Effect of Pre-Curing Time and Residual Water–Cement Ratio on CO2 Curing of Recycled Concrete
Abstract
1. Introduction
2. Materials and Experimental Details
2.1. Raw Materials
2.2. Specimen Preparation and Curing
3. Testing Methods
3.1. Carbonization Depth Test
3.2. Unit Carbon Sequestration Test
3.3. Carbon Sequestration Rate Test
3.4. Residual Water–Cement Ratio Test
3.5. Compressive Strength Test
3.6. XRD Test
3.7. SEM Test
4. Results and Discussion
4.1. Effect of Pre-Curing Time
4.1.1. Effect of Pre-Curing Time on Carbon Sequestration Efficiency
4.1.2. Effect of Pre-Curing Time on Compressive Strength
4.1.3. Effect of Pre-Curing Time on Microstructure
4.2. Effect of Residual Water–Cement Ratio
4.2.1. Effect of Residual Water-Cement Ratio on the Carbon Sequestration Efficiency
4.2.2. Effect of Residual Water-Cement Ratio on Compressive Strength
4.2.3. Effect of Residual Water-Cement Ratio on Microstructure
5. Discussion
5.1. EDS and FTIR Discussion
5.2. Discussion of pH Changes Before and After Carbonization
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Menegaki, M.; Damigos, D. A review on current situation and challenges of construction and demolition waste management. Curr. Opin. Green Sustain. Chem. 2018, 13, 8–15. [Google Scholar] [CrossRef]
- Pu, Y.; Li, L.; Wang, Q.; Shi, X.; Fu, L.; Zhang, G.; Luan, C.; Abomohra, A.E. Accelerated carbonation treatment of recycled concrete aggregates using flue gas: A comparative study towards performance improvement. J. CO2 Util. 2021, 43, 101362. [Google Scholar] [CrossRef]
- Lu, D.; Wang, D.; Wang, Y.; Zhong, J. Nano-engineering the interfacial transition zone between recycled concrete aggregates and fresh paste with graphene oxide. Constr. Build. Mater. 2023, 384, 131244. [Google Scholar] [CrossRef]
- Wu, C.H.; Wang, W.C.; Jung, C.H. Potential pozzolanic reactivity of recycled aggregates and waste powders as cement mortar component. J. Chin. Inst. Eng. 2023, 46, 399–408. [Google Scholar] [CrossRef]
- Liu, X.; Xie, X.; Liu, R.; Lyu, K.; Zuo, J.; Li, S.; Liu, L.; Shah, S.P. Research on the durability of nano-SiO2 and sodium silicate co-modified recycled coarse aggregate (RCA) concrete. Constr. Build. Mater. 2023, 378, 131185. [Google Scholar] [CrossRef]
- Shaban, W.M.; Elbaz, K.; Yang, J.; Thomas, B.S.; Shen, X.; Li, L.; Du, Y.; Li, L. Effect of pozzolan slurries on recycled aggregate concrete: Mechanical and durability performance. Constr. Build. Mater. 2021, 276, 121940. [Google Scholar] [CrossRef]
- Kosuri, M.; Singh, S.; Bhardwaj, B.B. Optimization of slurry impregnation technique for upcycling carbonated recycled concrete aggregates for paving concrete applications. J. Mater. Civ. Eng. 2023, 35, 04023053. [Google Scholar] [CrossRef]
- Fang, X.; Zhan, B.; Poon, C.S. Enhancement of recycled aggregates and concrete by combined treatment of spraying Ca2+ rich wastewater and flow-through carbonation. Constr. Build. Mater. 2021, 277, 122202. [Google Scholar] [CrossRef]
- Buritatum, A.; Horpibulsuk, S.; Suddeepong, A.; Yaowarat, T.; Hoy, M.; Aiamsri, K.; Akkharawongwhatthana, K.; Arulrajah, A. Evaluation of shear strength improvement of recycled concrete aggregate as a high-quality pavement material utilizing CO2 carbonation treatment. Constr. Build. Mater. 2025, 489, 142193. [Google Scholar] [CrossRef]
- Lu, B.; Shi, C.; Cao, Z.; Guo, M.; Zheng, J. Effect of carbonated coarse recycled concrete aggregate on the properties and microstructure of recycled concrete. J. Clean. Prod. 2019, 233, 421–428. [Google Scholar] [CrossRef]
