar] [CrossRef]
- Qian, W.; Liu, H.; Pan, F. Digital economy, industry heterogeneity, and service industry resource allocation. Sustainability 2022, 14, 8020. [Google Scholar] [CrossRef]
- Li, W.; Cui, W.; Yi, P. Digital economy evaluation, regional differences and spatio-temporal evolution: Case study of Yangtze River economic belt in China. Sustain. Cities Soc. 2024, 113, 105685. [Google Scholar] [CrossRef]
- Yang, H.M.; Jiang, L. Digital economy, spatial effects, and total factor productivity. Stat. Res. 2021, 38, 3–15. [Google Scholar]
- Myovella, G.; Karacuka, M.; Haucap, J. Digitalization and economic growth: A comparative analysis of Sub-Saharan Africa and OECD economies. Telecommun. Policy 2020, 44, 101856. [Google Scholar] [CrossRef]
- Watanabe, C.; Naveed, K.; Tou, Y.; Neittaanmäki, P. Measuring GDP in the digital economy: Increasing dependence on uncaptured GDP. Technol. Forecast. Soc. Change 2018, 137, 226–240. [Google Scholar] [CrossRef]
- Gielen, D.M.; Mualam, N. A framework for analyzing the effectiveness and efficiency of land readjustment regulations: Comparison of Germany, Spain and Israel. Land Use Policy 2019, 87, 104077. [Google Scholar] [CrossRef]
- Allam, Z.; Jones, D.S. Future (post-COVID) digital, smart and sustainable cities in the wake of 6G: Digital twins, immersive realities and new urban economies. Land Use Policy 2021, 101, 105201. [Google Scholar] [CrossRef]
- Pan, W.; Xie, T.; Wang, Z.; Ma, L. Digital economy: An innovation driver for total factor productivity. J. Bus. Res. 2022, 139, 303–311. [Google Scholar] [CrossRef]
- Ben, Y.A.; Boubaker, S.; Dedaj, B.; Carabregu-Vokshi, M. Digitalization of the economy and entrepreneurship intention. Technol. Forecast. Soc. Change 2021, 164, 120043. [Google Scholar]
- Cao, S.; Nie, L.; Sun, H.; Sun, W.; Taghizadeh-Hesary, F. Digital finance, green technological innovation and energy-environmental performance: Evidence from China’s regional economies. J. Clean. Prod. 2021, 327, 129458. [Google Scholar] [CrossRef]
- Zhu, X.; Li, Y.; Zhang, P.; Wei, Y.; Zheng, X.; Xie, L. Temporal–spatial characteristics of urban land use efficiency of China’s 35mega cities based on DEA: Decomposing technology and scale efficiency. Land Use Policy 2019, 88, 104083. [Google Scholar] [CrossRef]
- Ferreira, M.D.P.; Féres, J.G. Farm size and Land use efficiency in the Brazilian Amazon. Land Use Policy 2020, 99, 104901. [Google Scholar] [CrossRef]
- Moutinho, V.; Madaleno, M.; Macedo, P. The effect of urban air pollutants in Germany: Eco-efficiency analysis through fractional regression models applied after DEA and SFA efficiency predictions. Sustain. Cities Soc. 2020, 59, 102204. [Google Scholar] [CrossRef]
- Liu, S.C.; Lin, Y.b.; Ye, Y.m.; Xiao, W. Spatial-temporal characteristics of industrial Land use efficiency in provincial China based on a stochastic frontier production function approach. J. Clean. Prod. 2021, 295, 126432. [Google Scholar] [CrossRef]
- Gao, J.; Song, J.; Wu, L. A new methodology to measure the urban construction land-use efficiency based on the two-stage DEA model. Land Use Policy 2022, 112, 105799. [Google Scholar]
- Song, Y.; Yeung, G.; Zhu, D.; Xu, Y.; Zhang, L. Efficiency of urban land use in China’s resource-based cities, 2000–2018. Land Use Policy 2022, 115, 106009. [Google Scholar] [CrossRef]
- Chen, W.; Ning, S.; Chen, W.; Liu, E.N.; Wang, Y.; Zhao, M. Spatial-temporal characteristics of industrial land green efficiency in China: Evidence from prefecture-level cities. Ecol. Indic. 2020, 113, 106256. [Google Scholar] [CrossRef]
