The Impact of Green Finance on Agricultural Pollution: Analysis of the Roles of Farmer Behavior, Digital Infrastructure, and Innovation Capability
Abstract
1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. Impact of Green Financing on Environmental Pollution
2.2. The Mediating Effect of Green Production Behavior
2.3. The Moderating Effect of Digital Infrastructure
2.4. The Threshold Effect of Regional Innovation Capacity
3. Materials and Methods
3.1. Data Source
3.2. Variables
3.2.1. Dependent Variable
3.2.2. Core Explanatory Variable
3.2.3. Other Core Variables
Mediating Variable
Moderator Variable
Threshold Variable
Control Variables
3.3. Model Design
3.3.1. Baseline Model
3.3.2. Mediating Effect Model
3.3.3. Moderation Effect Model
3.3.4. Threshold Effect Model
4. Results
4.1. Descriptive Statistics
4.2. Spatiotemporal Distribution of EI
4.3. Baseline Regression
4.4. Mediating Effect
4.5. Moderating Effect
4.6. Threshold Effect
4.7. Robustness Test
5. Discussions and Conclusions
5.1. Discussions
5.2. Conclusions
5.3. Theoretical and Policy Contributions
5.4. Limitations and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EI | Agricultural non-point source pollution emission intensity |
GF | Green Finance Index |
GDP | Economic level |
Structure | Industrial structure |
Population | Population size |
Gap | Urban–rural disparity |
RA | Road accessibility |
TFS | Traditional financial supply |
DAM | Degree of agricultural mechanization |
FGP | Green production behavior |
DI | Digital Infrastructure level |
TI | Innovation capability |
Appendix A
Variables | Replace Dependent Variable | Remove Outliers | Adjusting the Sample Period |
---|---|---|---|
(1) Pollution | (2) EI | (3) EI | |
GF | −0.089 *** | −0.201 ** | |
(−3.17) | (−2.42) | ||
N_GF | −0.249 ** | ||
(−2.54) | |||
Constant | −0.340 | 0.401 | 0.454 |
(−1.61) | (0.66) | (0.71) | |
Control | Yes | Yes | Yes |
ID | Yes | Yes | Yes |
Year | Yes | Yes | Yes |
N | 589 | 589 | 558 |
R2 | 0.474 | 0.475 | 0.478 |
F | 22.524 | 22.615 | 22.617 |
References
- Hou, C.; Chu, M.L.; Botero-Acosta, A.; Guzman, J.A. Modeling field scale nitrogen non-point source pollution (NPS) fate and transport: Influences from land management practices and climate. Sci. Total Environ. 2021, 759, 143502. [Google Scholar] [CrossRef]
- Wang, M.M.; Jiang, T.H.; Mao, Y.B.; Wang, F.J.; Yu, J.; Zhu, C. Current Situation of Agricultural Non-Point Source Pollution and Its Control. Water Air Soil Pollut. 2023, 234, 21. [Google Scholar] [CrossRef]
- Lv, W.; Zhang, Z.; Zhang, X. The role of green finance in reducing agricultural non-point source pollution—An empirical analysis from China. Front. Sustain. Food Syst. 2023, 7, 1199417. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, L.; Yang, L.; Zhang, F.; Norse, D.; Zhu, Z. Agricultural non-point source pollution in China: Causes and mitigation measures. Ambio 2012, 41, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Rehman, A.; Ma, H.; Ulucak, R. Sustainable development and pollution: The effects of CO2 emission on population growth, food production, economic development, and energy consumption in Pakistan. Environ. Sci. Pollut. Res. 2022, 1, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Fang, L.; Mao, H.; Chen, S.J. Can e-commerce alleviate agricultural non-point source pollution?—A quasi-natural experiment based on a China’s E-Commerce Demonstration City. Sci. Total Environ. 2022, 846, 13. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.J.; Zhou, Z.; Liang, H.; Wu, H.Q.; Liu, Z.; Xie, Z.Y.; Zhu, J.Q.; Zheng, B.F.; Wan, W. Application of a comprehensive framework to estimate the risk of agricultural non-point source pollution in China since 2000. J. Clean. Prod. 2025, 509, 19. [Google Scholar] [CrossRef]
- Tian, Y.; Xia, R.; Zhang, X. Measurement of Agricultural Non-Point Source Pollution Intensity in China: Spatiotemporal Differentiation, Dynamic Evolution, and Spatial Agglomeration. Environ. Sci. Policy 2024, 1, 1–19. [Google Scholar]