- Liang, C.; Ma, H.; Pan, Y.; Ma, Z.; Duan, Z.; He, Z. Chloride permeability and the caused steel corrosion in the concrete with carbonated recycled aggregate. Constr. Build. Mater. 2019, 218, 506–518. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, P.; Feng, X.; Sun, D.; Fang, T.; Zhu, X.X.; Zhang, Y.; Li, C.; Jia, X. Reversible CO2 absorption and release by fatty acid salt aqueous solutions: From industrial capture to agricultural applications. J. CO2 Util. 2021, 54, 101746. [Google Scholar] [CrossRef]
- Abalaka, A.E.; Okoli, O.G. Effects of limited initial curing durations on mechanical properties of concrete. J. Civ. Eng. Constr. Technol 2013, 4, 104–109. [Google Scholar]
- Sun, L.; Duan, S.; Zhang, S.; Cheng, W.; Wang, G.; Cao, X. Influencing factors and mechanism of CO2 adsorption capacity of FA-based carbon sequestration materials. Environ. Sci. Pollut. Res. 2023, 30, 117225–117237. [Google Scholar] [CrossRef] [PubMed]
- Ramezanianpour, A.A.; Khazali, M.H.; Vosoughi, P. Effect of steam curing cycles on strength and durability of SCC: A case study in precast concrete. Constr. Build. Mater. 2013, 49, 807–813. [Google Scholar] [CrossRef]
- Xie, J.; Yang, F.; Tan, N.; Wang, W.; Wang, W.; Wang, Z. Calcium sulphoaluminate cement from solid waste with nano-TiO2 addition for high-efficiency CO2 capture. Constr. Build. Mater. 2023, 367, 130267. [Google Scholar] [CrossRef]
- Sanjuán, M.Á.; Estévez, E.; Argiz, C.; del Barrio, D. Effect of curing time on granulated blast furnace slag cement mortars carbonation. Cem. Concr. Compos. 2018, 90, 257–265. [Google Scholar] [CrossRef]
- Chen, T.; Gao, X. Effect of carbonation curing regime on strength and microstructure of Portland cement paste. J. CO2 Util. 2019, 34, 74–86. [Google Scholar] [CrossRef]
- Shi, C.; He, F.; Wu, Y. Effect of pre-conditioning on CO2 curing of lightweight concrete blocks mixtures. Constr. Build. Mater. 2012, 26, 257–267. [Google Scholar] [CrossRef]
- Shi, C.; He, F. Properties and Microstructure of CO2 Cured Concrete Blocks. In Proceedings of the 2nd International Conference on Waste Engineering and Management, ICWEM, Shanghai, China, 13–15 October 2010; RILEM Publications SARL: Bagneux, France, 2010; pp. 96–107. [Google Scholar]
- Chen, K.; Xia, J.; Wu, R.; Shen, X.; Chen, J.; Zhao, Y.; Jin, W. An overview on the influence of various parameters on the fabrication and engineering properties of CO2-cured cement-based composites. J. Clean. Prod. 2022, 366, 132968. [Google Scholar] [CrossRef]
- Shi, C.; Tu, Z.; Guo, M.Z.; Wang, D. Accelerated carbonation as a fast curing technology for concrete blocks. In Sustainable and Nonconventional Construction Materials Using Inorganic Bonded Fiber Composites; Elsevier: Amsterdam, The Netherlands, 2017; pp. 313–341. [Google Scholar]
- Che, Y.; Yang, H. Hydration products, pore structure, and compressive strength of extrusion-based 3D printed cement pastes containing nano calcium carbonate. Case Stud. Constr. Mater. 2022, 17, e01590. [Google Scholar] [CrossRef]
- Liu, P.; Yu, Z.; Chen, Y. Carbonation depth model and carbonated acceleration rate of concrete under different environment. Cem. Concr. Compos. 2020, 114, 103736. [Google Scholar] [CrossRef]
- Suyama, M.; Kitajima, T.; Fukushi, K. Solubility of calcium carbonate hemihydrate (CCHH): Where does CCHH occur? Geochem. Perspect. Lett. 2024, 31, 27–31. [Google Scholar] [CrossRef]
- JGJ 55-2011; Specification for Mix Proportion Design of Ordinary Concrete. China Architecture & Building Press: Beijing, China, 2011.