- Xue, D.; Yue, L.; Ahmad, F.; Draz, M.U.; Chandio, A.A.; Ahmad, M.; Amin, W. Empirical investigation of urban land use efficiency and influencing factors of the Yellow River basin Chinese cities. Land Use Policy 2022, 117, 106117. [Google Scholar] [CrossRef]
- Guastella, G.; Pareglio, S.; Sckokai, P. A spatial econometric analysis of land use efficiency in large and small municipalities. Land Use Policy 2017, 63, 288–297. [Google Scholar] [CrossRef]
- Yan, S.; Peng, J.; Wu, Q. Exploring the nonlinear effects of city size on urban industrial land use efficiency: A spatial econometric analysis of cities in eastern China. Land Use Policy 2020, 99, 104944. [Google Scholar] [CrossRef]
- Xie, H.; Chen, Q.; Lu, F.; Wu, Q.; Wang, W. Spatial-temporal disparities, saving potential and influential factors of industrial land use efficiency: A case study in urban agglomeration in the middle reaches of the Yangtze River. Land Use Policy 2018, 75, 518–529. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, A.; Sun, Z. How regional economic integration influence on urban Land use efficiency? A case study of Wuhan metropolitan area, China. Land Use Policy 2020, 90, 104329. [Google Scholar] [CrossRef]
- Liu, J.; Hou, X.; Wang, Z.; Shen, Y. Study the effect of industrial structure optimization on urban land-use efficiency in China. Land Use Policy 2021, 105, 105390. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, B.; Wang, J.; Wu, Q.; Wei, Y.D. How does industrial agglomeration affect urban land use efficiency? A spatial analysis of Chinese cities. Land Use Policy 2022, 119, 106178. [Google Scholar] [CrossRef]
- Xie, X.; Fang, B.; Xu, H.; He, S.; Li, X. Study on the coordinated relationship between Urban Land use efficiency and ecosystem health in China. Land Use Policy 2021, 102, 105235. [Google Scholar] [CrossRef]
- Zhao, S.; Jiang, Y. Heterogeneous effects of rural–urban migration and migrant earnings on land efficiency: Empirical evidence from China. Land Use Policy 2022, 115, 106003. [Google Scholar] [CrossRef]
- Zhou, G.Y.; Xu, H. Has the digital economy improved the urban land green use efficiency? Evidence from the National Big Data Comprehensive Pilot Zone Policy. Land 2024, 13, 960. [Google Scholar] [CrossRef]
- Li, H.; Yan, X. Digital economy: A new engine for improving urban land green use efficiency? Environ. Dev. Sustain. 2025. [Google Scholar] [CrossRef]
- Cai, Z.; Song, G.; Li, W. Does digital economy promote urban land green use efficiency? Environ. Dev. Sustain. 2025, 27, 8043–8064. [Google Scholar] [CrossRef]
- Chen, P. Is the digital economy driving clean energy development?—New evidence from 276 cities in China. J. Clean. Prod. 2022, 372, 133783. [Google Scholar] [CrossRef]
- Caputo, A.; Giacomo, M.; Massimiliano Matteo, P. The Internet of Things in manufacturing innovation processes. Bus. Process Manag. J. 2016, 22, 383–402. [Google Scholar] [CrossRef]
- Kuhn, P.; Mansour, H. Is internet job search still ineffective? Econ. J. 2014, 124, 581. [Google Scholar] [CrossRef]
- Kwon, O.; Lee, N.; Shin, B. Data quality management, data usage experience and acquisition intention of big data analytics. Int. J. Inf. Manag. 2014, 34, 3. [Google Scholar] [CrossRef]
- Shin, D.H.; Choi, M.J. Ecological views of big data: Perspectives and issues. Telemat. Inform. 2015, 32, 2. [Google Scholar] [CrossRef]
- Wu, H.; Xue, Y.; Hao, Y.; Ren, S. How does internet development affect energy-saving and emission reduction? Evidence from China. Energy Econ. 2021, 103, 105577. [Google Scholar] [CrossRef]
- Ali, D.A.; Deininger, K.; Mahofa, G.; Nyakulama, R. Sustaining land registration benefits by addressing the challenges of reversion to informality in Rwanda. Land Use Policy 2021, 110, 104317. [Google Scholar] [CrossRef]
