Do Economic Growth Targets Aggravate Environmental Pollution? Evidence from China
Abstract
1. Introduction
2. Literature Review
2.1. Related Research on EGTs
2.2. Related Research on EP
2.3. Related Research on the EGT–EP Relationship
3. Theoretical Mechanisms and Research Hypotheses
3.1. EGTs and EP
3.2. EGT Constraint and EP
4. Theoretical Methodology
4.1. SARTP Model
4.2. Test of Threshold Effect and Threshold Number
5. Variable Selection, Empirical Model Construction, and Data Description
5.1. Variable Selection
5.2. Empirical Model Construction
5.3. Data Source and Description
6. Empirical Results
6.1. Panel Unit Root Test and Panel Cointegration Test
6.2. Spatial Correlation Test
6.3. Estimation Results
6.4. Heterogeneity Tests
6.4.1. Heterogeneity Based on Geographical Location
6.4.2. Heterogeneity Based on Population Size
6.4.3. Heterogeneity Based on Industrial Structure
6.5. Further Discussion
7. Conclusions, Policy Implications, and Limitations
7.1. Conclusions
7.2. Policy Implications
7.2.1. Create a Joint Mechanism for Inter-Provincial EP Prevention and Control and Improve the Dynamic Monitoring Network for Border Pollution
7.2.2. Set Realistic EGTs, Boost Environmental Protection Investment, and Minimize EP
7.2.3. Promote Opening Up, Optimize R&D Allocation, Upgrade Energy Structure, and Boost Technological Investment to Reduce EP
7.2.4. Differentiated EGTs Should Be Based on Each Province’s Geographical Location, Population Size, and Industrial Structure
7.2.5. The Central Government Should Incorporate Environmental Protection into Local Government Performance Assessments and Guide Them to Optimize EGTs
7.3. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Zhang, G.; Jia, Y.; Su, B.; Xiu, J. Environmental regulation, economic development and air pollution in the cities of China: Spatial econometric analysis based on policy scoring and satellite data. J. Clean. Prod. 2021, 328, 129496. [Google Scholar] [CrossRef]
- Li, H.; Zhou, L.A. Political turnover and economic performance: The incentive role of personnel control in China. J. Public Econ. 2005, 89, 1743–1762. [Google Scholar] [CrossRef]
- Rafei, M.; Esmaeili, P.; Balsalobre-Lorente, D. A step towards environmental mitigation: How do economic complexity and natural resources matter? Focusing on different institutional quality level countries. Resour. Policy 2022, 78, 102848. [Google Scholar] [CrossRef]
- Yu, H.; Wang, J.; Hou, J.; Yu, B.; Pan, Y. The effect of economic growth pressure on green technology innovation: Do environmental regulation, government support, and financial development matter? J. Environ. Manag. 2023, 330, 117172. [Google Scholar] [CrossRef] [PubMed]
- Chu, T.; Wang, S. Environmental tax-for-fee reform and China’s urban green innovation: A local government behavior perspective. Environ. Impact Assess. Rev. 2025, 114, 107950. [Google Scholar] [CrossRef]
