Sustainability in Boreal Forests: Does Elevated CO2 Increase Wood Volume?
Abstract
1. Introduction
2. Materials and Methods
2.1. Methods
2.2. Data
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable | Definition |
---|---|
Volume (m3) | Aboveground wood volume of an observed tree |
Ln (Volume) | Logarithmic transformation of the aboveground wood volume of a tree |
Ln (Lifetime CO2) | Logarithmic transformation of the sum of yearly atmospheric CO2 exposure over the stand’s lifetime |
1/Stand Age | Inverse of the stand age (years) |
Lifetime Mean Seasonal Temperature (°C) | Mean seasonal (i.e., spring, summer, autumn, and winter) temperature over the stand’s lifetime |
Lifetime Mean Seasonal Precipitation (mm) | Mean seasonal (i.e., spring, summer, autumn, and winter) precipitation over the stand’s lifetime |
Natural Region | Dummy variables for location in Forest, Foothills, or Rocky Mountains |
Elevation (m) | Distance above sea level a stand is located |
Latitude (°) | Latitude of the stand |
Fire Events in Lifetime | Dummy variable indicating whether stand experienced fire in its lifetime |
Forest Group | Strata | Description |
---|---|---|
Hardwoods | Hw | Hardwoods |
HwSw | Hardwoods (leading) interspersed with White Spruce | |
HwSb | Hardwoods (leading) interspersed with Black Spruce | |
Softwoods | P | Pine |
PHw | Pine (leading) interspersed with Hardwoods | |
Sb | Black Spruce | |
SbHw | Black Spruce (leading) interspersed with Hardwoods | |
Sw | White Spruce | |
SwHw | White Spruce (leading) interspersed with Hardwoods |
Natural Logarithm of Wood Volume | |||
---|---|---|---|
(1) | (2) | (3) | |
Ln(Lifetime CO2) | 1.122 *** | 1.289 *** | 1.376 *** |
(0.12) | (0.13) | (0.124) | |
1/Age | −39.13 *** | −34.78 *** | −33.13 *** |
(2.777) | (3.096) | (3.352) | |
Lifetime Mean Spring Temperature (°C) | −0.545 ** | −0.163 | −0.0204 |
(0.247) | (0.261) | (0.17) | |
Lifetime Mean Spring Temperature squared | −0.242 *** | 0.0263 | |
(0.0531) | (0.0414) | ||
Lifetime Mean Spring Temperature cubed | 0.0820 *** | ||
(0.0123) | |||
Lifetime Mean Summer Temperature (°C) | 49.08 *** | −0.955 | 0.501 *** |
(10.4) | (0.913) | (0.119) | |
Lifetime Mean Summer Temperature squared | −3.779 *** | 0.0573 * | |
(0.813) | (0.0336) | ||
Lifetime Mean Summer Temperature cubed | 0.0975 *** | ||
(0.021) | |||
Lifetime Mean Autumn Temperature (°C) | −0.430 ** | −0.184 | 0.016 |
(0.182) | (0.226) | (0.151) | |
Lifetime Mean Autumn Temperature squared | 0.337 *** | 0.0673 | |
(0.0723) | (0.0501) | ||
Lifetime Mean Autumn Temperature cubed | −0.0457 *** | ||
(0.0161) | |||
Lifetime Mean Winter Temperature (°C) | 0.343 | −0.109 | 0.0863 * |
(0.449) | (0.108) | (0.0498) | |
Lifetime Mean Winter Temperature squared | 0.0407 | −0.00824 * | |
(0.0328) | (0.00492) | ||
Lifetime Mean Winter Temperature cubed | 0.00168 ** | ||
(0.000784) | |||
Lifetime Mean Spring Precipitation (mm) | 0.118 *** | 0.0553 *** | 0.0112 *** |
(0.0444) | (0.015) | (0.00305) | |
Lifetime Mean Spring Precipitation squared | −0.000650 ** | −0.000165 *** | |
(0.000268) | (0.0000468) | ||
Lifetime Mean Spring Precipitation cubed | 0.00000119 ** | ||
(0.000000522) | |||
Lifetime Mean Summer Precipitation (mm) | −0.184 *** | 0.00749 | −0.00575 *** |
(0.0474) | (0.00683) | (0.00138) | |
Lifetime Mean Summer Precipitation squared | 0.000713 *** | −0.0000265 ** | |
(0.00018) | (0.0000127) | ||
Lifetime Mean Summer Precipitation cubed | −0.000000920 *** | ||
(0.000000222) | |||
Lifetime Mean Autumn Precipitation (mm) | −0.0374 | −0.0146 | −0.00183 |
(0.0683) | (0.0141) | (0.00344) | |
Lifetime Mean Autumn Precipitation squared | 0.000272 | 0.0000489 | |
(0.000497) | (0.000052) | ||
Lifetime Mean Autumn Precipitation cubed | −0.000000625 | ||
(0.00000115) | |||
Lifetime Mean Winter Precipitation (mm) | −0.0692 *** | −0.0323 *** | −0.00917 *** |
(0.0266) | (0.00862) | (0.00212) | |
Lifetime Mean Winter Precipitation squared | 0.000474 ** | 0.000121 *** | |
(0.000219) | (0.0000354) | ||
Lifetime Mean Winter Precipitation cubed | −0.00000104 ** | ||
(0.000000523) | |||
Foothills | 0.115 | 0.0395 | 0.0363 |
(0.0778) | (0.0737) | (0.0727) | |
Rocky Mountains | 0.184 | −0.00308 | 0.073 |