- Wang, C.; Zhao, J.; Liu, Y.; Zhao, X.; Ying, X. Effect of the CO2 curing on a certain recycled concrete with the mineral-added binary and ternary cementitious systems. Ain Shams Eng. J. 2025, 16, 103476. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, X.; Zhao, J.; Zhao, Y. Synergistic application of weathered granite and recycled coarse aggregate in concrete: Mechanical properties and microstructural mechanisms. Constr. Build. Mater. 2025, 482, 141695. [Google Scholar] [CrossRef]
- Hassan, M.; Amleh, L.; Othman, H. Effect of different cement content and water cement ratio on carbonation depth and probability of carbonation induced corrosion for concrete. Cem. Wapno-Beton Cem. Lime Concr. 2023, 27, 126–143. [Google Scholar] [CrossRef]
- Zhan, B.J.; Xuan, D.X.; Poon, C.S. Enhancement of recycled aggregate properties by accelerated CO2 curing coupled with limewater soaking process. Cem. Concr. Compos. 2018, 89, 230–237. [Google Scholar] [CrossRef]
- Zhan, B.J.; Xuan, D.X.; Poon, C.S.; Shi, C.J. Effect of curing parameters on CO2 curing of concrete blocks containing recycled aggregates. Cem. Concr. Compos. 2016, 71, 122–130. [Google Scholar] [CrossRef]
- GB/T 50082-2009; Standard for Test Methods of Long-Term Performance and Durability of Ordinary Concrete. China Architecture & Building Press: Beijing, China, 2009.
- Zhan, B.J.; Poon, C.S.; Shi, C.J. Materials characteristics affecting CO2 curing of concrete blocks containing recycled aggregates. Cem. Concr. Compos. 2016, 67, 50–59. [Google Scholar] [CrossRef]
- GB/T 50081-2002; Standard for Test Methods of Concrete Physical and Mechanical Properties. China Architecture & Building Press: Beijing, China, 2002.
- Morshed, A.Z.; Shao, Y. Influence of moisture content on CO2 uptake in lightweight concrete subject to early carbonation. J. Sustain. Cem. Based Mater. 2013, 2, 144–160. [Google Scholar]
- Chen, D.; Sakai, E.; Daimon, M.; Ohba, Y. Carbonation of low heat portland cement paste precured in water for different time. J. Univ. Sci. Technol. Beijing Miner. Metall. Mater. 2007, 14, 178–184. [Google Scholar] [CrossRef]
- Jiang, Z.; Sun, Z.; Wang, P. Internal relative humidity distribution in high performance cement paste due to moisture diffusion and self-desiccation. Cem. Concr. Res. 2006, 36, 320–325. [Google Scholar] [CrossRef]
- Ma, L.; Jia, Z.; Chen, Y.; Jiang, Y.; Huet, B.; Delaplace, A.; Zhang, Y.; Zhang, Q. Water loss and shrinkage prediction in 3D printed concrete with varying w/c and specimen sizes. Cem. Concr. Compos. 2024, 149, 105523. [Google Scholar] [CrossRef]
- Mindeguia, J.C.; Pimienta, P.; Noumowé, A.; Kanema, M. Temperature, pore pressure and mass variation of concrete subjected to high temperature—Experimental and numerical discussion on spalling risk. Cem. Concr. Res. 2010, 40, 477–487. [Google Scholar] [CrossRef]
- Zod, N.; Mucci, A.; Bahn, O.; Provencal, R.; Shao, Y. Steel slag-bonded strand board as a carbon negative building product. Constr. Build. Mater. 2022, 340, 127695. [Google Scholar] [CrossRef]
- Zajac, M.; Lechevallier, A.; Durdzinski, P.; Bullerjahn, F.; Skibsted, J.; Haha, M.B. CO2 mineralisation of Portland cement: Towards understanding the mechanisms of enforced carbonation. J. CO2 Util. 2020, 38, 398–415. [Google Scholar] [CrossRef]