- Ding, X.; Ren, J.; Lu, H.; Hussain, J.; Zhou, R. Strategic dynamics of local governments in regional collaborative governance: An evolutionary game theory analysis of haze pollution response in the Fen-Wei Plain, China. Heliyon 2024, 10, e39242. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Ding, H. Turning a blind eye: How local government fiscal distress affects the entry of energy-intensive enterprises. Energy Econ. 2024, 138, 107828. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, P.; Hu, X.; Qamri, G.M. Environmental pollution and officials’ promotion: How China’s green attention matters. J. Environ. Manag. 2024, 365, 121590. [Google Scholar] [CrossRef] [PubMed]
- Lorente, D.B.; Mohammed, K.S.; Cifuentes-Faura, J.; Shahzad, U. Dynamic connectedness among climate change index, green financial assets and renewable energy markets: Novel evidence from sustainable development perspective. Renew. Energy 2023, 204, 94–105. [Google Scholar] [CrossRef]
- Ren, M.; Ke, K.; Yu, X.; Zhao, J. Local governments’ economic growth target pressure and bank loan loss provision: Evidence from China. Int. Rev. Econ. Financ. 2023, 87, 1–14. [Google Scholar] [CrossRef]
- Li, S.; Li, G. Rethinking government behavior: Local government self-interest and economic development quality. Econ. Anal. Policy 2025, 86, 1645–1659. [Google Scholar] [CrossRef]
- Ren, S.; Zhou, P.; Wu, B.; Wang, P. Welfare public service expenditure, financing platform debt, and economic growth: Evidence from China. Econ. Anal. Policy 2025, 87, 649–664. [Google Scholar] [CrossRef]
- Liu, K.; Lin, B. Research on influencing factors of environmental pollution in China: A spatial econometric analysis. J. Clean. Prod. 2019, 206, 356–364. [Google Scholar] [CrossRef]
- Chang, Y.; Hu, P.; Huang, Y.; Duan, Z. Effectiveness and heterogeneity evaluation of regional collaborative governance on haze pollution control: Evidence from 284 prefecture-level cities in China. Sustain. Cities Soc. 2022, 86, 104120. [Google Scholar] [CrossRef]
- Xiang, S.; Huang, X.; Lin, N.; Yi, Z. Synergistic reduction of air pollutants and carbon emissions in Chengdu-Chongqing urban agglomeration, China: Spatial-temporal characteristics, regional differences, and dynamic evolution. J. Clean. Prod. 2025, 493, 144929. [Google Scholar] [CrossRef]
- Yu, Y.; Li, K.; Duan, S.; Song, C. Economic growth and environmental pollution in China: New evidence from government work reports. Energy Econ. 2023, 124, 106803. [Google Scholar] [CrossRef]
- Guo, L.; Yang, M.; Su, M.; Li, H. Hidden environmental costs of economic ambitions: An empirical study of pollution emissions in the wake of growth targets. J. Clean. Prod. 2024, 450, 141925. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, J. The impact of economic growth targets on the level of green development—A perspective on officials’ promotion incentives and environmental regulations. J. Environ. Manag. 2024, 368, 122056. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zhang, Y.; Bell, C.M. Economic growth target setting under environmental constraints: A spatial autoregressive model analysis of Chinese prefectures. J. Environ. Manag. 2025, 376, 124473. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tian, G.L.; Yuan, S.; Tu, Y. Exploring the nexus between mineral policies, natural resource utilization, and green reforms for driving economic growth in China. Resour. Policy 2024, 89, 104619. [Google Scholar] [CrossRef]