(0.148) | (0.128) | (0.106) | |
Elevation | −0.000282 | 0.000881 * | 0.000608 |
(0.000515) | (0.000525) | (0.000415) | |
Latitude | 0.169 * | 0.188 ** | 0.063 |
(0.0879) | (0.0822) | (0.0624) | |
Fire Events or Not in Lifetime | −0.0557 | −0.0967 | −0.154 ** |
(0.0754) | (0.0739) | (0.0723) | |
Hardwood | 0.452 *** | 0.408 *** | 0.473 *** |
(0.0904) | (0.092) | (0.0863) | |
Constant | −212.0 *** | −17.05 ** | −16.61 *** |
(43.03) | (7.278) | (4.825) | |
Adjusted R2 | 0.877 | 0.866 | 0.863 |
Decadal Fixed Effects | Yes | ||
Observations | 4870 |
Natural Logarithm of Wood Volume | |||
---|---|---|---|
(1) | (2) | (3) | |
Natural logarithm of lifetime CO2 | 1.723 *** | 2.107 *** | 2.214 *** |
(0.179) | (0.187) | (0.152) | |
1/Age | −33.26 *** | −25.59 *** | −22.29 *** |
(3.005) | (3.076) | (3.35) | |
Lifetime Mean Spring Temperature (°C) | −0.33 | −0.0598 | 0.162 |
(0.286) | (0.336) | (0.242) | |
Lifetime Mean Spring Temperature squared | −0.291 *** | 0.0988 ** | |
(0.0761) | (0.0459) | ||
Lifetime Mean Spring Temperature cubed | 0.105 *** | ||
(0.0167) | |||
Lifetime Mean Summer Temperature (°C) | 98.47 *** | −4.114 *** | 0.315 * |
(19.94) | (1.509) | (0.183) | |
Lifetime Mean Summer Temperature squared | −7.518 *** | 0.165 *** | |
(1.508) | (0.0541) | ||
Lifetime Mean Summer Temperature cubed | 0.190 *** | ||
(0.0378) | |||
Lifetime Mean Autumn Temperature (°C) | −0.927 *** | −0.345 | −0.233 |
(0.228) | (0.264) | (0.208) | |
Lifetime Mean Autumn Temperature squared | 0.324 *** | 0.107 * | |
(0.0718) | (0.0582) | ||
Lifetime Mean Autumn Temperature cubed | −0.0187 | ||
(0.0182) | |||
Lifetime Mean Winter Temperature (°C) | 1.002 | −0.25 | 0.0948 |
(0.663) | (0.16) | (0.0902) | |
Lifetime Mean Winter Temperature squared | 0.108 ** | −0.0115 | |
(0.0506) | (0.00704) | ||
Lifetime Mean Winter Temperature cubed | 0.00359 *** | ||
(0.00123) | |||
Lifetime Mean Spring Precipitation (mm) | 0.0209 | 0.0481 ** | 0.0201 *** |
(0.0513) | (0.02) | (0.00386) | |
Lifetime Mean Spring Precipitation squared | 0.00000978 | −0.000135 ** | |
(0.000308) | (0.0000649) | ||
Lifetime Mean Spring Precipitation cubed | −2.65 × 10−7 | ||
(0.000000599) | |||
Lifetime Mean Summer Precipitation (mm) | −0.0609 | −0.0156 | −0.0017 |
(0.0739) | (0.0117) | (0.00188) | |
Lifetime Mean Summer Precipitation squared | 0.000249 | 0.0000243 | |
(0.000285) | (0.0000224) | ||
Lifetime Mean Summer Precipitation cubed | −3.32 × 10−7 | ||
(0.00000036) | |||
Lifetime Mean Autumn Precipitation (mm) | 0.0874 | 0.0217 | −0.00359 |
(0.09) | (0.0192) | (0.00483) | |
Lifetime Mean Autumn Precipitation squared | −0.000672 | −0.0000811 | |
(0.000637) | (0.0000713) | ||
Lifetime Mean Autumn Precipitation cubed | 0.00000165 | ||
(0.00000142) | |||
Lifetime Mean Winter Precipitation (mm) | −0.0876 *** | −0.0484 *** | −0.00987 *** |
(0.0336) | (0.0109) | (0.00277) | |
Lifetime Mean Winter Precipitation squared | 0.000569 ** | 0.000176 *** | |
(0.000276) | (0.0000429) | ||
Lifetime Mean Winter Precipitation cubed | −0.00000108 | ||
(0.000000667) | |||
Foothills | 0.375 *** | 0.288 *** | 0.204 * |
(0.11) | (0.111) | (0.11) | |
Rocky Mountains | 0.651 ** | 0.4 | 0.419 |
(0.264) | (0.289) | (0.259) | |
Elevation | −0.00253 *** | 0.0000077 | −0.000955 |
(0.000867) | (0.000829) | (0.000703) | |
Latitude | −0.0266 | 0.161 | 0.00951 |
(0.113) | (0.108) | (0.0902) | |
Fire Events or Not in Lifetime | −0.167 | −0.0462 | −0.112 |
(0.16) | (0.165) | (0.16) | |
Hardwood | 0.407 *** | 0.396 *** | 0.396 *** |
(0.109) | (0.111) | (0.112) | |
Constant | −427.2 *** | −0.133 | −19.55 *** |
(84.97) | (12.36) | (6.638) | |
Adjusted R2 | 0.883 | 0.873 | 0.867 |
Decadal Fixed Effects | Yes | ||
Observations | 2532 |
Natural Logarithm of Wood Volume | |||
---|---|---|---|
(1) | (2) | (3) | |
Natural logarithm of lifetime CO2 | 0.432 ** | 0.527 ** | 0.469 ** |
(0.196) | (0.209) | (0.224) | |
1/Age | −60.96 *** | −60.31 *** | −58.56 *** |
(5.389) | (5.876) | (6.119) | |
Lifetime Mean Spring Temperature (°C) | −1.086 *** | −0.806 *** | 0.142 |
(0.188) | (0.192) | (0.148) | |
Lifetime Mean Spring Temperature squared | −0.118 ** | 0.210 *** | |
(0.0465) | (0.0341) | ||
Lifetime Mean Spring Temperature cubed | 0.0853 *** | ||
