Hybrid Metaheuristic Optimized Extreme Learning Machine for Sustainability Focused CO2 Emission Prediction Using Globalization-Driven Indicators
Abstract
1. Introduction
2. Methodology
2.1. The Red-Billed Blue Magpie Optimizer (RBMO)
2.2. Extreme Learning Machine (ELM)
2.3. Proposed Prediction Model
3. Experiment and Discussion
3.1. Evaluation of the Proposed RBMO on CEC2015 Functions
3.2. Evaluation of RBMO-ELM Model
3.2.1. Data
3.2.2. Evaluation Metrics
3.2.3. Evaluation of Models and Discussion
3.2.4. Preservation of System Properties and Model Contributions
- Optimized Parameter Tuning: The RBMO enhances ELM training by fine-tuning weights and biases, thereby improving model stability and convergence.
- Flexible Model Architecture: The inherent simplicity and modularity of ELM allow rapid training and adaptation, enabling the model to approximate complex mappings.
- Interpretability: Feature importance analysis, especially highlighting social globalization, provides valuable insights for policy framing.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, W.; Huang, C. Predictions of carbon emission intensity based on factor analysis and an improved extreme learning machine from the perspective of carbon emission efficiency. J. Clean. Prod. 2022, 338, 130414. [Google Scholar] [CrossRef]
- Khaliq, M.A.; Alsudays, I.M.; Alhaithloul, H.A.S.; Rizwan, M.; Yong, J.W.H.; Ur Rahman, S.; Sagir, M.; Bashir, S.; Ali, H.; Hongchao, Z. Biochar impacts on carbon dioxide, methane emission, and cadmium accumulation in rice from Cd-contaminated soils; A meta-analysis. Ecotoxicol. Environ. Saf. 2024, 274, 116204. [Google Scholar] [CrossRef]
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Saleh, C.; Dzakiyullah, N.R.; Nugroho, J.B. Carbon dioxide emission prediction using support vector machine. IOP Conf. Ser. Mater. Sci. Eng. 2016, 114, 012148. [Google Scholar] [CrossRef]
- Jha, M.K.; Dev, M. Impacts of Climate Change. In Smart Internet of Things for Environment and Healthcare; Azrour, M., Mabrouki, J., Alabdulatif, A., Guezzaz, A., Amounas, F., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 139–159. [Google Scholar] [CrossRef]
- Thomas, C. The United Nations Conference on Environment and Development (UNCED) of 1992 in Context. Available online: https://www.tandfonline.com/doi/abs/10.1080/09644019208414053 (accessed on 9 June 2025).
- Mor, S.; Aneja, R.; Madan, S.; Ghimire, M. Kyoto Protocol and Paris Agreement: Transition from Bindings to Pledges—A Review. Millenn. Asia 2024, 15, 690–711. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Kar, A.K.; Baabdullah, A.M.; Grover, P.; Abbas, R.; Andreini, D.; Abumoghli, I.; Barlette, Y.; Bunker, D.; et al. Climate change and COP26: Are digital technologies and information management part of the problem or the solution? An editorial reflection and call to action. Int. J. Inf. Manag. 2022, 63, 102456. [Google Scholar] [CrossRef]
- Emami Javanmard, M.; Ghaderi, S.F. A Hybrid Model with Applying Machine Learning Algorithms and Optimization Model to Forecast Greenhouse Gas Emissions with Energy Market Data. Sustain. Cities Soc. 2022, 82, 103886. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Chen, S.Q.; Zhang, L.X. System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China. Ecol. Model. 2013, 252, 44–52. [Google Scholar] [CrossRef]
- Bao, X.; Xie, T.; Huang, H. Prediction and Control Model of Carbon Emissions from Thermal Power Based on System Dynamics. Pol. J. Environ. Stud. 2021, 30, 5465–5477. [Google Scholar] [CrossRef]
- Hernandez, R.M.; Castillo, J.J.; Ragasa, A.A.; Mendez, C.; Agdon, F. Energy Consumption Forecasting for Smart Industry Using Auto-Regressive Integrated Moving Average (ARIMA) and Vector Auto-Regression (VAR) Model. In SIET ’23, Proceedings of the 8th International Conference on Sustainable Information Engineering and Technology, Bali, Indonesia, 24–25 October 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 129–136. [Google Scholar] [CrossRef]
- Hamzacebi, C.; Karakurt, I. Forecasting the Energy-related CO2 Emissions of Turkey Using a Grey Prediction Model. Energy Sources Part Recovery Util. Environ. Eff. 2015, 37, 1023–1031. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, B.; Yang, Y.; Yang, L. An Enhanced Particle Swarm Optimization Long Short-Term Memory Network Hybrid Model for Predicting Residential Daily CO2 Emissions. Sustainability 2024, 16, 8790. [Google Scholar] [CrossRef]
- Altikat, S. Prediction of CO2 emission from greenhouse to atmosphere with artificial neural networks and deep learning neural networks. Int. J. Environ. Sci. Technol. 2021, 18, 3169–3178. [Google Scholar] [CrossRef]
- Wen, L.; Cao, Y. Influencing factors analysis and forecasting of residential energy-related CO2 emissions utilizing optimized support vector machine. J. Clean. Prod. 2020, 250, 119492. [Google Scholar] [CrossRef]
- Moon, T.; Choi, H.Y.; Jung, D.H.; Chang, S.H.; Son, J.E. Prediction of CO2 Concentration via Long Short-Term Memory Using Environmental Factors in Greenhouses. Hortic. Sci. Technol. 2020, 38, 201–209. [Google Scholar] [CrossRef]
- Singh, P.K.; Pandey, A.K.; Ahuja, S.; Kiran, R. Multiple forecasting approach: A prediction of CO2 emission from the paddy crop in India. Environ. Sci. Pollut. Res. 2022, 29, 25461–25472. [Google Scholar] [CrossRef]