- Zhan, M.; Pan, G.; Wang, Y.; Fu, M.; Lu, X. Effect of presoak-accelerated carbonation factors on enhancing recycled aggregate mortars. Mag. Concr. Res. 2017, 69, 838–849. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, B.; Tang, H.; Chen, X.; Wang, B. High-yield synthesis of vaterite CaCO3 microspheres in ethanol/water: Structural characterizaion and formation mechanisms. J. Mater. Sci. 2015, 50, 5540–5548. [Google Scholar] [CrossRef]
- Christy, A.G. A review of the structures of vaterite: The impossible, the possible, and the likely. Cryst. Growth Des. 2017, 17, 3567–3578. [Google Scholar] [CrossRef]
- Guo, B.; Chu, G.; Yu, R.; Wang, Y.; Yu, Q.; Niu, D. Effects of sufficient carbonation on the strength and microstructure of CO2-cured concrete. J. Build. Eng. 2023, 76, 107311. [Google Scholar] [CrossRef]
- You, K.S.; Lee, S.H.; Hwang, S.H.; Hwang, S.H.; Ahn, J.W. Effect of CO2 carbonation on the chemical properties of waste cement: CEC and the heavy metal adsorption ability. Mater. Trans. 2011, 52, 1679–1684. [Google Scholar] [CrossRef]
- Zhu, C.; Fang, Y.; Wei, H. Carbonation-cementation of recycled hardened cement paste powder. Constr. Build. Mater. 2018, 192, 224–232. [Google Scholar] [CrossRef]
- Yi, Z.; Wang, T.; Guo, R. Sustainable building material from CO2 mineralization slag: Aggregate for concretes and effect of CO2 curing. J. CO2 Util. 2020, 40, 101196. [Google Scholar] [CrossRef]
- Chen, J.J.; Thomas, J.J.; Jennings, H.M. Decalcification shrinkage of cement paste. Cem. Concr. Res. 2006, 36, 801–809. [Google Scholar] [CrossRef]
- Hou, G.; Yan, Z.; Sun, J.; Naguib, H.M.; Lu, B.; Zhang, Z. Microstructure and mechanical properties of CO2 cured steel slag brick in pilot-scale. Constr. Build. Mater. 2021, 271, 121581. [Google Scholar] [CrossRef]
- Li, Z.; He, Z.; Shao, Y. Early age carbonation heat and products of tricalcium silicate paste subject to carbon dioxide curing. Materials 2018, 11, 730. [Google Scholar] [CrossRef] [PubMed]
- Bonavetti, V.L.; Rahhal, V.F.; Irassar, E.F. Studies on the carboaluminate formation in limestone filler-blended cements. Cem. Concr. Res. 2001, 31, 853–859. [Google Scholar] [CrossRef]
- Zhan, B.J.; Xuan, D.X.; Poon, C.S.; Shi, C.J.; Kou, S.C. Characterization of C–S–H formed in coupled CO2–water cured Portland cement pastes. Mater. Struct. 2018, 51, 92. [Google Scholar] [CrossRef]
- Sun, W.; Liu, C.; Hong, F.; Wang, P.; Zhang, Y.; Wang, X.; Hou, D.; Wang, M. Microscopic Transport and Degradation Behavior of CO2 in CSH with Varying Ca/Si Ratios during Carbonation. Buildings 2024, 14, 2808. [Google Scholar] [CrossRef]
- Suda, Y.; Tomiyama, J.; Saito, T.; Saeki, T. Phase assemblage, microstructure and shrinkage of cement paste during carbonation at different relative humidities. J. Adv. Concr. Technol. 2021, 19, 687–699. [Google Scholar] [CrossRef]
- Li, B.; Tian, Y.; Zhang, G.; Liu, Y.; Feng, H.; Jin, N.; Jin, X.; Wu, H.; Shao, Y.; Yan, D.; et al. Author Correction: Comparison of detection methods for carbonation depth of concrete. Sci. Rep. 2024, 14, 5442. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.L. Characterization of some cement samples of Nepal using FTIR spectroscopy. Int. J. Adv. Res. Chem. Sci. (IJARCS) 2018, 5, 19–23. [Google Scholar]
- Wu, B.; Ye, G. Study of carbonation rate of synthetic CSH by XRD, NMR and FTIR. Heron 2019, 64, 21–38. [Google Scholar]
- Hu, N.; Sims, C.B.; Schrand, T.V.; Haver, K.M.; Armenta, H.E.; Furgal, J.C. Formation of nanostructured silicas through the fluoride catalysed self-polymerization of Q-type functional silica cages. Chem. Commun. 2022, 58, 10008–10011. [Google Scholar] [CrossRef] [PubMed]
