Agroecosystem Modeling and Sustainable Optimization: An Empirical Study Based on XGBoost and EEBS Model
Abstract
1. Introduction
2. Study Area and Data Preparation
2.1. Selection of Study Areas
2.2. Data Sources and Preprocessing
3. Methods
3.1. Dynamic Modeling of Agricultural Ecosystems
3.1.1. Establishment of Mathematical Relationship Equations
- (1)
- Crop Growth
- (2)
- Weed Growth
- (3)
- Insect Population Growth
- (4)
- Bird Population Growth
- (5)
- Bat Growth
3.1.2. Modeling Energy Flow in the Food Chain
3.2. Ecological Restoration and Species Return Simulation
3.2.1. Species Return Quantity
3.2.2. Changes in Ecosystem Stability and Soil Fertility Recovery
3.2.3. Selecting Seven-Spot Ladybird and Ragweed as Representative Returning Species
3.2.4. Impact of Herbicide Removal on Ecosystem Stability
- (1)
- Plant Population Dynamics
- (2)
- Insect Population Dynamics
- (3)
- Ecosystem Stability Index
- (4)
- Herbicide Concentration
3.3. Agricultural Ecosystem Optimization and Strategy Evaluation
3.3.1. Impact of Bat Introduction on the Restoration of Ecological Balance
- (1)
- Bat Population Dynamics
- (2)
- Pest Population Dynamics
- (3)
- Plant Population Dynamics
- (4)
- Ecosystem Stability
- (5)
- Influence of Other Species
3.3.2. Application of the XGBoost Algorithm to Solve Agricultural Ecological Restoration Balance
- Objective Function:
- 2.
- Regularization Term:
- 3.
- Gradient Update:
3.3.3. Eco-Economic Benefit and Sustainability Model
- Budget Constraint
- 2.
- Crop Yield Constraint:
- 3.
- Sustainability and Ecological Conservation Constraint:
- 4.
- Market Demand Constraint:
- 5.
- Production Efficiency Constraint:
4. Results and Discussion
4.1. Experimental Configuration
4.2. Ecological Effects of Species Reintroduction and Edge Habitat Recovery
4.3. Impacts of Chemical Removal and Ecological Control
4.4. Eco-Economic Performance Under Different Agricultural Scenarios
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, L.J.; Ren, X.Y.; Zhou, Z.Z.; Zhu, D.; Zhu, Y.G. Forest-to-Cropland Conversion Reshapes Microbial Hierarchical Interactions and Degrades Ecosystem Multifunctionality at a National Scale. Environ. Sci. Technol. 2024, 58, 11027–11040. [Google Scholar] [CrossRef]
- Mungai, L.M.; Djenontin, I.N.S.; Zulu, L.C.; Messina, J.P. Spatial-temporal modeling of land-use dynamics at the agricultural-forest interface: Insights from Ntchisi District, Malawi. Remote Sens. Appl. Soc. Environ. 2025, 38, 101597. [Google Scholar] [CrossRef]
- Valjarević, A.; Morar, C.; Brasanac-Bosanac, L.; Cirkovic-Mitrovic, T.; Djekic, T.; Mihajlović, M.; Milevski, I.; Culafic, G.; Luković, M.; Niemets, L.; et al. Sustainable land use in Moldova: GIS & remote sensing of forests and crops. Land Use Policy 2025, 152, 107515. [Google Scholar] [CrossRef]
- FAO. COP26 Agricultural Expansion Drives Almost 90 Percent of Global Deforestation. FAO Newsroom, 11 June 2021. Available online: https://www.fao.org/newsroom/detail/cop26-agricultural-expansion-drives-almost-90-percent-of-global-deforestation/ (accessed on 25 June 2025).
- FAO. Global Forest Resources Assessment 2020. FAO Interactive Report, 2023. Available online: https://www.fao.org/interactive/forest-resources-assessment/2020/en/ (accessed on 25 June 2025).