- Wu, T.; Yi, M.; Zhang, Y. Towards cities’ green growth: The combined influence of economic growth targets and environmental regulations. Cities 2024, 146, 104759. [Google Scholar] [CrossRef]
- Zhai, Y.; Wang, W.; Zhou, L. Green efficiency loss caused by economic growth goals: Evidence from an emerging economy. Econ. Anal. Policy 2024, 81, 983–995. [Google Scholar] [CrossRef]
- Wu, H.; Yang, J.; Yang, Q. The pressure of economic growth and the issuance of Urban Investment Bonds: Based on panel data from 2005 to 2011 in China. J. Asian Econ. 2021, 76, 101341. [Google Scholar] [CrossRef]
- Chen, J.; Chen, X.; Hou, Q.; Hu, M. Haste doesn’t bring success: Top-down amplification of economic growth targets and enterprise overcapacity. J. Corp. Financ. 2021, 70, 102059. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, Z.; Ding, Y. Do economic growth target constraints affect firm innovation? Econ. Anal. Policy 2023, 78, 373–388. [Google Scholar] [CrossRef]
- Liang, Q.; Huang, J.; Liang, M.; Li, J. Economic growth targets and bank risk exposure: Evidence from China. Econ. Model. 2024, 135, 106702. [Google Scholar] [CrossRef]
- Yu, Y.; Pan, Y. The mysterious coexistence of rapid economic growth and a lag in the service industry’s upgrade in China: An interpretation based on the economic growth target constraints perspective. Econ. Res. J. 2019, 54, 150–165. (In Chinese) [Google Scholar]
- Shen, L.; Liu, H.; Wang, Y. Does the Mobilization of Economic Growth Targets Aggravate Haze Pollution?—Research Based on Prefecture-level Cities in China. Chin. J. Econom. 2024, 4, 1149–1171. (In Chinese) [Google Scholar]
- Zhou, M.; Shao, W.; Jiang, K.; Huang, L. How does economic agglomeration affect carbon emissions at the county level in Liaoning China? Ecol. Indic. 2024, 158, 111507. [Google Scholar] [CrossRef]
- Wei, Y.; Lemoy, R.; Caruso, G. The effect of population size on urban heat island and NO2 air pollution: Review and meta-analysis. City Environ. Interact. 2024, 24, 100161. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Chang, W.Y. Does economic agglomeration affect haze pollution? Evidence from China’s Yellow River basin. J. Clean. Prod. 2022, 335, 130271. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Shen, Z.; Yu, J.; Xu, Z. The impact of population agglomeration on economic resilience: Evidence from 280 cities in China. Int. Rev. Econ. Financ. 2024, 94, 103429. [Google Scholar] [CrossRef]
- Erdogan, S. Linking green fiscal policy, energy, economic growth, population dynamics, and environmental degradation: Empirical evidence from Germany. Energy Policy 2024, 189, 114110. [Google Scholar] [CrossRef]
- Feng, S.; Li, J.; Nawi, H.M.; Alhamdi, F.M.; Shamansurova, Z. Assessing the nexus between fintech, natural resources, government effectiveness, and environmental pollution in China: A QARDL study. Resour. Policy 2024, 88, 104433. [Google Scholar] [CrossRef]
- Deng, Q.S.; Cuesta, L.; Alvarado, R.; Murshed, M.; Tillaguango, B.; Işık, C.; Rehman, A. Nexus between government stability and environmental pollution. J. Clean. Prod. 2024, 434, 140061. [Google Scholar] [CrossRef]