- Feng, S.; Zhang, R.; Li, G. Environmental decentralization, digital finance and green technology innovation. Struct. Change Econ. Dyn. 2022, 61, 70–83. [Google Scholar] [CrossRef]
- Salahuddin, M.; Gow, J. The effects of Internet usage, financial development and trade openness on economic growth in South Africa: A time series analysis. Telemat. Inform. 2016, 33, 1141–1154. [Google Scholar] [CrossRef]
- Owen, R.; Brennan, G.; Lyon, F. Enabling investment for the transition to a low carbon economy: Government policy to finance early stage green innovation. Curr. Opin. Environ. Sustain. 2018, 31, 137–145. [Google Scholar] [CrossRef]
- Lv, C.; Shao, C.; Lee, C.C. Green technology innovation and financial development: Do environmental regulation and innovation output matter? Energy Econ. 2021, 98, 105237. [Google Scholar] [CrossRef]
- Hsu, P.H.; Tian, X.; Xu, Y. Financial development and innovation: Cross-country evidence. J. Financ. Econ. 2014, 112, 116–135. [Google Scholar] [CrossRef]
- Li, D.; Zeng, T. Are China’s intensive pollution industries greening? An analysis based on green innovation efficiency. J. Clean. Prod. 2020, 259, 120901. [Google Scholar] [CrossRef]
- Wen, H.; Lee, C.C.; Zhou, F. Green credit policy, credit allocation efficiency and upgrade of energy-intensive enterprises. Energy Econ. 2021, 94, 105099. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, J.; Xu, B. Innovative coupling and coordination: Automobile and digital industries. Technol. Forecast. Soc. Change 2022, 176, 121497. [Google Scholar] [CrossRef]
- Sturgeon, T.J. Industrial Performance Center, Upgrading strategies for the digital economy. Glob. Strategy J. 2019, 11, 34–57. [Google Scholar] [CrossRef]
- Luo, K.; Liu, Y.; Chen, P.F.; Zeng, M. Assessing the impact of digital economy on green development efficiency in the Yangtze River Economic Belt. Energy Econ. 2022, 112, 106127. [Google Scholar] [CrossRef]
- Kim, B.; Anitesh, B.; Andrew, B.W. Virtual field experiments for a digital economy: A new research methodology for exploring an information economy. Decis. Support Syst. 2002, 32, 215–231. [Google Scholar] [CrossRef]
- Xue, X.; Wang, Z. Impact of finance pressure on energy intensity: Evidence from China’s manufacturing sectors. Energy 2021, 226, 120220. [Google Scholar] [CrossRef]
- Wang, J.; Dong, K.; Sha, Y.; Yan, C. Envisaging the carbon emissions efficiency of digitalization: The case of the internet economy for China. Technol. Forecast. Soc. Change 2022, 184, 121965. [Google Scholar] [CrossRef]
- Ren, S.; Hao, Y.; Xu, L.; Wu, H.; Ba, N. Digitalization and energy: How does internet development affect China’s energy consumption? Energy Econ. 2021, 98, 105220. [Google Scholar] [CrossRef]
- Yao, C.Z.; Liu, X.F. A study of hierarchical structure on South China industrial electricity-consumption correlation. Phys. A Stat. Mech. Its Appl. 2016, 444, 129–145. [Google Scholar] [CrossRef]
- Hu, F.; Shang, Z.; Tao, B.; Yiming, C. Hierarchy in industrial structure: The cases of China and the USA. Phys. A Stat. Mech. Its Appl. 2017, 469, 871–882. [Google Scholar] [CrossRef]
- Lin, J.; Yu, Z.; Wei, Y.D.; Wang, M. Internet Access, Spillover and Regional Development in China. Sustainability 2017, 9, 946. [Google Scholar] [CrossRef]
- Erdmann, L.; Hilty, L.M. Scenario Analysis. J. Ind. Ecol. 2010, 14, 826–843. [Google Scholar] [CrossRef]
- Yang, X.; Wu, H.; Ren, S.; Ran, Q.; Zhang, J. Does the development of the Internet contribute to air pollution control in China? Mechanism discussion and empirical test. Struct. Change Econ. Dyn. 2021, 56, 207–224. [Google Scholar] [CrossRef]