- Saqr, A.E.-S.; Saraya, M.S.; El-Kenawy, E.-S.M. Enhancing CO2 emissions prediction for electric vehicles using Greylag Goose Optimization and machine learning. Sci. Rep. 2025, 15, 16612. [Google Scholar] [CrossRef]
- Khajavi, H.; Rastgoo, A. Predicting the carbon dioxide emission caused by road transport using a Random Forest (RF) model combined by Meta-Heuristic Algorithms. Sustain. Cities Soc. 2023, 93, 104503. [Google Scholar] [CrossRef]
- Alhussan, A.A.; Metwally, M.; Towfek, S.K. Predicting CO2 Emissions with Advanced Deep Learning Models and a Hybrid Greylag Goose Optimization Algorithm. Mathematics 2025, 13, 1481. [Google Scholar] [CrossRef]
- Phatai, G.; Luangrungruang, T. Modeling Energy-Related CO2 Emissions with Backpropagation and Metaheuristics. In Proceedings of the 2024 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Osaka, Japan, 19–22 February 2024; pp. 429–433. [Google Scholar] [CrossRef]
- Cambria, E.; Huang, G.-B.; Kasun, L.L.C.; Zhou, H.; Vong, C.M.; Lin, J.; Yin, J.; Cai, Z.; Liu, Q.; Li, K.; et al. Extreme Learning Machines [Trends & Controversies]. IEEE Intell. Syst. 2013, 28, 30–59. [Google Scholar] [CrossRef]
- Algwil, A.R.A.; Khalifa, W.M.S. An enhanced moth flame optimization extreme learning machines hybrid model for predicting CO2 emissions. Sci. Rep. 2025, 15, 11948. [Google Scholar] [CrossRef]
- Van Thieu, N.; Houssein, E.H.; Oliva, D.; Hung, N.D. IntelELM: A python framework for intelligent metaheuristic-based extreme learning machine. Neurocomputing 2025, 618, 129062. [Google Scholar] [CrossRef]
- Pradhan, D.; Muduli, D.; Zamani, A.T.; Yaqoob, S.I.; Alanazi, S.M.; Kumar, R.R.; Parveen, N.; Shameem, M. Refined Software Defect Prediction Using Enhanced JAYA Optimization and Extreme Learning Machine. IEEE Access 2024, 12, 141559–141579. [Google Scholar] [CrossRef]
- Van Thieu, N.; Nguyen, N.H.; Sherif, M.; El-Shafie, A.; Ahmed, A.N. Integrated metaheuristic algorithms with extreme learning machine models for river streamflow prediction. Sci. Rep. 2024, 14, 13597. [Google Scholar] [CrossRef] [PubMed]
- Abba, S.I.; Pham, Q.B.; Malik, A.; Costache, R.; Gaya, M.S.; Abdullahi, J.; Mati, S.; Usman, A.G.; Saini, G. Optimization of Extreme Learning Machine with Metaheuristic Algorithms for Modelling Water Quality Parameters of Tamburawa Water Treatment Plant in Nigeria. Water Resour. Manag. 2025, 39, 1377–1401. [Google Scholar] [CrossRef]
- Saleh, A.; Zulkifley, M.A. Prediction of suspended sediment load in Sungai Semenyih using extreme learning machines and metaheuristic optimization approach. J. Environ. Manag. 2025, 380, 124987. [Google Scholar] [CrossRef]
- Sun, W.; Wang, C.; Zhang, C. Factor analysis and forecasting of CO2 emissions in Hebei, using extreme learning machine based on particle swarm optimization. J. Clean. Prod. 2017, 162, 1095–1101. [Google Scholar] [CrossRef]
- Wei, S.; Yuwei, W.; Chongchong, Z. Forecasting CO2 emissions in Hebei, China, through moth-flame optimization based on the random forest and extreme learning machine. Environ. Sci. Pollut. Res. 2018, 25, 28985–28997. [Google Scholar] [CrossRef]
- Wang, J.; Tan, Y.; Yu, J.; Yu, H.; Wang, M.; Zhou, M. A deep hybrid prediction framework for building operational carbon emissions: Integrating enhanced extreme learning machines. Energy Rep. 2025, 13, 4126–4140. [Google Scholar] [CrossRef]
- Fu, S.; Li, K.; Huang, H.; Ma, C.; Fan, Q.; Zhu, Y. Red-billed blue magpie optimizer: A novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems. Artif. Intell. Rev. 2024, 57, 134. [Google Scholar] [CrossRef]
- Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Chai, S.; Zhang, Z.; Zhang, Z. Carbon price prediction for China’s ETS pilots using variational mode decomposition and optimized extreme learning machine. Ann. Oper. Res. 2025, 345, 809–830. [Google Scholar] [CrossRef]
- Liang, J.J.; Qu, B.Y.; Suganthan, P.N.; Chen, Q. Problem Definitions and Evaluation Criteria for the CEC 2015 Competition on Learning-Based Real-Parameter Single Objective Optimization; Technical Report 201411A; Computational Intelligence Laboratory, Zhengzhou University: Zhengzhou, China; Nanyang Technological University: Singapore, 2014; Volume 29. [Google Scholar]
- Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-qaness, M.A.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; El-Shahat, D.; Jameel, M.; Abouhawwash, M. Exponential distribution optimizer (EDO): A novel math-inspired algorithm for global optimization and engineering problems. Artif. Intell. Rev. 2023, 56, 9329–9400. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Venkata Rao, R. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 2016, 7, 19–34. [Google Scholar] [CrossRef]
- Yuan, C.; Zhao, D.; Heidari, A.A.; Liu, L.; Chen, Y.; Chen, H. Polar lights optimizer: Algorithm and applications in image segmentation and feature selection. Neurocomputing 2024, 607, 128427. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Khajavi, H.; Rastgoo, A.; Masoumi, F. Enhanced Streamflow Forecasting for Crisis Management Based on Hybrid Extreme Gradient Boosting Model. Iran. J. Sci. Technol. Trans. Civ. Eng. 2025, 1–22. [Google Scholar] [CrossRef]
- 23 Permutation Feature Importance—Interpretable Machine Learning. Available online: https://christophm.github.io/interpretable-ml-book/feature-importance.html (accessed on 2 July 2025).
- Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation importance: A corrected feature importance measure. Bioinformatics 2010, 26, 1340–1347. [Google Scholar] [CrossRef]
- Dreher, A.; Gaston, N.; Martens, P. Measuring Globalisation; Springer: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Gygli, S.; Haelg, F.; Potrafke, N.; Sturm, J.-E. The KOF Globalisation Index—Revisited. Rev. Int. Organ. 2019, 14, 543–574. [Google Scholar] [CrossRef]
- Rasool, Y.; Jianguo, D.; Ali, K. Exploring the linkage between globalization and environmental degradation: A disaggregate analysis of Indonesia. Environ. Dev. Sustain. 2024, 26, 16887–16915. [Google Scholar] [CrossRef]
- Abbas, M.; Yang, L.; Lahr, M.L. Globalization’s effects on South Asia’s carbon emissions, 1996–2019: A multidimensional panel data perspective via FGLS. Humanit. Soc. Sci. Commun. 2024, 11, 1171. [Google Scholar] [CrossRef]
- Hernández, Q.; Badías, A.; González, D.; Chinesta, F.; Cueto, E. Structure-preserving neural networks. J. Comput. Phys. 2021, 426, 109950. [Google Scholar] [CrossRef]
- Xiao, S.; Chen, M.; Zhang, R.; Tang, Y. Structure-Preserving Recurrent Neural Networks for a Class of Birkhoffian Systems. J. Syst. Sci. Complex. 2024, 37, 441–462. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
Optimizer | Hyperparameter |
---|---|
AO | µ = 0.00565, |
EDO | Switch Parameter = 0.5 |
HHO | |
JAYA | - |
PLO | |
SCA | |
RBMO |
Function | Metric | AO | EDO | HHO | JAYA | PLO | SCA | RBMO |
---|---|---|---|---|---|---|---|---|
F1 | AVG | 4.673 × 107 | 7.707 × 109 | 1.888 × 1010 | 6.290 × 109 | 6.754 × 105 | 1.290 × 1010 | 2.703 × 103 |
STD | 3.619 × 107 | 3.837 × 109 | 6.666 × 109 | 2.385 × 109 | 2.090 × 105 | 2.860 × 109 | 3.242 × 103 | |
F2 | AVG | 4.132 × 104 | 3.376 × 104 | 5.874 × 104 | 6.673 × 104 | 6.358 × 104 | 3.846 × 104 | 2.000 × 102 |
STD | 5.106 × 103 | 7.202 × 103 | 2.567 × 103 | 1.796 × 104 | 9.265 × 103 | 5.769 × 103 | 1.039 × 10−3 | |
F3 | AVG | 3.273 × 102 | 3.293 × 102 | 3.398 × 102 | 3.343 × 102 | 3.188 × 102 | 3.361 × 102 | 3.128 × 102 |
STD | 3.393 | 2.965 | 2.429 | 2.995 | 1.327 | 2.560 | 3.949 | |
F4 | AVG | 4.614 × 103 | 7.153 × 103 | 5.344 × 103 | 7.748 × 103 | 3.581 × 103 | 7.542 × 103 | 3.662 × 103 |
STD | 5.767 × 102 | 4.755 × 102 | 8.097 × 102 | 3.870 × 102 | 3.877 × 102 | 3.338 × 102 | 4.489 × 102 | |
F5 | AVG | 5.013 × 102 | 5.030 × 102 | 5.017 × 102 | 5.026 × 102 | 5.007 × 102 | 5.027 × 102 | 5.007 × 102 |
STD | 5.375 × 10−1 | 4.409 × 10−1 | 5.724 × 10−1 | 3.321 × 10−1 | 1.176 × 10−1 | 3.054 × 10−1 | 2.438 × 10−1 | |
F6 | AVG | 6.007× 102 | 6.023 × 102 | 6.033 × 102 | 6.011 × 102 | 6.005 × 102 | 6.021 × 102 | 6.003 × 102 |
STD | 1.327× 10−1 | 1.043 | 3.465 × 10−1 | 3.059 × 10−1 | 5.882 × 10−2 | 4.445 × 10−1 | 5.300 × 10−2 | |
F7 | AVG | 7.006× 102 | 7.300 × 102 | 7.437 × 102 | 7.181 × 102 | 7.002 × 102 | 7.248 × 102 | 7.004 × 102 |