- Hossain, B. Do government spending on pollution abatement and targeted environmental policies promote green growth in Canada? J. Clean. Prod. 2024, 434, 140391. [Google Scholar] [CrossRef]
- Zheng, L. Collaborative governance of haze pollution between local governments. Alex. Eng. J. 2023, 65, 119–129. [Google Scholar] [CrossRef]
- Liu, Z.; Kong, L.; Xu, K. The impact of public environmental preferences and government environmental regulations on corporate pollution emissions. J. Environ. Manag. 2024, 351, 119766. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Tan, X.; Hu, P.; Wang, Y.; Shi, L.; Ma, Z.; Lu, G. Air pollution and economic growth under local government competition: Evidence from China, 2007–2016. J. Clean. Prod. 2022, 334, 130231. [Google Scholar] [CrossRef]
- Zheng, S.; Kahn, M.E.; Sun, W.; Luo, D. Incentives for China’s urban mayors to mitigate pollution externalities: The role of the central government and public environmentalism. Reg. Sci. Urban Econ. 2014, 47, 61–71. [Google Scholar] [CrossRef]
- Fan, L.; Yao, S.; Zhou, C.; Richardson-Barlow, C. Environmental regulatory policies and local air quality: Evidence from a comparison of environmental policy effects in China. J. Clean. Prod. 2025, 518, 145906. [Google Scholar] [CrossRef]
- Chai, J.; Hao, Y.; Wu, H.; Yang, Y. Do constraints created by economic growth targets benefit sustainable development? Evidence from China. Bus. Strategy Environ. 2021, 30, 4188–4205. [Google Scholar] [CrossRef]
- Ren, S.; Du, M.; Bu, W.; Lin, T. Assessing the impact of economic growth target constraints on environmental pollution: Does environmental decentralization matter? J. Environ. Manag. 2023, 336, 117618. [Google Scholar] [CrossRef] [PubMed]
- Sueyoshi, T.; Yuan, Y. Social sustainability measured by intermediate approach for DEA environmental assessment: Chinese regional planning for economic development and pollution prevention. Energy Econ. 2017, 66, 154–166. [Google Scholar] [CrossRef]
- Zheng, Y.; Tarczyński, W.; Jamróz, P.; Ali Raza, S.; Tiwari, S. Impacts of mineral resources, economic growth and energy consumption on environmental sustainability: Novel findings from global south region. Resour. Policy 2024, 92, 105019. [Google Scholar] [CrossRef]
- Addis, A.K.; Cheng, S. The nexus between renewable energy, environmental pollution, and economic growth across BRICS and OECD countries: A comparative empirical study. Energy Rep. 2023, 10, 3800–3813. [Google Scholar] [CrossRef]
- Wang, X.; Su, Z.; Mao, J. How does haze pollution affect green technology innovation? A tale of the government economic and environmental target constraints. J. Environ. Manag. 2023, 334, 117473. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Zhu, G.; Li, N. Does economic growth targets setting lead to carbon emissions? An empirical study from China. J. Environ. Manag. 2024, 368, 122084. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.C.; Chou, L.C. Political influence and air pollution: Evidence from Chinese cities. Heliyon 2023, 9, e17781. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, X. Government-to-government peer pressure and air pollution: Causal evidence from an environmental ranking policy in China. J. Econ. Behav. Organ. 2024, 222, 123–143. [Google Scholar] [CrossRef]