- Nayak, N.; Mehrotra, R.; Mehrotra, S. Carbon biosequestration strategies: A review. Carbon Capture Sci. Technol. 2022, 4, 100065. [Google Scholar] [CrossRef]
- Li, Y.; Brando, P.M.; Morton, D.C.; Lawrence, D.M.; Yang, H.; Randerson, J.T. Deforestation-induced climate change reduces carbon storage in remaining tropical forests. Nat. Commun. 2022, 13, 1964. [Google Scholar] [CrossRef]
- Li, W.; Kang, J.; Wang, Y. Effects of habitat fragmentation on ecosystem services and their trade-offs in Southwest China: A multi-perspective analysis. Ecol. Indic. 2024, 167, 112699. [Google Scholar] [CrossRef]
- Gao, H.; Gong, J.; Ye, T.; Maier, M.; Liu, J. Constructing cropland ecological stability assessment method based on disturbance-resistance-response processes and classifying cropland ecological types. Sci. Total Environ. 2024, 930, 172673. [Google Scholar] [CrossRef] [PubMed]
- FAO. Pesticides Use and Trade 1990–2022. FAO Statistics Highlights, 16 July 2024. Available online: https://www.fao.org/statistics/highlights-archive/highlights-detail/pesticides-use-and-trade-1990-2022/ (accessed on 25 June 2025).
- Xiong, R.; He, X.; Gao, N.; Li, Q.; Qiu, Z.; Hou, Y.; Shen, W. Soil pH amendment alters the abundance, diversity, and composition of microbial communities in two contrasting agricultural soils. Microbiol. Spectr. 2024, 12, e04165-23. [Google Scholar] [CrossRef]
- Guzman, L.M.; Elle, E.; Morandin, L.A. Impact of pesticide use on wild bee distributions across the United States. Nat. Sustain. 2024, 7, 1324–1334. [Google Scholar] [CrossRef]
- Ndayishimiye, J.C.; Nyirabuhoro, P.; Gao, X.; Chen, H.; Wang, W.; Mazei, Y.; Yang, J. Community responses of testate amoebae (Arcellinida and Euglyphida) to ecological disturbance explained by contrasting assembly mechanisms in two subtropical reservoirs. Sci. Total Environ. 2024, 953, 176058. [Google Scholar] [CrossRef]
- Li, J.; Nie, W.; Zhang, M.; Wang, L.; Dong, H.; Xu, B. Assessment and optimization of urban ecological network resilience based on disturbance scenario simulations: A case study of Nanjing city. J. Clean. Prod. 2024, 438, 140812. [Google Scholar] [CrossRef]
- Hong, W.; Guo, R.; Li, X.; Liao, C. Measuring urban ecological network resilience: A disturbance scenario simulation method. Cities 2022, 131, 104057. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Ren, G.; Zhang, Z.; Nie, S. Advancing sustainable mining practices: A dynamic ecological security and risk warning framework for ion-absorbed rare earth mine. J. Clean. Prod. 2025, 511, 145630. [Google Scholar] [CrossRef]
- Dipesh, P.; Kumar, P.; Sharma, A. Mathematical model of Cynodon dactylon’s allelopathic effect on perennial ryegrass for exploring plant-plant interactions based upon ordinary differential equations. Partial Differ. Equ. Appl. Math. 2025, 101254. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Y.; El Idrissi, A.; Long, T.; Liu, Y.; Lu, L. Eco-friendly alginate-urea-fluroxypyr hydrogel for sustainable agriculture: A comprehensive approach to integrated fertilizer delivery and weed control. Int. J. Biol. Macromol. 2025, 310, 143257. [Google Scholar] [CrossRef]
- Ocampo-Ariza, C.; Maas, B.; Castro-Namuche, J.P.; Thomas, E.; Vansynghel, J.; Steffan-Dewenter, I.; Tscharntke, T. Trait-dependent responses of birds and bats to season and dry forest distance in tropical agroforestry. Agric. Ecosyst. Environ. 2022, 325, 107751. [Google Scholar] [CrossRef]
- Panja, P. Dynamics of a crop, pest and predator model in an agricultural system. Results Control Optim. 2023, 12, 100274. [Google Scholar] [CrossRef]
- Ortmans, W.; Mahy, G.; Chauvel, B.; Monty, A. Performance variation of common ragweed (Ambrosia artemisiifolia L.) across invasion levels in Western Europe. Flora-Morphol. Distrib. Funct. Ecol. Plants 2016, 220, 134–141. [Google Scholar] [CrossRef]
- Guliyev, H. Ecological footprint spillover effects in Europe: New insights from dynamic spatial panel data model with common shocks. J. Environ. Manag. 2024, 368, 122194. [Google Scholar] [CrossRef]