(0.0127) | |||
Lifetime Mean Summer Temperature (°C) | 15.64 * | 2.455 *** | 0.179 |
(9.372) | (0.695) | (0.131) | |
Lifetime Mean Summer Temperature squared | −1.082 | −0.0760 *** | |
(0.716) | (0.0246) | ||
Lifetime Mean Summer Temperature cubed | 0.0257 | ||
(0.0183) | |||
Lifetime Mean Autumn Temperature (°C) | 0.452 ** | 0.677 *** | −0.152 |
(0.203) | (0.193) | (0.139) | |
Lifetime Mean Autumn Temperature squared | 0.0757 | −0.153 *** | |
(0.0675) | (0.0341) | ||
Lifetime Mean Autumn Temperature cubed | −0.0305 * | ||
(0.0177) | |||
Lifetime Mean Winter Temperature (°C) | −0.352 | −0.0959 | 0.128 *** |
(0.518) | (0.115) | (0.0436) | |
Lifetime Mean Winter Temperature squared | −0.0206 | −0.00703 | |
(0.0373) | (0.00539) | ||
Lifetime Mean Winter Temperature cubed | −0.0000104 | ||
(0.000849) | |||
Lifetime Mean Spring Precipitation (mm) | 0.180 *** | 0.0696 *** | −0.00543 *** |
(0.0517) | (0.0167) | (0.00158) | |
Lifetime Mean Spring Precipitation squared | −0.000970 *** | −0.000213 *** | |
(0.000311) | (0.0000543) | ||
Lifetime Mean Spring Precipitation cubed | 0.00000166 *** | ||
(0.000000597) | |||
Lifetime Mean Summer Precipitation (mm) | −0.105 ** | −0.00586 | 0.0011 |
(0.048) | (0.00595) | (0.00363) | |
Lifetime Mean Summer Precipitation squared | 0.000383 ** | −0.00000317 | |
(0.00018) | (0.0000108) | ||
Lifetime Mean Summer Precipitation cubed | −0.000000481 ** | ||
(0.000000215) | |||
Lifetime Mean Autumn Precipitation (mm) | −0.0767 | −0.0289 ** | 0.00455 |
(0.0643) | (0.0133) | (0.00279) | |
Lifetime Mean Autumn Precipitation squared | 0.000529 | 0.000132 *** | |
(0.000487) | (0.0000511) | ||
Lifetime Mean Autumn Precipitation cubed | −0.00000106 | ||
(0.00000114) | |||
Lifetime Mean Winter Precipitation (mm) | −0.105 *** | −0.0455 *** | −0.00794 *** |
(0.0265) | (0.00808) | (0.00234) | |
Lifetime Mean Winter Precipitation squared | 0.000693 *** | 0.000170 *** | |
(0.000223) | (0.0000346) | ||
Lifetime Mean Winter Precipitation cubed | −0.00000138 *** | ||
(0.000000521) | |||
Foothills | 0.0066 | −0.0638 | −0.156 ** |
(0.0667) | (0.0625) | (0.0625) | |
Rocky Mountains | −0.149 | −0.277 *** | −0.0924 |
(0.0991) | (0.0973) | (0.0923) | |
Elevation | 0.000458 | 0.00111 ** | 0.000089 |
(0.000449) | (0.000442) | (0.0004) | |
Latitude | 0.346 *** | 0.257 *** | 0.0976 * |
(0.0843) | (0.0672) | (0.0557) | |
Fire Events or Not in Lifetime | −0.0466 | −0.0988 | −0.105 * |
(0.064) | (0.0645) | (0.062) | |
Constant | −86.83 ** | −32.65 *** | −3.339 |
(40.15) | (7.189) | (4.604) | |
Adjusted R2 | 0.891 | 0.883 | 0.876 |
Decadal Fixed Effects | Yes | ||
Observations | 4126 |
Natural Logarithm of Wood Volume | |||
---|---|---|---|
(1) | (2) | (3) | |
Natural logarithm of lifetime CO2 | 1.113 *** | 1.417 *** | 1.417 *** |
(0.276) | (0.315) | (0.338) | |
1/Age | −48.99 *** | −45.12 *** | −43.90 *** |
(5.413) | (5.792) | (6.529) | |
Lifetime Mean Spring Temperature (°C) | −1.017 *** | −1.277 *** | 0.0244 |
(0.29) | (0.296) | (0.248) | |
Lifetime Mean Spring Temperature squared | −0.225 ** | 0.357 *** | |
(0.113) | (0.0484) | ||
Lifetime Mean Spring Temperature cubed | 0.116 *** | ||
(0.0228) | |||
Lifetime Mean Summer Temperature (°C) | 71.00 *** | 2.603 * | −0.116 |
(20.88) | (1.368) | (0.229) | |
Lifetime Mean Summer Temperature squared | −5.328 *** | −0.0900 * | |
(1.577) | (0.0512) | ||
Lifetime Mean Summer Temperature cubed | 0.133 *** | ||
(0.0395) | |||
Lifetime Mean Autumn Temperature (°C) | −0.00468 | 1.156 *** | 0.0689 |
(0.407) | (0.397) | (0.231) | |
Lifetime Mean Autumn Temperature squared | 0.132 | −0.166 *** | |
(0.129) | (0.0632) | ||
Lifetime Mean Autumn Temperature cubed | −0.00457 | ||
(0.0287) | |||
Lifetime Mean Winter Temperature (°C) | −0.347 | −0.283 | 0.148 |
(0.753) | (0.212) | (0.102) | |
Lifetime Mean Winter Temperature squared | −0.00696 | −0.0112 | |
(0.0568) | (0.00897) | ||
Lifetime Mean Winter Temperature cubed | 0.000671 | ||
(0.00136) | |||
Lifetime Mean Spring Precipitation (mm) | 0.144 ** | 0.0757 *** | −0.00443 ** |
(0.0669) | (0.0204) | (0.00204) | |
Lifetime Mean Spring Precipitation squared | −0.000734 * | −0.000240 *** | |
(0.000399) | (0.0000634) | ||