- Liao, G.; Yao, D.; Hu, Z. The Spatial Effect of the Efficiency of Regional Financial Resource Allocation from the Perspective of Internet Finance: Evidence from Chinese Provinces. Emerg. Mark. Financ. Trade 2019, 56, 1211–1223. [Google Scholar] [CrossRef]
- Cao, J.; Law, S.H.; Bin Abdul Samad, A.R.; Binti W Mohamad, W.N.; Wang, J.; Yang, X. Effect of financial development and technological innovation on green growth—Analysis based on spatial Durbin model. J. Clean. Prod. 2022, 365, 132865. [Google Scholar] [CrossRef]
- Dong, F.; Hu, M.; Gao, Y.; Liu, Y.; Zhu, J.; Pan, Y. How does digital economy affect carbon emissions? Evidence from global 60 countries. Sci. Total Environ. 2022, 852, 158401. [Google Scholar] [CrossRef]
- Wang, J.; Luo, X.; Zhu, J. Does the digital economy contribute to carbon emissions reduction? A city-level spatial analysis in China. Chin. J. Popul. Resour. Environ. 2022, 20, 105–114. [Google Scholar]
- Yi, M.; Liu, Y.; Sheng, M.S.; Wen, L. Effects of digital economy on carbon emission reduction: New evidence from China. Energy Policy 2022, 171, 113271. [Google Scholar] [CrossRef]
- Feng, Z.; Chen, W.C. Environmental Regulation, Green Innovation, and Industrial Green Development: An Empirical Analysis Based on the Spatial Durbin Model. Sustainability 2018, 10, 223. [Google Scholar] [CrossRef]
- Bukht, R.; Heeks, R. Defining, Conceptualising and Measuring the Digital Economy. Dev. Inform. Work. Pap. 2017, 68, 662–682. [Google Scholar] [CrossRef]
- Luo, R.; Zhou, N.X. Dynamic Evolution, Spatial Differences, and Driving Factors of China’s Provincial Digital Economy. Sustainability 2022, 14, 9376. [Google Scholar] [CrossRef]
- Datta, A.; Agarwal, S. Telecommunications and economic growth: A panel data approach. Appl. Econ. 2004, 36, 1649–1654. [Google Scholar] [CrossRef]
- Basu, S.; Fernald, J. Information and communications technology as a general-purpose technology: Evidence from US industry data. Ger. Econ. Rev. 2007, 8, 146–173. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Liu, H.N.; Feng, F.; Wu, X.Z. Digital economy, education, human capital and urban–rural income disparity. Finance Res. Lett. 2025, 71, 106464. [Google Scholar] [CrossRef]
- Zhang, J. Estimation of China’s provincial capital stock (1952–2004) with applications. J. Chin. Econ. Bus. Stud. 2008, 6, 177–196. [Google Scholar] [CrossRef]
- Du, K.; Li, P.; Yan, Z. Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from patent data. Technol. Forecast. Soc. Change 2019, 146, 297–303. [Google Scholar] [CrossRef]
- Zhang, D.; Rong, Z.; Ji, Q. Green innovation and firm performance: Evidence from listed companies in China. Resour. Conserv. Recycl. 2019, 144, 48–55. [Google Scholar] [CrossRef]
- Ma, D.; Zhu, Q. Innovation in emerging economies: Research on the digital economy driving high-quality green development. J. Bus. Res. 2022, 145, 801–813. [Google Scholar] [CrossRef]
- Huang, H.; Wei, Y.D. The Spatial–Temporal Hierarchy of Inequality in Urban China: A Prefectural City–Level Study. Prof. Geogr. 2019, 71, 391–407. [Google Scholar] [CrossRef]
- Nunn, N.; Qian, N. US Food Aid and Civil Conflict. Am. Econ. Rev. 2014, 104, 1630–1666. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Ran, Q.; Wu, H.; Irfan, M.; Ahmad, M. Energy structure, digital economy, and carbon emissions: Evidence from China. Environ. Sci. Pollut. Res. Int. 2021, 28, 64606–64629. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econ. 1999, 93, 345–368. [Google Scholar] [CrossRef]