STD | 2.365 × 10−1 | 1.154 × 101 | 6.052 | 4.267 | 2.913 × 10−2 | 5.141 | 1.948 × 10−1 | |
F8 | AVG | 8.408 × 102 | 7.927 × 104 | 4.176 × 105 | 1.491 × 104 | 8.146 × 102 | 4.513 × 104 | 8.050 × 102 |
STD | 9.933 | 1.298 × 105 | 5.129 × 105 | 9.928 × 103 | 1.454 | 5.614 × 104 | 1.152 | |
F9 | AVG | 9.124 × 102 | 9.134 × 102 | 9.131 × 102 | 9.133 × 102 | 9.121 × 102 | 9.133 × 102 | 9.112 × 102 |
STD | 4.319 × 10−1 | 2.337 × 10−1 | 3.916 × 10−1 | 2.533 × 10−1 | 3.793 × 10−1 | 2.187 × 10−1 | 4.550 × 10−1 | |
F10 | AVG | 1.852 × 106 | 1.153 × 106 | 2.519 × 107 | 5.757 × 106 | 4.941 × 105 | 9.643 × 106 | 2.243 × 104 |
STD | 1.224 × 106 | 1.473 × 106 | 1.428 × 107 | 2.203 × 106 | 1.927 × 105 | 4.361 × 106 | 1.194 × 103 | |
F11 | AVG | 4.527 × 103 | 1.434 × 104 | 9.176 × 105 | 5.276 × 105 | 1.137 × 103 | 8.158 × 106 | 1.142 × 103 |
STD | 4.695 × 103 | 1.026 × 104 | 2.497 × 106 | 4.552 × 105 | 2.408 × 101 | 7.609 × 106 | 6.184 × 101 | |
F12 | AVG | 4.813 × 103 | 6.926 × 104 | 3.498 × 109 | 5.145 × 105 | 3.002 × 103 | 8.429 × 108 | 1.383 × 103 |
STD | 1.326 × 103 | 3.320 × 105 | 1.516 × 1010 | 8.770 × 105 | 4.957 × 102 | 1.299 × 109 | 4.260 × 102 | |
F13 | AVG | 1.562 × 103 | 1.656 × 103 | 1.848 × 103 | 1.570 × 103 | 1.559 × 103 | 1.585 × 103 | 1.558 × 103 |
STD | 1.540 | 2.948 × 101 | 1.417 × 102 | 9.009 | 9.386 × 10−1 | 8.156 | 6.216 | |
F14 | AVG | 2.074 × 103 | 4.818 × 103 | 4.444 × 103 | 2.367 × 103 | 2.115 × 103 | 2.853 × 103 | 1.973 × 103 |
STD | 8.698 × 101 | 5.004 × 102 | 1.480 × 103 | 1.911 × 102 | 1.353 × 102 | 2.297 × 102 | 3.022 × 10−1 | |
F15 | AVG | 2.843 × 103 | 2.378 × 103 | 2.753 × 103 | 2.786 × 103 | 2.572 × 103 | 2.910 × 103 | 2.365 × 103 |
STD | 4.992 × 101 | 3.537 × 102 | 8.056 × 101 | 1.431 × 102 | 8.141 × 101 | 3.159 × 101 | 2.663 × 102 | |
p-value | 6.550 × 10−4 | 6.550 × 10−4 | 6.550 × 10−4 | 6.550 × 10−4 | 1.703 × 10−2 | 6.550 × 10−4 | 6.550 × 10−4 | |
Friedman Mean | 3.27 | 4.93 | 5.93 | 4.90 | 2.17 | 5.57 | 1.23 | |
Friedman Rank | 3 | 5 | 7 | 4 | 2 | 6 | 1 |
Cross Validation | Model | R2 | RMSE | MSE | ME | RAE |
---|---|---|---|---|---|---|
Fold 1 | AO-ELM | 0.890731 | 4.0066 × 10−2 | 1.6050 × 10−3 | 1.1848 × 10−1 | 1.8758 × 10−1 |
EDO-ELM | 0.975701 | 1.8427 × 10−2 | 3.4000 × 10−4 | 4.3473 × 10−2 | 8.6112 × 10−2 | |
HHO-ELM | 0.931951 | 3.1619 × 10−2 | 1.0000 × 10−3 | 7.2702 × 10−2 | 1.4803 × 10−1 | |
JAYA-ELM | 0.949819 | 2.8074 × 10−2 | 7.8800 × 10−4 | 6.1632 × 10−2 | 1.3229 × 10−1 | |
PLO-ELM | 0.983397 | 1.5618 × 10−2 | 2.4400 × 10−4 | 3.4396 × 10−2 | 7.3118 × 10−2 | |
SCA-ELM | 0.984547 | 1.5068 × 10−2 | 2.2700 × 10−4 | 3.7415 × 10−2 | 7.0541 × 10−2 | |
RBMO-ELM | 0.997927 | 5.7070 × 10−3 | 3.3000 × 10−5 | 2.3126 × 10−2 | 2.6891 × 10−2 | |
ELM | 0.939773 | 2.9746 × 10−2 | 8.8500 × 10−4 | 9.8621 × 10−2 | 1.3926 × 10−1 | |
Fold 2 | AO-ELM | 0.91195 | 3.6210 × 10−2 | 1.3110 × 10−3 | 9.3294 × 10−2 | 1.7603 × 10−1 |