Lifetime Mean Spring Precipitation cubed | 0.00000112 | ||
(0.000000783) | |||
Lifetime Mean Summer Precipitation (mm) | −0.11 | −0.0384 *** | 0.00217 |
(0.0735) | (0.00993) | (0.00523) | |
Lifetime Mean Summer Precipitation squared | 0.000373 | 0.0000624 *** | |
(0.00028) | (0.0000181) | ||
Lifetime Mean Summer Precipitation cubed | −0.000000426 | ||
(0.000000346) | |||
Lifetime Mean Autumn Precipitation (mm) | −0.0336 | −0.0149 | 0.0124 *** |
(0.0813) | (0.0179) | (0.00444) | |
Lifetime Mean Autumn Precipitation squared | 0.000237 | 0.000105 * | |
(0.000592) | (0.0000633) | ||
Lifetime Mean Autumn Precipitation cubed | −0.000000351 | ||
(0.00000132) | |||
Lifetime Mean Winter Precipitation (mm) | −0.0919 ** | −0.0657 *** | −0.0105 *** |
(0.0385) | (0.0107) | (0.00298) | |
Lifetime Mean Winter Precipitation squared | 0.000507 | 0.000242 *** | |
(0.000331) | (0.0000417) | ||
Lifetime Mean Winter Precipitation cubed | −0.000000803 | ||
(0.000000811) | |||
Foothills | 0.158 | 0.12 | −0.0752 |
(0.103) | (0.102) | (0.108) | |
Rocky Mountains | 0.249 | 0.0294 | 0.222 |
(0.245) | (0.223) | (0.248) | |
Elevation | −0.0013 | 0.000995 | −0.00145 * |
(0.000943) | (0.000739) | (0.000783) | |
Latitude | 0.273 ** | 0.361 *** | 0.0615 |
(0.119) | (0.0969) | (0.0899) | |
Fire Events or Not in Lifetime | 0.053 | 0.0542 | −0.0129 |
(0.169) | (0.159) | (0.163) | |
Constant | −325.1 *** | −45.45 *** | −6.511 |
(89.75) | (11.37) | (7.108) | |
Adjusted R2 | 0.902 | 0.897 | 0.885 |
Decadal Fixed Effects | Yes | ||
Observations | 1788 |
Natural Logarithm of Wood Volume | |||
---|---|---|---|
(1) | (2) | (3) | |
Natural logarithm of lifetime CO2 | 0.722 * | 0.537 | −0.479 |
(0.429) | (0.423) | (0.42) | |
1/Age | 113.1 ** | 90.41 | −36.39 |
(55.48) | (55.22) | (55.19) | |
Lifetime Mean Spring Temperature (°C) | −0.136 | 0.0158 | −0.123 * |
(0.167) | (0.127) | (0.0648) | |
Lifetime Mean Spring Temperature squared | 0.0368 | 0.0962 *** | |
(0.0419) | (0.0232) | ||
Lifetime Mean Spring Temperature cubed | 0.0229 * | ||
(0.0127) | |||
Lifetime Mean Summer Temperature (°C) | −2.309 | −0.643 | −0.0518 |
(11.77) | (0.512) | (0.0728) | |
Lifetime Mean Summer Temperature squared | 0.188 | 0.0274 | |
(0.942) | (0.0204) | ||
Lifetime Mean Summer Temperature cubed | −0.00487 | ||
(0.025) | |||
Lifetime Mean Autumn Temperature (°C) | 0.406 *** | 0.308 *** | 0.137 |
(0.098) | (0.0777) | (0.0921) | |
Lifetime Mean Autumn Temperature squared | −0.0929 * | −0.174 *** | |
(0.0499) | (0.0227) | ||
Lifetime Mean Autumn Temperature cubed | −0.0238 | ||
(0.0145) | |||
Lifetime Mean Winter Temperature (°C) | 0.365 | 0.289 *** | 0.0302 |
(0.52) | (0.0725) | (0.028) | |
Lifetime Mean Winter Temperature squared | 0.0209 | 0.0109 *** | |
(0.0371) | (0.00326) | ||
Lifetime Mean Winter Temperature cubed | 0.000363 | ||
(0.000867) | |||
Lifetime Mean Spring Precipitation (mm) | 0.0778 ** | 0.0456 *** | −0.00280 *** |
(0.0307) | (0.0103) | (0.000672) | |
Lifetime Mean Spring Precipitation squared | −0.000392 ** | −0.000139 *** | |
(0.000189) | (0.0000346) | ||
Lifetime Mean Spring Precipitation cubed | 0.000000619 * | ||
(0.000000372) | |||
Lifetime Mean Summer Precipitation (mm) | −0.0783 * | 0.0147 *** | −0.00389 ** |
(0.0405) | (0.00533) | (0.00172) | |
Lifetime Mean Summer Precipitation squared | 0.000302 ** | −0.0000357 *** | |
(0.000144) | (0.00000941) | ||
Lifetime Mean Summer Precipitation cubed | −0.000000399 ** | ||
(0.000000168) | |||
Lifetime Mean Autumn Precipitation (mm) | 0.0966 | −0.0202 | −0.00106 |
(0.0966) | (0.0123) | (0.00195) | |
Lifetime Mean Autumn Precipitation squared | −0.000881 | 0.0000412 | |
(0.000787) | (0.0000494) | ||
Lifetime Mean Autumn Precipitation cubed | 0.00000233 | ||
(0.00000211) | |||
Lifetime Mean Winter Precipitation (mm) | −0.127 *** | −0.0302 ** | 0.00285 |
(0.0397) | (0.0145) | (0.00193) | |
Lifetime Mean Winter Precipitation squared | 0.00120 *** | 0.000175 ** | |
(0.00038) | (0.000078) | ||
Lifetime Mean Winter Precipitation cubed | −0.00000338 *** | ||
(0.00000115) | |||
Foothills | −0.127 ** | −0.117 ** | −0.0880 * |
(0.0537) | (0.0504) | (0.0511) | |
Rocky Mountains | −0.254 *** | −0.250 *** | −0.109 |
(0.0839) | (0.0819) | (0.0906) | |