- Wang, X. Management of agricultural nonpoint source pollution in China: Current status and challenges. Water Sci. Technol. 2006, 53, 1–9. [Google Scholar] [CrossRef] [PubMed]
- You, H. Impact of urbanization on pollution-related agricultural input intensity in Hubei, China. Ecol. Indic. 2016, 62, 249–258. [Google Scholar] [CrossRef]
- Zhao, C.; Cui, C.; Wang, M. Research on the Spatiotemporal Evolution and Influencing Factors of Agricultural Pollution Reduction, Carbon Mitigation, and Efficiency Enhancement Synergies in the Beijing-Tianjin-Hebei Region. China Agric. Resour. Reg. Plan. 2024, 1, 1–20. [Google Scholar]
- Yu, C.-H.; Wu, X.; Zhang, D.; Chen, S.; Zhao, J. Demand for green finance: Resolving financing constraints on green innovation in China. Energy Policy 2021, 153, 112255. [Google Scholar] [CrossRef]
- Tang, D.Y.; Zhang, Y. Do shareholders benefit from green bonds? J. Corp. Financ. 2020, 61, 101427. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, S.; Song, Y.T.; Tang, M.Q.; Li, H.J. Green Finance, Chemical Fertilizer Use and Carbon Emissions from Agricultural Production. Agriculture 2022, 12, 18. [Google Scholar] [CrossRef]
- Ma, J.; Yue, Z. The Environmental Effects and Impact Mechanisms of Agricultural Insurance: An Examination from the Perspective of China’s Agricultural Non-Point Source Pollution from Fertilizers. Insur. Res. 2021, 9, 46–61. [Google Scholar]
- Li, G.J.; Jia, X.M.; Khan, A.A.; Khan, S.U.; Ali, M.A.; Luo, J.C. Does green finance promote agricultural green total factor productivity? Considering green credit, green investment, green securities, and carbon finance in China. Environ. Sci. Pollut. Res. 2023, 30, 36663–36679. [Google Scholar] [CrossRef] [PubMed]
- Geng, G.; Shen, Y.; Dong, C. The Impact of Green Finance on Agricultural Non-Point Source Pollution: Analysis of the Role of Environmental Regulation and Rural Land Transfer. Land 2024, 13, 1516. [Google Scholar] [CrossRef]
- Lin, Q.; Cheng, Q.; Zhong, J.; Lin, W. Can digital financial inclusion help reduce agricultural non-point source pollution?—An empirical analysis from China. Front. Environ. Sci. 2022, 10, 1074992. [Google Scholar] [CrossRef]
- Zhang, J.H.; Yu, J.Q.; Ma, S.X.; Li, J.; Zhu, Z. Green finance and agricultural climate resilience: Evidence from China. Res. Int. Bus. Financ. 2025, 78, 17. [Google Scholar] [CrossRef]
- Pigou, A.C. Some aspects of welfare economics. Am. Econ. Rev. 1951, 41, 287–302. [Google Scholar]
- Wang, X.Y.; Gao, C.Y. Does green finance policy help to improve carbon reduction welfare performance? Evidence from China. Energy Econ. 2024, 132, 21. [Google Scholar] [CrossRef]
- Xu, X.K.; Li, J.S. Asymmetric impacts of the policy and development of green credit on the debt financing cost and maturity of different types of enterprises in China. J. Clean. Prod. 2020, 264, 13. [Google Scholar] [CrossRef]
- Zhang, S.L.; Wu, Z.H.; Wang, Y.; Hao, Y. Fostering green development with green finance: An empirical study on the environmental effect of green credit policy in China. J. Environ. Manag. 2021, 296, 12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.M.; Li, X.L.; Xing, C. How does China’s green credit policy affect the green innovation of high polluting enterprises? The perspective of radical and incremental innovations. J. Clean. Prod. 2022, 336, 14. [Google Scholar] [CrossRef]
- Xu, J.Q.; She, S.X.; Gao, P.P.; Sun, Y.P. Role of green finance in resource efficiency and green economic growth. Resour. Policy 2023, 81, 7. [Google Scholar] [CrossRef]
- Peng, B.H.; Yan, W.M.; Elahi, E.; Wan, A.X. Does the green credit policy affect the scale of corporate debt financing? Evidence from listed companies in heavy pollution industries in China. Environ. Sci. Pollut. Res. 2022, 29, 755–767. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.H.; Chau, K.Y.; Tran, T.K.; Sadiq, M.; Xuyen, N.T.M.; Phan, T.T.H. Enhancing green economic recovery through green bonds financing and energy efficiency investments. Econ. Anal. Policy 2022, 76, 488–501. [Google Scholar] [CrossRef]