- Herath, C.; Gunasekara, C.; Law, D.W.; Setunge, S. Permeation and carbonation of nano-HVFA composites: Long-term studies. J. Mater. Civ. Eng. 2023, 35, 04023040. [Google Scholar] [CrossRef]
- Kashyap, V.S.; Agrawal, U.; Arora, K.; Sancheti, G. FTIR analysis of nanomodified cement concrete incorporating nano silica and waste marble dust. IOP Conf. Ser. Earth Environ. Sci. 2021, 796, 012022. [Google Scholar] [CrossRef]
- Molahid, V.L.M.; Mohd Kusin, F.; Syed Hasan, S.N.M.; Ramli, N.A.A.; Abdullah, A.M. CO2 sequestration through mineral carbonation: Effect of different parameters on carbonation of Fe-rich mine waste materials. Processes 2022, 10, 432. [Google Scholar] [CrossRef]
- Sidel, S.M.; Guarda, P.M.; Guarda, E.A. Recent studies on the use of simulated concrete pore solution for corrosion evaluation: A systematic review using prisma. Obs. Econ. Latinoam. 2023, 21, 15217–15259. [Google Scholar]
- Wang, J.; Ng, P.L.; Su, H.; Chen, J.; Du, J. Effect of concrete stress states on carbonation depth of concrete. J. Civ. Eng. Manag. 2019, 25, 518–530. [Google Scholar] [CrossRef]
- Yuan, C.; Niu, D.; Duan, F.; Qi, G. Research on variation of pH value of the simulated concrete pore solution during carbonation process. Chinese. Bull. Chin. Ceram. Soc 2011, 30, 1126–1130. [Google Scholar]
- Huang, J.; Niu, D.; Fu, Q.; Lv, Y.; Wu, H.; Li, Z. Electrochemical and corrosion behavior of steel rebars in concrete exposed to industrial SO2 and CO2 environment. Constr. Build. Mater. 2024, 447, 138151. [Google Scholar] [CrossRef]
- Trivedi, S.S.; Ansari, F.; Goud, P.K.K.; Joy, S.; Das, B.B.; Barbhuiya, S. Carbon capture efficiency of ultrafine cementitious substituents and fine aggregate alternatives subjected to accelerated CO2 curing. J. Build. Eng. 2025, 99, 111655. [Google Scholar] [CrossRef]
No. | Apparent Density (kg/m3) | Bulk Density (kg/m3) | Crushing Index (%) | Rate of Water Content (%) | Water Absorption Rate (%) | Mud Content (%) |
---|---|---|---|---|---|---|
RCA | 2610.20 | 1221.95 | 17.6 | 2.5 | 3.9 | 1.7 |
NCA | 2708.82 | 1518.41 | 11.4 | 2.0 | 1.7 | 0.8 |
Oxide | CaO | SiO2 | Al2O3 | P2O5 | SO3 | K2O | Fe2O3 | Na2O | MgO |
---|---|---|---|---|---|---|---|---|---|
Content (%) | 62.23 | 21.63 | 5.77 | 0.02 | 2.17 | 0.72 | 3.34 | 0.20 | 1.53 |
No. | Cement (kg/m3) | Water (kg/m3) | Water–Cement Ratio | Sand (kg/m3) | Coarse Aggregate (kg/m3) | ||
---|---|---|---|---|---|---|---|
5~10 mm | 10~15 mm | 15~20 mm | |||||
NC | 460 | 184 | 0.4 | 529 | 338.1 | 676.2 | 112.7 |
RC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, Q.; Wang, C.; Liu, Y.; Ying, X.; He, Z.; Zhao, J.; Zhao, X. Effect of Pre-Curing Time and Residual Water–Cement Ratio on CO2 Curing of Recycled Concrete. Sustainability 2025, 17, 6769. https://doi.org/10.3390/su17156769
Lai Q, Wang C, Liu Y, Ying X, He Z, Zhao J, Zhao X. Effect of Pre-Curing Time and Residual Water–Cement Ratio on CO2 Curing of Recycled Concrete. Sustainability. 2025; 17(15):6769. https://doi.org/10.3390/su17156769
Chicago/Turabian StyleLai, Qiyi, Cheng Wang, Yu Liu, Xuejin Ying, Zixin He, Jianjun Zhao, and Xiao Zhao. 2025. "Effect of Pre-Curing Time and Residual Water–Cement Ratio on CO2 Curing of Recycled Concrete" Sustainability 17, no. 15: 6769. https://doi.org/10.3390/su17156769
APA StyleLai, Q., Wang, C., Liu, Y., Ying, X., He, Z., Zhao, J., & Zhao, X. (2025). Effect of Pre-Curing Time and Residual Water–Cement Ratio on CO2 Curing of Recycled Concrete. Sustainability, 17(15), 6769. https://doi.org/10.3390/su17156769