Elevation | 0.000671 | 0.000528 | 0.0000857 |
(0.000466) | (0.000396) | (0.000263) | |
Latitude | 0.166 *** | 0.139 *** | 0.00826 |
(0.0594) | (0.0531) | (0.0343) | |
Fire Events or Not in Lifetime | −0.0759 | −0.0849 | −0.0624 |
(0.0556) | (0.054) | (0.0583) | |
Constant | 1.687 | −4.999 | 12.68 ** |
(48.44) | (6.395) | (5.228) | |
Adjusted R2 | 0.224 | 0.213 | 0.148 |
Decadal Fixed Effects | Yes | ||
Observations | 2338 |
Natural Logarithm of Wood Volume | |||
---|---|---|---|
(1) | (2) | (3) | |
Natural logarithm of lifetime CO2 | 2.191 *** | 2.412 *** | 2.483 *** |
(0.266) | (0.306) | (0.293) | |
1/Age | −25.54 *** | −16.72 *** | −14.60 *** |
(5.327) | (4.299) | (3.732) | |
Lifetime Mean Spring Temperature (°C) | 0.148 | 0.0353 | −0.587 |
(0.349) | (0.408) | (0.415) | |
Lifetime Mean Spring Temperature squared | −0.219 ** | 0.0193 | |
(0.103) | (0.0669) | ||
Lifetime Mean Spring Temperature cubed | 0.0756 *** | ||
(0.0244) | |||
Lifetime Mean Summer Temperature (°C) | 300.0 ** | −9.994 ** | 0.71 |
(123.9) | (4.779) | (0.583) | |
Lifetime Mean Summer Temperature squared | −21.61 ** | 0.371 ** | |
(8.737) | (0.175) | ||
Lifetime Mean Summer Temperature cubed | 0.517 ** | ||
(0.205) | |||
Lifetime Mean Autumn Temperature (°C) | −0.760 * | −0.454 | −0.393 |
(0.402) | (0.392) | (0.336) | |
Lifetime Mean Autumn Temperature squared | 0.132 * | −0.0285 | |
(0.0753) | (0.0853) | ||
Lifetime Mean Autumn Temperature cubed | −0.0264 | ||
(0.0256) | |||
Lifetime Mean Winter Temperature (°C) | 0.422 | 0.347 | 0.247 |
(1.878) | (0.527) | (0.177) | |
Lifetime Mean Winter Temperature squared | 0.0563 | 0.0117 | |
(0.126) | (0.0183) | ||
Lifetime Mean Winter Temperature cubed | 0.00166 | ||
(0.00277) | |||
Lifetime Mean Spring Precipitation (mm) | −0.131 | −0.0146 | 0.0132 *** |
(0.152) | (0.0417) | (0.00488) | |
Lifetime Mean Spring Precipitation squared | 0.000908 | −0.0000687 | |
(0.00112) | (0.000145) | ||
Lifetime Mean Spring Precipitation cubed | −0.00000209 | ||
(0.00000252) | |||
Lifetime Mean Summer Precipitation (mm) | 0.265 | −0.0383 | 0.0119 |
(0.296) | (0.0457) | (0.0115) | |
Lifetime Mean Summer Precipitation squared | −0.0011 | 0.000107 | |
(0.00127) | (0.0000947) | ||
Lifetime Mean Summer Precipitation cubed | 0.00000157 | ||
(0.0000018) | |||
Lifetime Mean Autumn Precipitation (mm) | −0.342 | 0.0017 | −0.018 |
(0.356) | (0.06) | (0.016) | |
Lifetime Mean Autumn Precipitation squared | 0.00315 | 0.000055 | |
(0.00295) | (0.000244) | ||
Lifetime Mean Autumn Precipitation cubed | −0.00000883 | ||
(0.00000782) | |||
Lifetime Mean Winter Precipitation (mm) | −0.106 | 0.0107 | 0.0146 |
(0.0757) | (0.0244) | (0.0117) | |
Lifetime Mean Winter Precipitation squared | 0.000881 | 0.0000503 | |
(0.000695) | (0.0000952) | ||
Lifetime Mean Winter Precipitation cubed | −0.00000195 | ||
(0.00000189) | |||
Elevation | −0.00417 ** | −0.00215 | −0.00252 |
(0.00194) | (0.00216) | (0.00226) | |
Latitude | −0.678 *** | −0.498 *** | −0.363 ** |
(0.194) | (0.181) | (0.165) | |
Fire Events or Not in Lifetime | −0.335 * | −0.365 ** | −0.484 ** |
(0.188) | (0.181) | (0.23) | |
Constant | −1358.8 ** | 84.60 ** | −5.224 |
(583.6) | (40.3) | (17) | |
Adjusted R2 | 0.897 | 0.889 | 0.885 |
Decadal Fixed Effects | Yes | ||
Observations | 744 |
References
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Houghton, R.A.; Fang, J.; Kauppi, P.E.; Keith, H.; Kurz, W.A.; Ito, A.; Lewis, S.L.; et al. The enduring world forest carbon sink. Nature 2024, 631, 563–569. [Google Scholar] [CrossRef]
- Harris, N.L.; Gibbs, D.A.; Baccini, A.; Birdsey, R.A.; De Bruin, S.; Farina, M.; Fatoyinbo, L.; Hansen, M.C.; Herold, M.; Houghton, R.A. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 2021, 11, 234–240. [Google Scholar] [CrossRef]
- Schimel, D.; Stephens, B.B.; Fisher, J.B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. USA 2015, 112, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Kai, Z.; Zhang, J.; Niu, S.; Chu, C.; Luo, Y. Limits to growth of forest biomass carbon sink under climate change. Nat. Commun. 2018, 9, 2709. [Google Scholar] [CrossRef]