- Debbarma, J.; Lee, H.; Choi, Y. Sustainable Feasibility of the Environmental-Friendly Policies on Agriculture and Its Related Sectors in India. Sustainability 2021, 13, 14. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, W.; Zhang, L. Research on the Impact of Green Finance on Farmers’ Willingness to Adopt Climate-Smart Agricultural Technologies. J. Arid Land Resour. Environ. 2025, 39, 25–36. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Liu, M.; Liu, H. Farmers’ adoption of agriculture green production technologies: Perceived value or policy-driven? Heliyon 2024, 10, e23925. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, J. Research on the Influence of Subjective Norms on Green Technology Innovation Behavior. Soft Sci. 2018, 32, 93–95. [Google Scholar] [CrossRef]
- Zhou, H.; Wen, G.; Hu, X. The Impact of Psychological Cognition Based on the TPB Framework on Farmers’ Willingness to Participate in Agricultural Non-Point Source Pollution Control—Also Discussing the Moderating Effect of Environmental Regulation. World Agric. 2021, 3, 59–69. [Google Scholar] [CrossRef]
- Lee, S.; Nguyen, T.T.; Poppenborg, P.; Shin, H.J.; Koellner, T. Conventional, Partially Converted and Environmentally Friendly Farming in South Korea: Profitability and Factors Affecting Farmers’ Choice. Sustainability 2016, 8, 18. [Google Scholar] [CrossRef]
- Li, J.Y.; Khan, A.A.; Ali, M.A.; Luo, J.C. Does farmers’ agricultural investment is impacted by green finance policies and financial constraint? From the perspective of farmers’ heterogeneity in Northwest China. Environ. Sci. Pollut. Res. 2022, 29, 67242–67257. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Xu, X.T.; Li, J.W.; Wu, N.L. Factors influencing the financing behavior of large professional households engaged in green agricultural production in China. Front. Psychol. 2023, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.P.; Zhang, W.; Cai, W.C.; Liu, T.J. The impact of digital finance use on sustainable agricultural practices adoption among smallholder farmers: An evidence from rural China. Environ. Sci. Pollut. Res. 2022, 29, 39281–39294. [Google Scholar] [CrossRef] [PubMed]
- Zscheischler, J.; Brunsch, R.; Rogga, S.; Scholz, R.W. Perceived risks and vulnerabilities of employing digitalization and digital data in agriculture-Socially robust orientations from a transdisciplinary process. J. Clean. Prod. 2022, 358, 14. [Google Scholar] [CrossRef]
- Niu, G.; Jin, X.S.; Wang, Q.; Zhou, Y. Broadband infrastructure and digital financial inclusion in rural China. China Econ. Rev. 2022, 76, 18. [Google Scholar] [CrossRef]
- Chung, K.H.Y.; Adriaens, P. Blockchain technology for pay-for-outcome sustainable agriculture financing: Implications for governance and transaction costs. Environ. Res. Commun. 2024, 6, 11. [Google Scholar] [CrossRef]
- Li, Y.Q.; Liu, H.W.; Kim, Y.; Lee, H.Y. Focus on the impact and predictive analysis of digitalization and green finance on the transformation of mineral and energy companies. Financ. Res. Lett. 2024, 59, 11. [Google Scholar] [CrossRef]
- Yang, C.; Zou, J.; Zhang, C. Research on the Impact Effect of Green Finance Policies on the High-Quality Development of Manufacturing Enterprises. Wuhan Financ. 2025, 2, 61–69. [Google Scholar]
- Izushi, H. What does endogenous growth theory tell about regional economies? Empirics of R&D worker-based productivity growth. Reg. Stud. 2008, 42, 947–960. [Google Scholar] [CrossRef]
- Chandra, R. Endogenous Growth in Historical Perspective: From Adam Smith to Paul Romer; Springer International Publishing: Cham, Switzerland, 2022; pp. 251–281. [Google Scholar]