- Fan, J.S.; Zhou, L. Impact of urbanization and real estate investment on carbon emissions: Evidence from China’s provincial regions. J. Clean. Prod. 2019, 209, 309–323. [Google Scholar] [CrossRef]
- Gu, B.; Liu, J.; Ji, Q. The effect of social sphere digitalization on green total factor productivity in China: Evidence from a dynamic spatial Durbin model. J. Environ. Manag. 2022, 320, 115946. [Google Scholar] [CrossRef]
- Fakhimi, M.; Miremadi, I. The impact of technological and social capabilities on innovation performance: A technological catch-up perspective. Technol. Soc. 2022, 68, 101890. [Google Scholar] [CrossRef]
- Wu, C.; Wei, Y.D.; Huang, X.; Chen, B. Economic transition, spatial development and urban land use efficiency in the Yangtze River Delta, China. Habitat Int. 2017, 63, 67–78. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, A.; Su, H.; Su, S.; Chen, F.; Wang, W.; Weng, M. Does the establishment of development zones really improve industrial land use efficiency? Implications for China’s high-quality development policy. Land Use Policy 2020, 90, 104265. [Google Scholar] [CrossRef]
- Liu, X.; Ou, J.; Li, X.; Ai, B. Combining system dynamics and hybrid particle swarm optimization for land use allocation. Ecol. Model. 2013, 257, 11–24. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, F.; Li, Y. Key issues of land use in China and implications for policy making. Land Use Policy 2014, 40, 6–12. [Google Scholar] [CrossRef]
- Ahmad, M.; Zhao, Z.Y.; Li, H. Revealing stylized empirical interactions among construction sector, urbanization, energy consumption, economic growth and CO2 emissions in China. Sci. Total Environ. 2019, 657, 1085–1098. [Google Scholar] [CrossRef] [PubMed]
Variable | N | Mean | SD. | Min | Max |
---|---|---|---|---|---|
GLUE | 2383 | 0.667 | 0.092 | 0.392 | 1.131 |
DE | 2383 | 4.025 | 0.936 | 1.196 | 8.198 |
Pat | 2383 | 5.238 | 1.641 | 0.693 | 10.507 |
Str | 2383 | 0.960 | 0.499 | 0.176 | 5.154 |
PGDP | 2383 | 10.727 | 0.584 | 8.773 | 15.675 |
Edu | 2383 | 0.178 | 0.040 | 0.036 | 0.356 |
Open | 2383 | 0.017 | 0.018 | 0.000 | 0.199 |
Pop | 2383 | 5.791 | 0.891 | 1.629 | 7.882 |
Fin | 2383 | 2.372 | 1.131 | 0.588 | 21.301 |
Road | 2383 | 9.288 | 0.661 | 6.291 | 12.068 |
Variable | (1) | (2) |
---|---|---|
DE | 0.0437 *** (0.00539) | 0.0198 *** (0.00478) |
CVs | N | Y |
City fixed | Y | Y |
Time fixed | Y | Y |
N | 2383 | 2383 |
adj. R-sq | 0.065 | 0.255 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Pat | GLUE | Str | GLUE | |
DE | 0.362 *** | 0.0113 ** | 0.109 *** | 0.0148 *** |
(0.0609) | (0.00440) | (0.0235) | (0.00461) | |
Pat | 0.0236 *** | |||
(0.00247) | ||||
Str | 0.0464 *** | |||
(0.00838) | ||||
CVs | Y | Y | Y | Y |
City fixed | Y | Y | Y | Y |
Time fixed | Y | Y | Y | Y |
N | 2383 | 2383 | 2383 | 2383 |
adj. R-sq | 0.543 | 0.307 | 0.228 | 0.273 |
Instrument Variable | GMM Model | Change GLUE | Exclude Municipalities and Sub-Provincial Cities | ||
---|---|---|---|---|---|
Variable | IV1 | IV2 | |||
(1) | (2) | (3) | (4) | (5) | |
L. GLUE | 0.800 *** | ||||
(0.107) | |||||
DE | 0.0855 *** | 0.0830 *** | 0.0887 *** | 0.0214 *** | 0.0189 *** |
(0.00652) | (0.0058) | (0.0331) | (0.00487) | (0.00482) | |
AR (1) | −4.28 | ||||
[0.000] | |||||
AR (2) | 0.41 | ||||
[0.685] | |||||
Sargan test | 22.27 | ||||
[0.175] | |||||
Kleibergen–Paap RK LM statistics | 53.578 | 95.894 | |||
[0.000] | [0.000] | ||||
Kleibergen–Paap rk Wald F statistics | 97.073 | 246.789 | |||
{16.38} | {16.38} | ||||
CVs | Y | Y | Y | Y | Y |
City fixed | Y | Y | Y | Y | Y |
Time fixed | Y | Y | Y | Y | Y |
N | 2383 | 2383 | 1841 | 2383 | 2212 |