EDO-ELM | 0.898329 | 3.7361 × 10−2 | 1.3960 × 10−3 | 9.0330 × 10−2 | 1.7812 × 10−1 | |
HHO-ELM | 0.949311 | 2.7474 × 10−2 | 7.5500 × 10−4 | 6.9879 × 10−2 | 1.3356 × 10−1 | |
JAYA-ELM | 0.938262 | 2.9150 × 10−2 | 8.5000 × 10−4 | 9.2647 × 10−2 | 1.3255 × 10−1 | |
PLO-ELM | 0.983997 | 1.5437 × 10−2 | 2.3800× 10−4 | 3.5256 × 10−2 | 7.5046 × 10−2 | |
SCA-ELM | 0.986408 | 1.4227 × 10−2 | 2.0200 × 10−4 | 2.9028 × 10−2 | 6.9161 × 10−2 | |
RBMO-ELM | 0.99652 | 6.9200 × 10−3 | 4.8000 × 10−5 | 1.8310 × 10−2 | 3.1468 × 10−2 | |
ELM | 0.936239 | 3.0814 × 10−2 | 9.4900 × 10−4 | 9.3922 × 10−2 | 1.4980 × 10−1 | |
Fold 3 | AO-ELM | 0.930005 | 3.3130 × 10−2 | 1.0980 × 10−3 | 7.6624 × 10−2 | 1.5226 × 10−1 |
EDO-ELM | 0.966657 | 2.2814 × 10−2 | 5.2000 × 10−4 | 4.3149 × 10−2 | 1.0841 × 10−1 | |
HHO-ELM | 0.976324 | 1.9268 × 10−2 | 3.7100 × 10−4 | 5.4520 × 10−2 | 8.8552 × 10−2 | |
JAYA-ELM | 0.94844 | 2.7950 × 10−2 | 7.8100 × 10−4 | 6.8194 × 10−2 | 1.3523 × 10−1 | |
PLO-ELM | 0.987548 | 1.3974 × 10−2 | 1.9500 × 10−4 | 3.4310 × 10−2 | 6.4219 × 10−2 | |
SCA-ELM | 0.986808 | 1.4383 × 10−2 | 2.0700 × 10−4 | 3.2648 × 10−2 | 6.6101 × 10−2 | |
RBMO-ELM | 0.995707 | 8.0650 × 10−3 | 6.5000 × 10−5 | 1.8547 × 10−2 | 3.9022 × 10−2 | |
ELM | 0.948733 | 2.8354 × 10−2 | 8.0400 × 10−4 | 7.2765 × 10−2 | 1.3031 × 10−1 | |
Fold 4 | AO-ELM | 0.885407 | 3.7812 × 10−2 | 1.4300 × 10−3 | 1.0660 × 10−1 | 1.7353 × 10−1 |
EDO-ELM | 0.932378 | 3.2731 × 10−2 | 1.0710 × 10−3 | 8.6088 × 10−2 | 1.5206 × 10−1 | |
HHO-ELM | 0.902305 | 3.4913 × 10−2 | 1.2190 × 10−3 | 7.7119 × 10−2 | 1.6022 × 10−1 | |
JAYA-ELM | 0.942135 | 2.8082 × 10−2 | 7.8900 × 10−4 | 7.8125 × 10−2 | 1.3091 × 10−1 | |
PLO-ELM | 0.980638 | 1.5543 × 10−2 | 2.4200 × 10−4 | 3.3148 × 10−2 | 7.1330 × 10−2 | |
SCA-ELM | 0.98093 | 1.5425 × 10−2 | 2.3800 × 10−4 | 3.4529 × 10−2 | 7.0788 × 10−2 | |
RBMO-ELM | 0.996448 | 6.9570 × 10−3 | 4.8000 × 10−5 | 1.6825 × 10−2 | 3.2432 × 10−2 | |
ELM | 0.938749 | 2.7644 × 10−2 | 7.6400 × 10−4 | 1.0055 × 10−1 | 1.2687 × 10-−1 | |
Fold 5 | AO-ELM | 0.918109 | 3.4764 × 10−2 | 1.2090 × 10−3 | 7.3694 × 10−2 | 1.6327 × 10−1 |
EDO-ELM | 0.880042 | 4.0124 × 10−2 | 1.6100 × 10−3 | 9.7470 × 10−2 | 1.8370 × 10−1 | |
HHO-ELM | 0.873904 | 4.3138 × 10−2 | 1.8610 × 10−3 | 1.1263 × 10−2 | 2.0260 × 10−1 | |
JAYA-ELM | 0.974952 | 1.8887 × 10−2 | 3.5700 × 10−3 | 4.7962 × 10−2 | 8.8049 × 10−2 | |
PLO-ELM | 0.986998 | 1.3852 × 10−2 | 1.9200 × 10−4 | 3.2134 × 10−2 | 6.5057 × 10−2 | |
SCA-ELM | 0.984467 | 1.5141 × 10−2 | 2.2900 × 10−4 | 3.6857 × 10−2 | 7.1108 × 10−2 | |
RBMO-ELM | 0.997483 | 5.9870 × 10−3 | 3.6000 × 10−5 | 1.9211 × 10−2 | 2.7911 × 10−2 | |
ELM | 0.94044 | 2.9648 × 10−2 | 8.7900 × 10−4 | 9.0713 × 10−2 | 1.3924 × 10−1 |
Cross Validation | Model | R2 | RMSE | MSE | ME | RAE |
---|---|---|---|---|---|---|
Fold 1 | AO-ELM | 0.900711 | 3.7251 × 10−2 | 1.3880 × 10−3 | 8.1431 × 10−2 | 1.7438 × 10−1 |
EDO-ELM | 0.976232 | 1.9915 × 10−2 | 3.9700 × 10−4 | 4.0401 × 10−2 | 9.3899 × 10−2 | |