- Kurz, W.A.; Dymond, C.C.; Stinson, G.; Rampley, G.J.; Neilson, E.T.; Carroll, A.L.; Ebata, T.; Safranyik, L. Mountain pine beetle and forest carbon feedback to climate change. Nature 2008, 452, 987. [Google Scholar] [CrossRef]
- Wang, Y. The Effect of Climate Change on Forest Fire Danger and Severity in the Canadian Boreal Forests for the Period 1976–2100. J. Geophys. Res. Atmos. 2024, 129, e2023JD039118. [Google Scholar] [CrossRef]
- Stocks, B.J.; Fosberg, M.A.; Lynham, T.J.; Mearns, L.; Wotton, B.M.; Yang, Q.; Jin, J.-Z.; Lawrence, K.; Hartley, G.R.; Mason, J.A.; et al. Climate Change and Forest Fire Potential in Russian and Canadian Boreal Forests. Clim. Change 1998, 38, 1–13. [Google Scholar] [CrossRef]
- Allen, R.J.; Gomez, J.; Horowitz, L.W.; Shevliakova, E. Enhanced future vegetation growth with elevated carbon dioxide concentrations could increase fire activity. Commun. Earth Environ. 2024, 5, 54. [Google Scholar] [CrossRef]
- Marchand, W.; Girardin, M.P.; Hartmann, H.; Gauthier, S.; Bergeron, Y. Taxonomy, together with ontogeny and growing conditions, drives needleleaf species’ sensitivity to climate in boreal North America. Glob. Change Biol. 2019, 25, 2793–2809. [Google Scholar] [CrossRef]
- Jiang, M.; Crous, K.Y.; Carrillo, Y.; Macdonald, C.A.; Anderson, I.C.; Boer, M.M.; Farrell, M.; Gherlenda, A.N.; Castañeda-Gómez, L.; Hasegawa, S.; et al. Microbial competition for phosphorus limits the CO2 response of a mature forest. Nature 2024, 630, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Lenka, N.K.; Lal, R. Soil-related constraints to the carbon dioxide fertilization effect. Crit. Rev. Plant Sci. 2012, 31, 342–357. [Google Scholar] [CrossRef]
- Lamba, S.; Hall, M.; Räntfors, M.; Chaudhary, N.; Linder, S.; Way, D.; Uddling, J.; Wallin, G. Physiological acclimation dampens initial effects of elevated temperature and atmospheric CO2 concentration in mature boreal Norway spruce. Plant Cell Environ. 2018, 41, 300–313. [Google Scholar] [CrossRef]
- Dusenge, M.E.; Warren, J.M.; Reich, P.B.; Ward, E.J.; Murphy, B.K.; Stefanski, A.; Bermudez, R.; Cruz, M.; McLennan, D.A.; King, A.W.; et al. Photosynthetic capacity in middle-aged larch and spruce acclimates independently to experimental warming and elevated CO2. Plant Cell Environ. 2024, 47, 4886–4902. [Google Scholar] [CrossRef]
- Frank, D.C.; Poulter, B.; Saurer, M.; Esper, J.; Huntingford, C.; Helle, G.; Treydte, K.; Zimmermann, N.E.; Schleser, G.H.; Ahlström, A.; et al. Water-use efficiency and transpiration across European forests during the Anthropocene. Nat. Clim. Change 2015, 5, 579–583. [Google Scholar] [CrossRef]
- Giguère-Croteau, C.; Boucher, É.; Bergeron, Y.; Girardin, M.P.; Drobyshev, I.; Silva, L.C.; Hélie, J.-F.; Garneau, M. North America’s oldest boreal trees are more efficient water users due to increased [CO2], but do not grow faster. Proc. Natl. Acad. Sci. USA 2019, 116, 2749–2754. [Google Scholar] [CrossRef]
- Peñuelas, J.; Ciais, P.; Canadell, J.G.; Janssens, I.A.; Fernández-Martínez, M.; Carnicer, J.; Obersteiner, M.; Piao, S.; Vautard, R.; Sardans, J. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 2017, 1, 1438–1445. [Google Scholar] [CrossRef] [PubMed]
- Norby, R.J.; DeLucia, E.H.; Gielen, B.; Calfapietra, C.; Giardina, C.P.; King, J.S.; Ledford, J.; McCarthy, H.R.; Moore, D.J.; Ceulemans, R. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl. Acad. Sci. USA 2005, 102, 18052–18056. [Google Scholar] [CrossRef]
- Norby, R.J.; Loader, N.J.; Mayoral, C.; Ullah, S.; Curioni, G.; Smith, A.R.; Reay, M.K.; van Wijngaarden, K.; Amjad, M.S.; Brettle, D.; et al. Enhanced woody biomass production in a mature temperate forest under elevated CO2. Nat. Clim. Change 2024, 14, 983–988. [Google Scholar] [CrossRef]
- Norby, R.J.; Zak, D.R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 2011, 42, 181–203, Annual Reviews. [Google Scholar] [CrossRef]
- Girardin, M.P.; Bernier, P.Y.; Raulier, F.; Tardif, J.C.; Conciatori, F.; Guo, X.J. Testing for a CO2 fertilization effect on growth of Canadian boreal forests. J. Geophys. Res. Biogeosci. 2011, 116, G01012. [Google Scholar] [CrossRef]
- Dusenge, M.E.; Madhavji, S.; Way, D.A. Contrasting acclimation responses to elevated CO2 and warming between an evergreen and a deciduous boreal conifer. Glob. Change Biol. 2020, 26, 3639–3657. [Google Scholar] [CrossRef]