adj. R-sq | 0.373 | 0.379 | / | 0.264 | 0.269 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Central | Peripheral | 2011–2013 | 2014–2019 | Low_mkt | High_mkt | |
DE | 0.0272 ** | 0.0193 *** | 0.012 *** | 0.0172 *** | 0.0215 *** | 0.015 ** |
(0.0126) | (0.00355) | (0.00433) | (0.00640) | (0.00561) | (0.00741) | |
CVs | Y | Y | Y | Y | Y | Y |
City fixed | Y | Y | Y | Y | Y | Y |
Time fixed | Y | Y | Y | Y | Y | Y |
N | 278 | 2105 | 793 | 1590 | 1105 | 1278 |
adj. R-sq | 0.063 | 0.173 | 0.097 | 0.182 | 0.307 | 0.221 |
Threshold Variable | Threshold Number | Threshold Value | F Statistic | p |
---|---|---|---|---|
DE | Single | 6.60 | 40.97 | 0.000 |
Double | 5.95 | 10.31 | 0.210 | |
Pat | Single | 5.38 | 50.97 | 0.000 |
Double | 8.49 | 48.05 | 0.000 | |
Triple | 4.41 | 11.64 | 0.707 | |
Str | Single | 1.29 | 48.27 | 0.000 |
Double | 0.70 | 33.15 | 0.000 | |
Triple | 0.36 | 18.53 | 0.590 |
Threshold Variables | ||||
---|---|---|---|---|
Variable | (1) | (2) | (3) | |
DE | Pat | Str | ||
Threshold value | q1 | 6.60 | 5.38 | 0.70 |
q2 | 8.49 | 1.29 | ||
DE * I (Thv < q1) | 0.0186 *** (0.00344) | 0.0165 *** (0.00341) | 0.0125 *** (0.00352) | |
DE * I (q1 ≤ Thv < q2) | 0.0273 *** (0.00409) | 0.0219 *** (0.00344) | 0.0170 *** (0.00341) | |
DE * I (Thv ≥ q2) | 0.0277 *** (0.00355) | 0.0223 *** (0.00341) | ||
CVs | Y | Y | Y | |
City fixed effect | Y | Y | Y | |
Time fixed effect | Y | Y | Y | |
N | 2356 | 2356 | 2356 | |
adj. R-sq | 0.163 | 0.184 | 0.183 |
Year | DE | GLUE | ||
---|---|---|---|---|
Moran’s I | Z | Moran’s I | Z | |
2011 | 0.071 *** | 13.103 | 0.039 *** | 7.523 |
2012 | 0.059 *** | 11.005 | 0.026 *** | 5.222 |
2013 | 0.061 *** | 11.286 | 0.029 *** | 5.904 |
2014 | 0.049 *** | 9.261 | 0.026 *** | 5.271 |
2015 | 0.049 *** | 9.303 | 0.02 *** | 4.308 |
2016 | 0.05 *** | 9.373 | 0.011 *** | 2.592 |
2017 | 0.052 *** | 9.778 | 0.022 *** | 4.525 |
2018 | 0.052 *** | 9.689 | 0.016 *** | 3.434 |
2019 | 0.049 *** | 9.31 | 0.03 *** | 5.998 |
Variable | Main Spatial Effect | Short Term Spatial Effect | Long Term Spatial Effect | ||||
---|---|---|---|---|---|---|---|
Direct | Indirect | Total | Direct | Indirect | Total | ||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
L.GLUE | 0.711 *** | ||||||
(0.0216) | |||||||
DE | 0.00703 ** | 0.00717 ** | 0.0208 * | 0.0279 ** | 0.0316 ** | 0.315 | 0.346 |
(0.00308) | (0.00298) | (0.0108) | (0.0116) | (0.0124) | (0.442) | (0.448) | |
W * DE | 0.0151 * | ||||||
(0.00853) | |||||||
Spatial rho | 0.208 *** | ||||||
(0.0300) | |||||||
Variance sigma2_e | 0.00135 *** | ||||||
(0.0000379) | |||||||
CVs | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
City fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 2016 | 2016 | 2016 | 2016 | 2016 | 2016 | 2016 |
R2 | 0.647 | 0.647 | 0.647 | 0.647 | 0.647 | 0.647 | 0.647 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, N.; Shan, T.; Li, W.; Liu, X.; Wang, W. Does the Digital Economy Promote Green Land Use Efficiency? Sustainability 2025, 17, 7171. https://doi.org/10.3390/su17167171
Lu N, Shan T, Li W, Liu X, Wang W. Does the Digital Economy Promote Green Land Use Efficiency? Sustainability. 2025; 17(16):7171. https://doi.org/10.3390/su17167171
Chicago/Turabian StyleLu, Na, Tiantian Shan, Wen Li, Xuan Liu, and Weidong Wang. 2025. "Does the Digital Economy Promote Green Land Use Efficiency?" Sustainability 17, no. 16: 7171. https://doi.org/10.3390/su17167171
APA StyleLu, N., Shan, T., Li, W., Liu, X., & Wang, W. (2025). Does the Digital Economy Promote Green Land Use Efficiency? Sustainability, 17(16), 7171. https://doi.org/10.3390/su17167171