- Jiang, S.S.; Li, J.M. Do political promotion incentive and fiscal incentive of local governments matter for the marine environmental pollution? Evidence from China’s coastal areas. Mar. Policy 2021, 128, 104505. [Google Scholar] [CrossRef]
- Zhang, C.; Tao, R.; Yue, Z.; Su, F. Regional competition, rural pollution haven and environmental injustice in China. Ecol. Econ. 2023, 204, 107669. [Google Scholar] [CrossRef]
- Wu, T.; Wen, L.; Yi, M. Balancing growth targets and environmental regulations: An empirical analysis of dual policy impact on corporate environmental responsibility–insights from China. J. Environ. Manag. 2024, 355, 120500. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Wang, H.; Wang, X. Innovation Like China: Evidence from Chinese Local Officials’ Promotions. China Econ. Rev. 2024, 86, 102203. [Google Scholar] [CrossRef]
- Zhang, Y.; Mao, W.; Zhang, B. Distortion of government behaviour under target constraints: Economic growth target and urban sprawl in China. Cities 2022, 131, 104009. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, H.; Wang, M. Does local government competition affect the dependence on polluting industries? Evidence from China’s land market. J. Environ. Manag. 2023, 325, 116518. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.E. Threshold effect in non-dynamic panels: Estimation, testing and inference. J. Econom. 1999, 93, 346–368. [Google Scholar] [CrossRef]
- Li, F.; Chen, J.; Chen, H.; Zhuo, Z. How to reduce PM2.5? Perspective from a spatial autoregressive threshold panel model. Ecol. Indic. 2022, 143, 109353. [Google Scholar] [CrossRef]
- Shi, D.; Ding, H.; Wei, P.; Liu, J. Can smart city construction reduce environmental pollution? China Ind. Econ. 2018, 6, 117–135. (In Chinese) [Google Scholar]
- Deng, R.; Zhang, A. Research on the impact of urban digital economy development on environmental pollution and its mechanism. South China J. Econ. 2022, 2, 18–37. (In Chinese) [Google Scholar]
- Xu, X.; Liu, Y. Economic growth target management. Econ. Res. J. 2017, 52, 18–33. (In Chinese) [Google Scholar]
- Dong, W.Y.; Zhang, Z.B. Is China’s international trade exacerbating urban environmental pollution?—A quasi-natural experiment based on the opening of the China railway express. J. Clean. Prod. 2023, 406, 137159. [Google Scholar] [CrossRef]
- You, Z.; Hou, G.; Wang, M. Heterogeneous relations among environmental regulation, technological innovation, and environmental pollution. Heliyon 2024, 10, e28196. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liang, X. Foreign direct investment and environmental pollution: A fiscal decentralization perspective. Chin. J. Popul. Resour. Environ. 2021, 19, 34–40. [Google Scholar] [CrossRef]
- Zhang, L.; Mu, R.; Hu, S.; Yu, J.; Zhang, J. Industrial coagglomeration, technological innovation, and environmental pollution in China: Life-cycle perspective of coagglomeration. J. Clean. Prod. 2022, 362, 132280. [Google Scholar] [CrossRef]