- Li, Z.B.; Lu, X.; Wang, S.W.; Li, X.; Li, H. The threshold effect of environmental regulation in the nexus between green finance and total factor carbon productivity: Evidence from a dynamic panel threshold model. Environ. Sci. Pollut. Res. 2023, 30, 42223–42245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wang, Y.; Zhang, Z.; Su, B. Can green finance policy promote green innovation in cities? Evidence from pilot zones for green finance reform and innovation in China. J. Environ. Manag. 2024, 370, 122816. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zhang, J.; Shi, J.; Wang, J. What can green finance do for high-quality agricultural development? Fresh insights from China. Socio-Econ. Plan. Sci. 2024, 94, 101920. [Google Scholar] [CrossRef]
- Zhang, J.; Li, F.; Ding, X. Will green finance promote green development: Based on the threshold effect of R&D investment. Environ. Sci. Pollut. Res. 2022, 29, 60232–60243. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tang, J.; Li, J.Y.; Bai, Y.; Pan, Y.; Wang, X.J. Study on the Characteristics of Agricultural Non-point Source Pollution in the Zhaosutai River Basin, Jilin Province. Environ. Pollut. Control 2015, 37, 29–34+40. [Google Scholar]
- De Roo, A.; Jetten, V. Calibrating and validating the LISEM model for two data sets from the Netherlands and South Africa. Catena 1999, 37, 477–493. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Shen, W.; Zhang, L.; Li, S.; Zhuang, Y.; Liu, H.; Pan, J. A framework for evaluating county-level non-point source pollution: Joint use of monitoring and model assessment. Sci. Total Environ. 2020, 722, 137956. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.Y.; Du, P.F.; Chen, J. Jining Chen Unit-based analysis method for non-point source pollution investigation and assessment. J. Tsinghua Univ. Sci. Technol. 2004, 9, 1184–1187. [Google Scholar]
- Liang, L.; Feng, S.; Qu, F. Formation Mechanism of Agricultural Non-Point Source Pollution: Theoretical and Empirical Studies. China Popul. Resour. Environ. 2010, 20, 74–80. [Google Scholar]
- Cheng, Y.; Zhang, D.; Wang, X. The Green Development Effect of Agricultural Socialized Services: From the Perspective of Farmers. Resour. Sci. 2022, 44, 1848–1864. [Google Scholar]
- Su, X.; Qiao, R.; Xu, S. Impact of green finance on carbon emissions and spatial spillover effects: Empirical evidence from China. J. Clean. Prod. 2024, 457, 142362. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, F. Green Finance and Green Total Factor Productivity: The Effect of Carbon Emission Reduction under Environmental Regulation. Ecol. Econ. 2023, 39, 43–51. [Google Scholar]
- Li, C.; Li, J.X.; You, Y.; Li, J. Carbon emission prediction and its interaction with green finance index. Stat. Theory Pract. 2023, 12, 18–26. [Google Scholar] [CrossRef]
- Golan, A.; Maasoumi, E. Information theoretic and entropy methods: An overview. Econom. Rev. 2008, 27, 317–328. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Zhang, Z.X. Understanding farmers’ intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture. Appl. Energy 2022, 309, 15. [Google Scholar] [CrossRef]
- Liang, Q.; Ma, K. Can new agricultural business entities promote farmers’ green production?—A case study of chemical input reduction. J. Zhejiang Univ. Humanit. Soc. Sci. 2025, 55, 5–26. [Google Scholar]
- Liu, M.; Li, X.; Zhou, C. Spatio-temporal Evolution Analysis of the “Carbon Reduction-Efficiency Enhancement” Effect of China’s Digital Infrastructure. Econ. Geogr. 2025, 1, 1–15. [Google Scholar]
- Wang, L.P.; Long, Y.; Li, C. Research on the impact mechanism of heterogeneous environmental regulation on enterprise green technology innovation. J. Environ. Manag. 2022, 322, 16. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.Y.; Zhang, Y.D.; Jiang, J.J.; Cao, G.L. Do market-based environmental regulations always promote enterprise green innovation commercialization? J. Environ. Manag. 2025, 375, 11. [Google Scholar] [CrossRef] [PubMed]