- Reich, P.B.; Bermudez, R.; Montgomery, R.A.; Rich, R.L.; Rice, K.E.; Hobbie, S.E.; Stefanski, A. Even modest climate change may lead to major transitions in boreal forests. Nature 2022, 608, 540–545. [Google Scholar] [CrossRef]
- Gedalof, Z.; Berg, A.A. Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century. Glob. Biogeochem. Cycles 2010, 24, GB3027. [Google Scholar] [CrossRef]
- Davis, E.C.; Sohngen, B.; Lewis, D.J. The effect of carbon fertilization on naturally regenerated and planted US forests. Nat. Commun. 2022, 13, 5490. [Google Scholar] [CrossRef]
- Butsic, V.; Lewis, D.J.; Radeloff, V.C.; Baumann, M.; Kuemmerle, T. Quasi-experimental methods enable stronger inferences from observational data in ecology. Basic Appl. Ecol. 2017, 19, 1–10. [Google Scholar] [CrossRef]
- Colson, K.E.; Rudolph, K.E.; Zimmerman, S.C.; Goin, D.E.; Stuart, E.A.; van der Laan, M.; Ahern, J. Optimizing matching and analysis combinations for estimating causal effects. Sci. Rep. 2016, 6, 23222. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.E.; Imai, K.; King, G.; Stuart, E.S. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Anal. 2007, 15, 199–236. [Google Scholar] [CrossRef]
- Imbens, G.W.; Wooldridge, J.M. Recent developments in the econometrics of program evaluation. J. Econ. Lit. 2009, 47, 5–86. [Google Scholar] [CrossRef]
- Stuart, E.S. Matching methods for causal inference: A review and a look forward. Stat. Sci. 2010, 25, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Etheridge, D.M.; Steele, L.P.; Langenfelds, R.L.; Francey, R.J.; Barnola, J.M.; Morgan, V.I. 26 June 1998 Historical CO2 Records from the Law Dome DE08, DE08-2, and DSS Ice Cores (1006 A.D.-1978 A.D). Carbon Dioxide Information Analysis Center (CDIAC); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States), ESS-DIVE Repository. Available online: https://data.ess-dive.lbl.gov/view/doi:10.3334/CDIAC/ATG.011 (accessed on 7 August 2023).
- Lan, X.; NOAA/GML; Keeling, R. Trends in CO2, CH4, N2O, SF6. Available online: http://gml.noaa.gov/ccgg/trends/ (accessed on 7 August 2023).
- Government of Alberta. Historical Wildfire Perimeter Data: 1931 to 2021. Available online: https://www.alberta.ca/wildfire-maps-and-data.aspx#jumplinks-2 (accessed on 16 December 2022).
- Wang, T.; Hamann, A.; Spittlehouse, D.; Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 2016, 11, e0156720. [Google Scholar] [CrossRef] [PubMed]
- Daly, C.; Halbleib, M.; Smith, J.I.; Gibson, W.P.; Doggett, M.K.; Taylor, G.H.; Curtis, J. Physiographically sensitive mapping of temperature and precipitation across the conterminous United States. Int. J. Climatol. 2008, 28, 2031–2064. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Deng, Z.; Ciais, P.; Tzompa-Sosa, Z.A.; Saunois, M.; Qiu, C.; Tan, C.; Sun, T.; Ke, P.; Cui, Y.; Tanaka, K. Comparing national greenhouse gas budgets reported in UNFCCC inventories against atmospheric inversions. Earth Syst. Sci. Data 2022, 14, 1639–1675. [Google Scholar] [CrossRef]
Unmatched | Mean | |||
---|---|---|---|---|
Variable | Matched | Treated | Control | %bias |
Age | U | 44.38 | 64.38 | −64.3 |
M | 57.29 | 62.43 | −16.5 | |
Lifetime Mean Winter Temperature | U | −9.61 | −10.77 | 40.4 |
M | −10.15 | −10.40 | 8.7 | |
Lifetime Mean Spring Temperature | U | 2.39 | 2.03 | 35.7 |
M | 2.21 | 2.13 | 8.2 | |
Lifetime Mean Summer Temperature | U | 13.03 | 12.95 | 9.8 |
M | 12.95 | 12.98 | −3.8 | |
Lifetime Mean Autumn Temperature | U | 2.30 | 2.34 | −4.4 |
M | 2.39 | 2.41 | −1.7 | |
Lifetime Mean Winter Precipitation | U | 79.56 | 81.40 | −6.1 |
M | 78.89 | 79.50 | −2.0 | |
Lifetime Mean Spring Precipitation | U | 121.84 | 117.02 | 16.3 |
M | 120.73 | 121.94 | −4.1 | |
Lifetime Mean Summer Precipitation | U | 265.62 | 257.83 | 22.2 |
M | 263.11 | 262.28 | 2.3 | |
Lifetime Mean Autumn Precipitation | U | 114.13 | 109.65 | 22.1 |
M | 111.30 | 110.91 | 2.0 | |
Foothills | U | 0.43 | 0.36 | 13.2 |
M | 0.40 | 0.37 | 6.2 | |
Rocky Mountains | U | 0.06 | 0.06 | 1.7 |
M | 0.05 | 0.07 | −8.9 | |
Elevation | U | 1149.70 | 1104.20 | 15.5 |
M | 1143.60 | 1145.50 | −0.7 | |