- Hong, Y.; Lyu, X.; Chen, Y.; Li, W. Industrial agglomeration externalities, local governments’ competition and environmental pollution: Evidence from Chinese prefecture-level cities. J. Clean. Prod. 2020, 277, 123455. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, M.; Liu, J.; Huang, H.; Yu, K. Environmental pollution management effects of technological convergence between digital and real economy industries: A perspective of tripartite co-governance by company, government, and public. J. Clean. Prod. 2025, 501, 145201. [Google Scholar] [CrossRef]
- Xia, Q.; Zhou, Z. Research on the impact of manufacturing servitization on environmental pollution: Spatial econometric analysis of sulfur dioxide based on 284 prefecture-level cities. Chin. J. Popul. Resour. Environ. 2024, 22, 258–267. [Google Scholar] [CrossRef]
- Sultana, M.; Rahman, M.H. Investigating the impact of GDP, energy mix, energy intensity, and the service sector on environmental pollution in MENA countries: An application of Driscoll-Kraay standard error approach. Soc. Sci. Humanit. Open 2024, 10, 101087. [Google Scholar] [CrossRef]
- Tao, C.; Peng, Y.; Ju, Z. An empirical study on economic growth, industrial structure and the carbon emissions—Based on PVAR model. Econ. Surv. 2015, 32, 126–131. (In Chinese) [Google Scholar]
- Ke, N.; Chen, J.; Cheng, T. The drivers of carbon intensity and emission reduction strategies in heavy industry: Evidence from nonlinear and spatial perspectives. Ecol. Indic. 2024, 160, 111764. [Google Scholar] [CrossRef]
- Shen, X.; Chen, Y.; Lin, B. The impacts of technological progress and industrial structure distortion on China’s energy intensity. Econ. Res. J. 2021, 56, 157–173. (In Chinese) [Google Scholar]
Variable | Definition | Obs. | Mean | SD | Min | Max |
---|---|---|---|---|---|---|
EP | Environmental pollution | 420 | 0.2373 | 0.1432 | 0.0155 | 0.6722 |
EGT | Economic growth target | 420 | 0.0884 | 0.0212 | 0.0450 | 0.1500 |
PNGAP | Top–down amplification of EGTs | 420 | 0.0162 | 0.0171 | −0.0200 | 0.0700 |
OPEN | Openness | 420 | 0.2775 | 0.3176 | 0.0076 | 1.6977 |
ER | Environmental regulation | 420 | 0.0036 | 0.0034 | 0.0001 | 0.0310 |
FDI | Foreign direct investment | 420 | 0.0214 | 0.0195 | 0.0001 | 0.1210 |
TECH | Technological investment | 420 | 0.0208 | 0.0147 | 0.0039 | 0.0720 |
IA | Industrial agglomeration | 420 | 0.0256 | 0.0371 | 0.0003 | 0.2171 |
RD | R&D intensity | 420 | 0.0200 | 0.0148 | 0.0018 | 0.0704 |
IL | Informationization level | 420 | 0.0670 | 0.0500 | 0.0170 | 0.2900 |
EC | Energy consumption | 420 | 3.6638 | 1.8594 | 1.2234 | 11.9128 |
Series | IPS | LLC | Fisher−PP | Fisher−ADF |
---|---|---|---|---|
EP | −2.4897 *** | −6.7213 *** | 24.8340 | 19.4746 |
EGT | −3.7948 *** | −7.8952 *** | 21.3451 | 32.9327 |
PNGAP | −3.7948 *** | −7.8952 *** | 60.2502 | 85.3873 ** |
OPEN | −4.0569 *** | −5.0363 *** | 54.6920 | 161.4783 *** |
ER | −6.0527 *** | −3.3491 *** | 77.1289 * | 151.1276 *** |
FDI | −3.1249 *** | −7.3726 *** | 72.0651 | 59.0311 |
TECH | −2.2745 ** | −4.1507 *** | 87.0748 ** | 80.4882 ** |
IA | 4.6851 | 2.5495 | 349.4668 *** | 200.6194 *** |
RD | −3.6852 *** | −4.9511 *** | 38.9424 | 80.9641 ** |