HHO-ELM | 0.878359 | 4.1231 × 10−2 | 1.7000 × 10−3 | 6.8421 × 10−2 | 1.9301 × 10−1 | |
JAYA-ELM | 0.912735 | 2.8869 × 10−2 | 8.3300 × 10−4 | 5.8517 × 10−2 | 1.3188 × 10−1 | |
PLO-ELM | 0.981300 | 1.6166 × 10−2 | 2.6100 × 10−4 | 3.7234 × 10−2 | 7.5677 × 10−2 | |
SCA-ELM | 0.981557 | 1.6055 × 10−2 | 2.5800 × 10−4 | 3.7685 × 10−2 | 7.5155 × 10−2 | |
RBMO-ELM | 0.991548 | 8.9840 × 10−3 | 8.1000 × 10−5 | 2.4345 × 10−2 | 4.1042 × 10−2 | |
ELM | 0.943023 | 2.8219 × 10−2 | 7.9600 × 10−4 | 6.7522 × 10−2 | 1.3210 × 10−1 | |
Fold 2 | AO-ELM | 0.887378 | 3.5240 × 10−2 | 1.2420 × 10−3 | 7.2771 × 10−2 | 1.4569 × 10−1 |
EDO-ELM | 0.915493 | 3.8588 × 10−2 | 1.4890 × 10−3 | 8.2820 × 10−2 | 1.6928 × 10−1 | |
HHO-ELM | 0.927116 | 2.8349 × 10−2 | 8.0400 × 10−4 | 5.9033 × 10−2 | 1.1720 × 10−1 | |
JAYA-ELM | 0.884011 | 4.2803 × 10−2 | 1.8320 × 10−3 | 9.9881 × 10−2 | 2.2885 × 10−1 | |
PLO-ELM | 0.979390 | 1.5075 × 10−2 | 2.2700 × 10−4 | 3.1758 × 10−2 | 6.2323 × 10−2 | |
SCA-ELM | 0.979963 | 1.4864 × 10−2 | 2.2100 × 10−4 | 2.6537 × 10−2 | 6.1450 × 10−2 | |
RBMO-ELM | 0.993066 | 1.0465 × 10−2 | 1.1000 × 10−4 | 3.1616 × 10−2 | 5.5953 × 10−2 | |
ELM | 0.951569 | 2.3109 × 10−2 | 5.3400 × 10−4 | 5.8281 × 10−2 | 9.5537 × 10−2 | |
Fold 3 | AO-ELM | 0.840602 | 3.9643 × 10−2 | 1.5720 × 10−3 | 7.4635 × 10−2 | 2.0174 × 10−1 |
EDO-ELM | 0.935282 | 2.4409 × 10−2 | 5.9600 × 10−4 | 4.1236 × 10−2 | 1.0799× 10−1 | |
HHO-ELM | 0.945644 | 2.3150 × 10−2 | 5.3600 × 10−4 | 4.8822 × 10−2 | 1.1781 × 10−1 | |
JAYA-ELM | 0.908178 | 3.0144 × 10−2 | 9.0900 × 10−4 | 5.2873 × 10−2 | 1.2573 × 10−1 | |
PLO-ELM | 0.968510 | 1.7620 × 10−2 | 3.1000 × 10−4 | 4.0261 × 10−2 | 8.9669 × 10−2 | |
SCA-ELM | 0.968746 | 1.7554 × 10−2 | 3.0800 × 10−4 | 3.0425 × 10−2 | 8.9332 × 10−2 | |
RBMO-ELM | 0.991675 | 9.0760 × 10−3 | 8.2000 × 10−5 | 1.6118 × 10−2 | 3.7857 × 10−2 | |
ELM | 0.884659 | 3.3723 × 10−2 | 1.1370 × 10−3 | 9.8628 × 10−2 | 1.7161 × 10−1 | |
Fold 4 | AO-ELM | 0.848498 | 5.5825 × 10−2 | 3.1160 × 10−3 | 1.2691 × 10−1 | 2.8611 × 10−1 |
EDO-ELM | 0.857874 | 3.6160 × 10−2 | 1.3080 × 10−3 | 9.1723 × 10−2 | 1.7492 × 10−1 | |
HHO-ELM | 0.918573 | 4.0926 × 10−2 | 1.6750 × 10−3 | 9.7528 × 10−2 | 2.0975 × 10−1 | |
JAYA-ELM | 0.944426 | 3.1634 × 10−2 | 1.0010 × 10−3 | 6.7481 × 10−2 | 1.5076 × 10−1 | |
PLO-ELM | 0.989706 | 1.4552 × 10−2 | 2.1200 × 10−4 | 3.1934 × 10−2 | 7.4579 × 10−2 | |
SCA-ELM | 0.989921 | 1.4399 × 10−2 | 2.0700 × 10−4 | 3.3970 × 10−2 | 7.3795 × 10−2 | |
RBMO-ELM | 0.998143 | 5.7830 × 10−3 | 3.3000 × 10−5 | 1.2794 × 10−2 | 2.7561 × 10−2 | |
ELM | 0.940644 | 3.4942 × 10−2 | 1.2210 × 10−3 | 7.4547 × 10−2 | 1.7908 × 10−1 | |
Fold 5 | AO-ELM | 0.951941 | 2.5601 × 10−2 | 6.5500 × 10−4 | 5.1078 × 10−2 | 1.1833 × 10−1 |
EDO-ELM | 0.833062 | 5.4056 × 10−2 | 2.9220 × 10−3 | 1.2144 × 10−2 | 2.8049 × 10−1 | |
HHO-ELM | 0.890743 | 3.8601 × 10−2 | 1.4900 × 10−3 | 9.5016 × 10−2 | 1.7842 × 10−1 | |