- Yadav, S.P.S.; Mehata, D.K.; Pokhrel, S.; Ghimire, N.P.; Gyawali, P.; Katel, S.; Timilsina, U. Invasive alien plant species (Banmara): Investigating its invasive potential, ecological consequences on biodiversity, and management strategies. J. Agric. Food Res. 2024, 15, 101031. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, Q.; Kuang, Y.; Clements, D.R.; Xu, G.; Zhang, F.; Shen, S.; Yin, L.; Day, M.D. Predicting the potential distribution of the invasive weed Mikania micrantha and its biological control agent Puccinia spegazzinii under climate change scenarios in China. Biol. Control 2025, 204, 105754. [Google Scholar] [CrossRef]
- Goldson, S.L.; Tomasetto, F.; Popay, A.J. Biological control against invasive species in simplified ecosystems: Its triumphs and emerging threats. Curr. Opin. Insect Sci. 2014, 5, 50–56. [Google Scholar] [CrossRef]
- Wu, N.; Zhou, Y.; Yin, S.; Gong, H.; Zhang, C. Revealing the nonlinear impact of environmental regulation on ecological resilience using the XGBoost-SHAP model: Evidence from the Yangtze River Delta region, China. J. Clean. Prod. 2025, 514, 145700. [Google Scholar] [CrossRef]
- Shamuxi, A.; Han, B.; Jin, X.; Wusimanjiang, P.; Abudukerimu, A.; Chen, Q.; Zhou, H.; Gong, M. Spatial pattern and driving mechanisms of dryland landscape ecological risk: Insights from an integrated geographic detector and machine learning model. Ecol. Indic. 2025, 172, 113305. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2020—Key Findings; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Share of Arable Land That Is Organic—FAO [Dataset]; with Major Processing by Our World in Data. Land, Inputs and Sustainability: Land Use [Original Data]. 2024. Available online: https://archive.ourworldindata.org/20250624-125417/grapher/share-of-arable-land-which-is-organic.html (accessed on 3 July 2025).
Data Website | Data Type |
---|---|
https://www.fao.org/ | Crop-related data |
https://www.globalforestwatch.org/ | Forest data |
https://www.embrapa.br/ | Agriculture |
https://www.sciencedirect.com/ | Paper |
https://www.cnki.net/ |
Role | Organisms | Description |
---|---|---|
Producer | Crops | E.g., corn and soybeans. |
Weeds | Naturally growing plants that may compete with crops for resources. | |
Primary Consumer | Insects | Small invertebrates that feed on crops or weeds, such as aphids and beetles. |
Secondary Consumer | Birds | Species that prey on insects, such as sparrows and woodpeckers. |
Bats | Nocturnal insectivores that help control pest populations and serve as pollinators. | |
Decomposer | Soil Microbes | Responsible for decomposing organic matter such as fallen leaves and crop residues, returning nutrients to the soil. |
Earthworms | Improve soil structure and facilitate nutrient cycling. | |
External Factors | Herbicides | Affect the growth of weeds and non-target plants. |
Pesticides | Directly impact insect populations and indirectly affect their natural enemies. |
Treatment | MAE | MSE | RMSE |
---|---|---|---|
No Herbicide | 0.1028 | 0.0136 | 0.1164 |
No Herbicide + other species | 0.1017 | 0.0142 | 0.1029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Yao, Z.; Lu, Y.; Xiong, C. Agroecosystem Modeling and Sustainable Optimization: An Empirical Study Based on XGBoost and EEBS Model. Sustainability 2025, 17, 7170. https://doi.org/10.3390/su17157170
Xu M, Yao Z, Lu Y, Xiong C. Agroecosystem Modeling and Sustainable Optimization: An Empirical Study Based on XGBoost and EEBS Model. Sustainability. 2025; 17(15):7170. https://doi.org/10.3390/su17157170
Chicago/Turabian StyleXu, Meiqing, Zilong Yao, Yuxin Lu, and Chunru Xiong. 2025. "Agroecosystem Modeling and Sustainable Optimization: An Empirical Study Based on XGBoost and EEBS Model" Sustainability 17, no. 15: 7170. https://doi.org/10.3390/su17157170
APA StyleXu, M., Yao, Z., Lu, Y., & Xiong, C. (2025). Agroecosystem Modeling and Sustainable Optimization: An Empirical Study Based on XGBoost and EEBS Model. Sustainability, 17(15), 7170. https://doi.org/10.3390/su17157170