IL | −5.6146 *** | −4.9847 *** | 157.2554 *** | 80.9527 ** |
EC | −2.4551 *** | −7.5397 *** | 83.9425 ** | 64.5758 |
Series | Pedroni Test | Series | Pedroni Test | ||
---|---|---|---|---|---|
Panel−ADF | Group−ADF | Panel−ADF | Group−ADF | ||
EGT | −3.5518 *** | −3.9369 *** | TECH | −0.1785 * | 4.1312 *** |
PNGAP | −1.8422 ** | −2.2668 ** | IA | −1.5611 * | −1.7165 ** |
OPEN | 2.0412 ** | 1.5860 * | RD | −3.1633 *** | −2.1991 ** |
ER | 2.1070 ** | 2.2756 ** | IL | 4.6818 *** | 5.6718 *** |
FDI | −1.7291 ** | −1.9644 ** | EC | 3.2084 *** | 2.7938 *** |
Year | Moran’s I | Year | Moran’s I |
---|---|---|---|
2008 | 0.089 | 2015 | 0.121 * |
2009 | 0.090 | 2016 | 0.136 * |
2010 | 0.094 | 2017 | 0.125 * |
2011 | 0.133 * | 2018 | 0.137 * |
2012 | 0.135 * | 2019 | 0.123 * |
2013 | 0.139 * | 2020 | 0.095 |
2014 | 0.128 * | 2021 | 0.137 * |
Variables | (1) FE | (2) SAR | (3) SARTP | |
---|---|---|---|---|
EGT | 1.3795 *** | 0.5954 *** | 0.1416 | 0.3799 ** |
OPEN | −0.0201 | −0.0376 | −0.1112 ** | −0.1124 *** |
ER | 1.5344 | 0.8785 | 0.4575 | 0.6750 |
FDI | 0.3958 | 0.2611 | 0.5475 | 0.0504 |
TECH | −1.8343 ** | −0.7280 * | −1.4904 *** | −0.3956 |
IA | 0.0728 | 0.1637 | 0.1414 | −0.0101 |
RD | −2.4532 | −1.6037 ** | −2.0811 ** | −1.7855 ** |
IL | −0.1831 ** | −0.0655 | 0.0137 | −0.0497 |
EC | 0.0094 ** | 0.0123 *** | 0.0139 *** | 0.0157 *** |
Threshold value | / | / | EGT ≤ 0.0750 | EGT > 0.0750 |
/ | 0.6214 *** | 0.5870 *** | ||
0.4273 | 0.5122 | 0.9266 |
Variables | Regime I (EGT ≤ 0.0750) | Regime II (EGT > 0.0750) |
---|---|---|
EP | 0.1952 | 0.2607 |
EGT | 0.0661 | 0.1007 |
OPEN | 0.2935 | 0.2685 |
ER | 0.0028 | 0.0040 |
FDI | 0.0163 | 0.0242 |
TECH | 0.0241 | 0.0190 |
IA | 0.0326 | 0.0216 |
RD | 0.0231 | 0.0184 |
IL | 0.0900 | 0.0542 |
EC | 4.2971 | 3.3119 |
Variables | SARTP Model | |||||
---|---|---|---|---|---|---|
(1) Adjacency Matrix | (2) Economic Distance Matrix | (3) Add a Control Variable | ||||
EGT | −0.4663 | 0.3892 ** | 0.1550 | 0.3786 ** | −2.3661 | 0.4894 *** |
EDU | 0.0092 | −0.0085 | ||||
Control variables | YES | YES | YES | YES | YES | YES |
Threshold value | EGT ≤ 0.0700 | EGT > 0.0700 | EGT ≤ 0.0750 | EGT > 0.0750 | EGT ≤ 0.0700 | EGT > 0.0700 |
0.1427 *** | 0.5022 *** | 0.1418 *** | ||||
0.9423 | 0.9185 | 0.9436 |
Variables | (1) EP | (2) EP | ||
---|---|---|---|---|
TARGET1 | −0.0419 | −0.1107 *** | ||
TARGET2 | −0.0099 | −0.1107 *** | ||
OPEN | 1.2947 | 0.1513 | 1.1771 | 0.0817 |
ER | −0.4622 | 1.7376 *** | −0.4035 | 1.7195 *** |
FDI | −2.8788 *** | −0.0543 | −2.7858 *** | −0.0721 |
TECH | 0.0122 *** | −0.0564 | 0.0133 *** | −0.0007 |
IA | −0.0739 ** | 0.7798 | −0.0739 ** | 0.9253 |
RD | 0.0647 | −0.9581 | 0.0967 | −1.0086 * |
IL | 2.0887 *** | −2.3464 *** | 2.0712 *** | −2.2706 *** |
EC | −0.0226 | 0.018 4 *** | −0.0275 | 0.0192 *** |
0.5680 *** | 0.5631 *** | |||
Threshold value | EGT ≤ 0.0800 | EGT > 0.0800 | EGT ≤ 0.0800 | EGT > 0.0800 |
0.9267 | 0.9268 |
Variables | (1) Eastern Provinces | (2) Central Provinces | (3) Western Provinces | |||
---|---|---|---|---|---|---|
EGT | 0.3956 | −0.0842 | 1.2526 | 1.3261 *** | 1.5494 *** | 1.2072 *** |
OPEN | −0.1209 | 0.0077 | −0.1669 | −0.4276 ** | −0.6315 *** | −0.1884 ** |