JAYA-ELM | 0.966422 | 2.2964 × 10−2 | 5.2700× 10−4 | 5.1359 × 10−2 | 1.0942 × 10−1 | |
PLO-ELM | 0.975741 | 1.8189 × 10−2 | 3.3100 × 10−4 | 3.1967 × 10−2 | 8.4070 × 10−2 | |
SCA-ELM | 0.977301 | 1.7595 × 10−2 | 3.1000 × 10−4 | 3.3996 × 10−2 | 8.1323 × 10−2 | |
RBMO-ELM | 0.987822 | 1.3829 × 10−2 | 1.9100 × 10−4 | 4.3513 × 10−2 | 6.5896 × 10−2 | |
ELM | 0.939254 | 2.8783 × 10−2 | 8.2800 × 10−4 | 5.7253 × 10−2 | 1.3304 × 10−1 |
AO-ELM | EDO-ELM | HHO-ELM | JAYA-ELM | PLO-ELM | SCA-ELM | RBMO-ELM | ELM | ||
---|---|---|---|---|---|---|---|---|---|
R2 | AVG | 0.934629 | 0.935460 | 0.937513 | 0.936696 | 0.984792 | 0.984936 | 0.997847 | 0.938278 |
STD | 2.9454 × 10−2 | 2.7098 × 10−2 | 2.5185 × 10−2 | 2.1303 × 10−2 | 8.8751 × 10−4 | 1.0810 × 10−3 | 4.1445 × 10−4 | 2.2204 × 10−16 | |
BEST | 0.981044 | 0.968894 | 0.974115 | 0.983935 | 0.986439 | 0.987507 | 0.998519 | 0.938278 | |
RMSE | AVG | 2.9797 × 10−2 | 2.8521 × 10−2 | 2.9284 × 10−2 | 3.1872 × 10−2 | 1.4738 × 10−2 | 1.4665 × 10−2 | 5.9545 × 10−3 | 2.9703 × 10−2 |
STD | 6.8248 × 10−3 | 5.7428 × 10−3 | 5.9716 × 10−3 | 6.0272 × 10−3 | 4.3167 × 10−4 | 5.3699 × 10−4 | 5.7322 × 10−4 | 0 | |
BEST | 1.6461 × 10−2 | 2.0198 × 10−2 | 1.9236 × 10−2 | 1.6340 × 10−2 | 1.3923 × 10−4 | 1.3364 × 10−2 | 4.9610 × 10−3 | 2.9703 × 10−2 | |
MSE | AVG | 9.3445 × 10−4 | 8.4655 × 10−4 | 8.9325 × 10−4 | 1.0521 × 10−3 | 2.1735 × 10−4 | 2.1540 × 10−4 | 3.5750 × 10−5 | 8.8200 × 10−4 |
STD | 4.2106 × 10−4 | 3.5542 × 10−4 | 3.6003 × 10−4 | 3.5410 × 10−4 | 1.2615 × 10−5 | 1.5347 × 10−5 | 6.8984 × 10−6 | 5.4210 × 10−19 | |
BEST | 2.7100 × 10−4 | 4.0800 × 10−4 | 3.7000 × 10−4 | 2.6700 × 10−4 | 1.9400 × 10−4 | 1.7900 × 10−4 | 2.5000 × 10−5 | 8.8200 × 10−4 | |
ME | AVG | 8.3745 × 10−2 | 6.9831 × 10−2 | 7.5297 × 10−2 | 8.1140 × 10−2 | 3.5662 × 10−2 | 3.3720 × 10−2 | 1.9722 × 10−2 | 9.6242 × 10−2 |
STD | 2.6277 × 10−2 | 2.2064 × 10−2 | 1.7958 × 10−2 | 2.4238 × 10−2 | 2.3099 × 10−2 | 2.1992 × 10−3 | 4.4385 × 10−3 | 2.7756 × 10−17 | |
BEST | 4.1000 × 10−2 | 3.7874 × 10−2 | 3.8928 × 10−2 | 4.2437 × 10−2 | 3.0536 × 10−2 | 2.9552 × 10−2 | 1.4964 × 10−2 | 9.6242 × 10−2 | |
RAE | AVG | 1.4115 × 10−1 | 1.3347 × 10−1 | 1.3872 × 10−1 | 1.4818 × 10−1 | 6.9815 × 10−2 | 6.9466 × 10−2 | 2.7684 × 10−2 | 1.4071 × 10−1 |
STD | 3.2329 × 10−2 | 2.6874 × 10−2 | 2.8288 × 10−2 | 2.8022 × 10−2 | 2.0446 × 10−3 | 2.5440 × 10−3 | 2.6649 × 10−3 | 2.7756 × 10−17 | |
BEST | 7.7977 × 10−2 | 9.4517 × 10−2 | 9.1121 × 10−2 | 7.5971 × 10−2 | 6.5954 × 10−2 | 6.3304 × 10−2 | 2.3064 × 10−2 | 1.4071 × 10−1 |
AO-ELM | EDO-ELM | HHO-ELM | JAYA-ELM | PLO-ELM | SCA-ELM | RBMO-ELM | ELM | ||
---|---|---|---|---|---|---|---|---|---|
R2 | AVG | 0.904820 | 0.950116 | 0.909230 | 0.874945 | 0.980525 | 0.979919 | 0.989096 | 0.943142 |
STD | 4.4333 × 10−2 | 2.4488 × 10−2 | 3.9990 × 10−2 | 5.0991 × 10−2 | 2.0611 × 10−3 | 3.3931 × 10−3 | 2.8251 × 10−3 | 2.2204 × 10−16 | |