- Conroy, S.J.; Emerson, T.L. A tale of trade-offs: The impact of macroeconomic factors on environmental concern. J. Environ. Manag. 2014, 145, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, P.R.; Holdren, J.P. Impact of Population Growth: Complacency concerning this component of man’s predicament is unjustified and counterproductive. Science 1971, 171, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Zhang, L.; Hou, J.; Liu, H. Procedures for the mediating effect test and its application. Acta Psychol. Sin. 2004, 36, 614–620. [Google Scholar]
- McClelland, G.H.; Judd, C.M. Statistical difficulties of detecting interactions and moderator effects. Psychol. Bull. 1993, 114, 376. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q. Fixed-effect panel threshold model using Stata. Stata J. 2015, 15, 121–134. [Google Scholar] [CrossRef]
- Hao, X.L.; Li, Y.H.; Ren, S.Y.; Wu, H.T.; Hao, Y. The role of digitalization on green economic growth: Does industrial structure optimization and green innovation matter? J. Environ. Manag. 2023, 325, 11. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Wang, M.; Lan, X.; Wen, C. Research on the Impact of Environmental Protection Tax on Regional Green Competitiveness: Based on the Context of Market Integration. Resour. Environ. Yangtze Basin 2024, 33, 728–741. [Google Scholar]
- Wang, Q.W.; Fan, Z.N. Green finance and investment behavior of renewable energy enterprises: A case study of China. Int. Rev. Financ. Anal. 2023, 87, 11. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, W.; New, F. China’s banking deregulation, structural competition, and corporate innovation. China’s Ind. Econ. 2017, 10, 118–136. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, W. Measurement and Spatiotemporal Differences of Agricultural Eco-Efficiency in China. China Popul. Resour. Environ. 2016, 26, 11–19. [Google Scholar]
- Fang, L.; Wu, F.; Wang, X.; Yu, Y. Measurement and Improvement Potential of Agricultural Water Use Efficiency Based on the Common Frontier SBM Model. Resour. Environ. Yangtze Basin 2018, 27, 2293–2304. [Google Scholar]
- Yang, J.; Ding, J. Green investment, ESG performance and new quality productivity of enterprises. J. Nanjing Univ. Technol. (Soc. Sci.) 2024, 23, 99–118+120. [Google Scholar]
Category | Polluting Unit | Indicator | Statistical Unit |
---|---|---|---|
Farmland fertilizer | Nitrogen fertilizer | Application rate (in pure form) | 10,000 tons |
Phosphate fertilizer | |||
Agricultural solid waste | Rice, wheat, corn, legumes, tubers, oil crops, and vegetables | Total output | 10,000 tons |
Variable | Indicator | Computational Method | Data Source | Attribute |
---|---|---|---|---|
GF | Green credit | Total credit for environmental projects/Total credit | China Financial Statistical Yearbook | + |
Green investment | Investment completed in industrial pollution control/Gross industrial production value | China Social Statistical Yearbook | + | |
Green fund | Total market value of green funds/Total market value of all funds | China Financial Statistical Yearbook | + | |
Green support | Fiscal environmental protection expenditure/Fiscal general budget expenditure | Statistical Yearbooks of Provinces | + | |
Carbon finance | carbon emissions/GDP | China Energy Statistical Yearbook | - |
Variable | Abbreviation | Measurement Method |
---|---|---|
Agricultural non-point source pollution emission intensity | EI | Total agricultural non-point source pollution emissions/Cultivated land area |
Green Finance Index | GF | Calculated using the entropy method |
Economic level | GDP | Gross regional product (logarithmic value) |
Industrial structure | Structure | Output value of the secondary industry/Regional gross domestic product |
Population size | Population | Total population (logarithmic value) |
Urban–rural disparity | Gap | Per capita disposable income of urban residents/Per capita disposable income of rural residents |
Road accessibility | RA | Expressway mileage/Land area |