ER | −3.4331 | −1.6166 | 2.3539 | 0.2046 | 0.7987 | 2.5483 ** |
FDI | −0.1557 | −1.2242 *** | 0.2456 | 2.4822 ** | −0.6986 | 0.4684 |
TECH | −0.2298 | −1.5409 | −4.2167 *** | 0.8194 | −2.4712 | −5.6431 *** |
IA | 1.2384 | 0.2152 | 0.6411 | 2.9876 | 24.4554 ** | 20.6378 ** |
RD | −5.0075 ** | −7.1868 *** | 5.3784 | −4.2059 * | 0.7914 | 1.4032 |
IL | −0.1904 | −0.5974 *** | −0.0524 | −0.2000 | 0.0502 | 0.0917 |
EC | −0.0301 ** | 0.0345 ** | 0.0133 | 0.0183 | 0.0107 ** | 0.0146 *** |
Threshold value | EGT ≤ 0.0750 | EGT > 0.0750 | EGT ≤ 0.0750 | EGT > 0.0750 | EGT ≤ 0.0750 | EGT > 0.0750 |
0.5316 *** | 0.9386 *** | 0.3719 *** | ||||
0.9484 | 0.9325 | 0.8859 |
Variables | (1) High Population Size Region | (2) Low Population Size Region | ||
---|---|---|---|---|
EGT | 3.0918 *** | 1.3576 *** | 0.7741 ** | 0.6147 *** |
OPEN | −0.0649 | −0.0257 | −0.0252 | −0.0547 * |
ER | 4.9468 | 5.8122 ** | 1.6309 | 1.0971 |
FDI | −0.3111 | −0.8204 ** | 0.2375 | −0.1215 |
TECH | 1.6095 * | 0.3024 | −0.5585 | −1.1045 |
IA | 5.4967 * | 7.5185 ** | −1.2439 ** | −1.0145 |
RD | −6.1329 *** | −4.7946 ** | −1.0294 | 0.1112 |
IL | −0.1241 | 0.1023 | −0.0173 | −0.1841 * |
EC | 0.0341 ** | 0.0729 *** | 0.0073 ** | 0.0142 *** |
Threshold value | EGT ≤ 0.0750 | EGT > 0.0750 | EGT ≤ 0.0850 | EGT > 0.0850 |
0.6155 *** | 0.4217 *** | |||
0.8993 | 0.9452 |
Variables | (1) High Tertiary Industry Proportion Region | (2) Low Tertiary Industry Proportion Region | ||
---|---|---|---|---|
EGT | 0.2590 | 0.1094 | 1.2461 ** | 0.8021 *** |
OPEN | −0.0074 | −0.0464 | −0.3104 ** | −0.1363 * |
ER | 2.9485 | −0.1569 | 2.3694 * | 0.8729 |
FDI | 0.6575 | 0.1163 | −0.2458 | 0.0161 |
TECH | −2.1883 *** | −1.3485 | 3.4490 *** | −0.4193 |
IA | −0.4926 | −0.9485 | 3.1325 | 8.9193 *** |
RD | −3.6105 *** | −3.3600 *** | −0.1097 | −0.0544 |
IL | −0.0759 | −0.3080 ** | 0.0576 | −0.0175 |
EC | −0.0080 | 0.0156 | 0.0076 * | 0.0158 *** |
Threshold value | EGT ≤ 0.0850 | EGT > 0.0850 | EGT ≤ 0.0750 | EGT > 0.0750 |
0.4364 *** | 0.9900 *** | |||
0.9423 | 0.9350 |
Variables | SARTP Model | |||
---|---|---|---|---|
(1) Geography Distance Matrix | (2) Adjacency Matrix | |||
EGT | 0.3611 | 0.4469 ** | 0.0443 | 0.3942 ** |
Control variables | Yes | Yes | Yes | Yes |
Threshold value | PNGAP ≤ 0.0050 | PNGAP > 0.0050 | PNGAP ≤ 0.0050 | PNGAP > 0.0050 |
0.6220 *** | 0.1447 *** | |||
0.9231 | 0.9420 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Wu, C. Do Economic Growth Targets Aggravate Environmental Pollution? Evidence from China. Sustainability 2025, 17, 6534. https://doi.org/10.3390/su17146534
Chen J, Wu C. Do Economic Growth Targets Aggravate Environmental Pollution? Evidence from China. Sustainability. 2025; 17(14):6534. https://doi.org/10.3390/su17146534
Chicago/Turabian StyleChen, Jianbao, and Chenwei Wu. 2025. "Do Economic Growth Targets Aggravate Environmental Pollution? Evidence from China" Sustainability 17, no. 14: 6534. https://doi.org/10.3390/su17146534
APA StyleChen, J., & Wu, C. (2025). Do Economic Growth Targets Aggravate Environmental Pollution? Evidence from China. Sustainability, 17(14), 6534. https://doi.org/10.3390/su17146534