BEST | 0.974666 | 0.976549 | 0.967505 | 0.961818 | 0.984377 | 0.984174 | 0.993547 | 0.943142 | |
RMSE | AVG | 3.6839 × 10−2 | 2.8963 × 10−2 | 3.6112 × 10−2 | 3.3952 × 10−2 | 1.7115 × 10−2 | 1.7348 × 10−2 | 1.0178 × 10−2 | 2.9284 × 10−2 |
STD | 8.8579 × 10−3 | 6.6741 × 10−3 | 8.0632 × 10−3 | 7.3024 × 10−3 | 9.0292 × 10−4 | 1.3856 × 10−3 | 1.2473 × 10−3 | 1.3878 × 10−17 | |
BEST | 1.9548 × 10−2 | 2.0378 × 10−2 | 2.2138 × 10−2 | 1.9190 × 10−2 | 1.5350 × 10−2 | 1.5450 × 10−2 | 7.8890 × 10−3 | 2.9284 × 10−2 | |
MSE | AVG | 1.4355 × 10−3 | 8.8330 × 10−4 | 1.3690 × 10−3 | 1.2060 × 10−3 | 2.9380 × 10−4 | 3.0285 × 10−4 | 1.0515 × 10−4 | 8.5800× 10−4 |
STD | 6.6860 × 10−4 | 4.3352 × 10−4 | 6.0309 × 10−4 | 4.9182 × 10−4 | 3.1088 × 10−5 | 5.1108 × 10−5 | 2.7275 × 10−5 | 1.0842 × 10−19 | |
BEST | 3.8200 × 10−4 | 4.1500 × 10−4 | 4.9000 × 10−4 | 3.6800 × 10−4 | 2.3600 × 10−4 | 2.3900 × 10−4 | 6.2000 × 10−5 | 8.5800 × 10−4 | |
ME | AVG | 8.4552 × 10−2 | 6.1373 × 10−2 | 7.6927 × 10−2 | 8.1366 × 10−2 | 3.8515 × 10−2 | 3.8256 × 10−2 | 2.5465 × 10−2 | 6.8495 × 10−2 |
STD | 2.6365 × 10−2 | 1.4616 × 10−2 | 1.9383 × 10−2 | 2.4915 × 10−2 | 2.1780 × 10−3 | 5.6819 × 10−3 | 5.9898 × 10−3 | 1.3878 × 10−17 | |
BEST | 4.3945 × 10−2 | 3.5855 × 10−2 | 3.9776 × 10−2 | 4.1733 × 10−2 | 3.2816 × 10−2 | 3.1578 × 10−2 | 1.6918 × 10−2 | 6.8495 × 10−2 | |
RAE | AVG | 1.6802× 10−1 | 1.3572 × 10−1 | 1.6471 × 10−1 | 1.6156 × 10−1 | 7.8061 × 10−2 | 7.9124 × 10−2 | 4.8434 × 10−2 | 1.3357 × 10−1 |
STD | 4.0401 × 10−2 | 3.1275 × 10−2 | 3.6777 × 10−2 | 3.4749 × 10−2 | 4.1182 × 10−3 | 6.3198 × 10−3 | 5.9354 × 10−3 | 2.7756 × 10−17 | |
BEST | 8.9157 × 10−2 | 9.5493 × 10−2 | 1.0097 × 10−1 | 9.1313 × 10−2 | 7.0014 × 10−2 | 7.0467 × 10−2 | 3.7541 × 10−2 | 1.3357 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almsallti, M.; Alzubi, A.B.; Adegboye, O.R. Hybrid Metaheuristic Optimized Extreme Learning Machine for Sustainability Focused CO2 Emission Prediction Using Globalization-Driven Indicators. Sustainability 2025, 17, 6783. https://doi.org/10.3390/su17156783
Almsallti M, Alzubi AB, Adegboye OR. Hybrid Metaheuristic Optimized Extreme Learning Machine for Sustainability Focused CO2 Emission Prediction Using Globalization-Driven Indicators. Sustainability. 2025; 17(15):6783. https://doi.org/10.3390/su17156783
Chicago/Turabian StyleAlmsallti, Mahmoud, Ahmad Bassam Alzubi, and Oluwatayomi Rereloluwa Adegboye. 2025. "Hybrid Metaheuristic Optimized Extreme Learning Machine for Sustainability Focused CO2 Emission Prediction Using Globalization-Driven Indicators" Sustainability 17, no. 15: 6783. https://doi.org/10.3390/su17156783
APA StyleAlmsallti, M., Alzubi, A. B., & Adegboye, O. R. (2025). Hybrid Metaheuristic Optimized Extreme Learning Machine for Sustainability Focused CO2 Emission Prediction Using Globalization-Driven Indicators. Sustainability, 17(15), 6783. https://doi.org/10.3390/su17156783