Latitude | U | 53.49 | 53.76 | −15.2 |
M | 53.47 | 53.40 | 3.5 | |
Fire Events or Not in Lifetime | U | 0.10 | 0.01 | 42.7 |
M | 0.01 | 0.02 | −4.0 |
Unmatched | Mean | |||
---|---|---|---|---|
Variable | Matched | Treated | Control | %bias |
Age | U | 136.21 | 136.46 | −0.9 |
M | 137.15 | 137.56 | −1.3 | |
Lifetime Mean Winter Temperature | U | −12.18 | −13.44 | 32.5 |
M | −12.49 | −12.74 | 6.3 | |
Lifetime Mean Spring Temperature | U | 1.54 | 1.10 | 33.2 |
M | 1.44 | 1.34 | 7.7 | |
Lifetime Mean Summer Temperature | U | 12.91 | 12.85 | 8.1 |
M | 12.87 | 12.85 | 2.6 | |
Lifetime Mean Autumn Temperature | U | 1.85 | 1.41 | 33.0 |
M | 1.73 | 1.64 | 7.0 | |
Lifetime Mean Winter Precipitation | U | 79.19 | 79.07 | 0.7 |
M | 79.18 | 79.23 | −0.3 | |
Lifetime Mean Spring Precipitation | U | 111.89 | 105.78 | 23.5 |
M | 108.92 | 108.68 | 0.4 | |
Lifetime Mean Summer Precipitation | U | 251.47 | 246.44 | 9.7 |
M | 250.08 | 249.01 | 2.1 | |
Lifetime Mean Autumn Precipitation | U | 105.37 | 101.86 | 19.3 |
M | 104.19 | 103.66 | 2.9 | |
Foothills | U | 0.28 | 0.26 | 4.7 |
M | 0.30 | 0.29 | 2.3 | |
Rocky Mountains | U | 0.07 | 0.06 | 7.3 |
M | 0.06 | 0.07 | −1.7 | |
Elevation | U | 1036.70 | 973.93 | 18.3 |
M | 1012.30 | 1003.90 | 2.5 | |
Latitude | U | 54.47 | 55.15 | −33.7 |
M | 54.73 | 54.81 | −3.8 | |
Fire Events or Not in Lifetime | U | 0.08 | 0.04 | 17.2 |
M | 0.06 | 0.05 | 4.7 |
Unmatched | Mean | |||
---|---|---|---|---|
Variable | Matched | Treated | Control | %bias |
Age | U | 34.17 | 55.05 | −67.3 |
M | 43.34 | 48.04 | −15.2 | |
Lifetime Mean Winter Temperature | U | −13.97 | −13.24 | −22.7 |
M | −13.14 | −13.31 | 5.4 | |
Lifetime Mean Spring Temperature | U | 2.34 | 2.19 | 14.4 |
M | 2.45 | 2.32 | 11.9 | |
Lifetime Mean Summer Temperature | U | 14.51 | 13.88 | 84.0 |
M | 14.14 | 14.07 | 9.9 | |
Lifetime Mean Autumn Temperature | U | 1.45 | 1.92 | −35.3 |
M | 1.83 | 1.80 | 2.1 | |
Lifetime Mean Winter Precipitation | U | 67.43 | 76.56 | −44.0 |
M | 71.44 | 71.67 | −1.1 | |
Lifetime Mean Spring Precipitation | U | 90.31 | 96.57 | −31.2 |
M | 94.28 | 94.01 | 1.3 | |
Lifetime Mean Summer Precipitation | U | 234.07 | 232.40 | 5.2 |
M | 239.36 | 238.39 | 3.0 | |
Lifetime Mean Autumn Precipitation | U | 96.12 | 98.38 | −17.4 |
M | 97.49 | 97.07 | 3.2 | |
Foothills | U | 0.00 | 0.00 | 5.3 |
M | 0.00 | 0.00 | 0.0 | |
Rocky Mountains | U | 0.00 | 0.01 | −15.2 |
M | 0.00 | 0.00 | 0.0 | |
Elevation | U | 683.33 | 773.32 | −40.8 |
M | 755.09 | 759.51 | −2.0 | |
Latitude | U | 55.79 | 55.22 | 33.5 |
M | 55.12 | 55.25 | −2.3 | |
Fire Events or Not in Lifetime | U | 0.18 | 0.01 | 62.6 |
M | 0.00 | 0.01 | −3.9 |
Natural Logarithm of Wood Volume | ||
---|---|---|
All Ages | Ages 1–100 Years | |
Natural log of lifetime CO2 | 1.122 *** | 1.723 *** |
99% Confidence Interval | (0.812, 1.431) | (1.261, 2.185) |
Adjusted R2 | 0.877 | 0.883 |
Observations | 4870 | 2532 |
Natural Logarithm of Wood Volume | |||
---|---|---|---|
All Ages | Ages 1–100 Years | Ages >100 Years | |
| |||
Natural log of lifetime CO2 | 0.432 ** | 1.113 *** | 0.722 * |
Confidence Intervals 1 | (0.048, 0.816) | (0.421, 1.845) | (0.016, 1.428) |
Adjusted R2 | 0.891 | 0.902 | 0.224 |
Observations | 4126 | 1788 | 2338 |
| |||
Natural log of lifetime CO2 | 2.191 *** | 2.191 *** | |
99% Confidence Interval | (1.505, 2.877) | (1.505, 2.877) | |
Adjusted R2 | 0.897 | 0.897 | |
Observations | 744 | 744 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, N.; Davis, E.C.; Sohngen, B. Sustainability in Boreal Forests: Does Elevated CO2 Increase Wood Volume? Sustainability 2025, 17, 7017. https://doi.org/10.3390/su17157017
Oh N, Davis EC, Sohngen B. Sustainability in Boreal Forests: Does Elevated CO2 Increase Wood Volume? Sustainability. 2025; 17(15):7017. https://doi.org/10.3390/su17157017
Chicago/Turabian StyleOh, Nyonho, Eric C. Davis, and Brent Sohngen. 2025. "Sustainability in Boreal Forests: Does Elevated CO2 Increase Wood Volume?" Sustainability 17, no. 15: 7017. https://doi.org/10.3390/su17157017
APA StyleOh, N., Davis, E. C., & Sohngen, B. (2025). Sustainability in Boreal Forests: Does Elevated CO2 Increase Wood Volume? Sustainability, 17(15), 7017. https://doi.org/10.3390/su17157017