Traditional financial supply | TFS | Year-end balance of deposits and loans in financial institutions/GDP |
Degree of agricultural mechanization | DAM | Total agricultural machinery power/Cultivated land area |
Green production behavior | FGP | Pesticide usage (logarithmic value) |
Digital infrastructure level | DI | Length of long-distance optical cable lines/Land area (logarithm taken) |
Innovation capability | TI | Number of invention patent applications |
Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
EI | 589 | 0.456 | 0.340 | 0.028 | 1.483 |
GF | 589 | 0.258 | 0.077 | 0.067 | 0.687 |
GDP | 589 | 9.511 | 1.126 | 5.517 | 11.818 |
Structure | 589 | 43.592 | 8.939 | 14.900 | 61.500 |
Population | 589 | 8.111 | 0.849 | 5.635 | 9.450 |
Gap | 589 | 2.675 | 0.487 | 1.718 | 4.601 |
RA | 589 | 280.954 | 266.240 | 0.308 | 1398.413 |
TFS | 589 | 3.260 | 1.148 | 1.454 | 8.164 |
DAM | 589 | 0.861 | 0.396 | 0.190 | 1.999 |
FGP | 589 | 1.008 | 1.411 | −3.219 | 2.853 |
DI | 589 | 1766.687 | 1294.544 | 77.955 | 8833.016 |
TI | 589 | 3178.227 | 9234.471 | 0 | 92681 |
(1) | (2) | |
---|---|---|
EI | EI | |
GF | −0.245 *** | −0.204 ** |
(−2.59) | (−2.50) | |
Constant | 0.603 *** | 0.362 |
(23.16) | (0.59) | |
Control | Yes | Yes |
ID | Yes | Yes |
Year | Yes | Yes |
N | 589 | 589 |
R2 | 0.252 | 0.475 |
F | 13.009 | 22.599 |
(1) | (2) | (3) | |
---|---|---|---|
Variables | FGP | EI | EI |
GF | −0.653 *** | −0.056 | −0.293 *** |
(−4.59) | (−0.73) | (−3.53) | |
FGP | 0.227 *** | ||
(9.93) | |||
DI | 0.003 | ||
(0.13) | |||
c_DI × c_GF | −0.293 *** | ||
(−4.13) | |||
Constant | 6.715 *** | −1.161 ** | 0.524 |
(6.29) | (−1.99) | (0.86) | |
Control | Yes | Yes | Yes |
ID | Yes | Yes | Yes |
Year | Yes | Yes | Yes |
N | 589 | 589 | 589 |
R2 | 0.583 | 0.556 | 0.490 |
F | 33.798 | 29.403 | 22.249 |
Threshold Variable | Threshold Category | F-Statistic | p-Value | Critical Values at Different Significance Levels | ||
---|---|---|---|---|---|---|
10% | 5% | 1% | ||||
TI | 1 | 85.31 | 0.000 | 34.735 | 38.046 | 54.006 |
2 | 19.80 | 0.207 | 24.998 | 31.823 | 48.480 | |
3 | 20.58 | 0.337 | 35.128 | 40.537 | 52.943 |
EI | ||
---|---|---|
GF | TI ≤ 3111 | −0.040 |
(−0.52) | ||
TI > 3111 | −0.571 *** | |
(−6.60) | ||
_cons | 0.277 | |
(−0.48) | ||
Control | Yes | |
ID | Yes | |
Year | Yes | |
N | 589 | |
R2 | 0.587 | |
F | 27.92 |
(1) | (2) | (3) | |
---|---|---|---|
Variables | GMM EI | First Stage GF | Second Stage EI |
IV | 0.791 *** | ||
(16.64) | |||
GF | −0.134 *** | −3.372 *** | |
(−2.79) | (−11.76) | ||
L.EI | 0.891 *** | ||
(46.26) | |||
Constant | 4.966 *** | 0.162 ** | 0.100 *** |
(3.80) | (2.43) | (3.34) | |
Control | Yes | Yes | Yes |
ID | Yes | Yes | Yes |
Year | Yes | Yes | Yes |
N | 558 | 589 | 589 |
AR(1) | 0.010 | ||
AR(2) | 0.676 | ||
Hansen test | 0.999 | ||
Kleibergen–Paap rk LM statistic | 132.608 *** | ||
Kleibergen–Paap rk Wald F-statistic | 276.849 (16.38) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Chen, S.; Wang, S. The Impact of Green Finance on Agricultural Pollution: Analysis of the Roles of Farmer Behavior, Digital Infrastructure, and Innovation Capability. Sustainability 2025, 17, 6736. https://doi.org/10.3390/su17156736
Yu L, Chen S, Wang S. The Impact of Green Finance on Agricultural Pollution: Analysis of the Roles of Farmer Behavior, Digital Infrastructure, and Innovation Capability. Sustainability. 2025; 17(15):6736. https://doi.org/10.3390/su17156736
Chicago/Turabian StyleYu, Liyan, Shuying Chen, and Sikai Wang. 2025. "The Impact of Green Finance on Agricultural Pollution: Analysis of the Roles of Farmer Behavior, Digital Infrastructure, and Innovation Capability" Sustainability 17, no. 15: 6736. https://doi.org/10.3390/su17156736
APA StyleYu, L., Chen, S., & Wang, S. (2025). The Impact of Green Finance on Agricultural Pollution: Analysis of the Roles of Farmer Behavior, Digital Infrastructure, and Innovation Capability. Sustainability, 17(15), 6736. https://doi.org/10.3390/su17156736