Developing a Standardized Materials Passport Framework to Unlock the Full Circular Potential in the Construction Industry
Abstract
1. Introduction
2. Methodology
3. Conceptual Boundary Definition of Materials Passport Framework
3.1. Evolution of Materials Passport
3.2. Application of Materials Passport Across the Material Lifecycle
3.3. Current Practice of Materials Passport
3.4. Conceptual Boundary of the Materials Passport Framework
4. Attributes and Performance Indicators for MP Functions
4.1. Material Tracking and Management
4.2. Circularity Assessment
4.3. Sustainability Assessment
4.4. Quality Assessment
5. Discussion
5.1. Output
5.2. Dynamic Approach
5.3. Holistic Approach
5.4. Stakeholders and Data Sources
5.5. Integration of Digital Technologies
5.6. Policies
5.7. Limitations and Recommendations for Future Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MP | Materials Passport |
CE | Circular Economy |
BIM | Building Information Modelling |
EPD | Environmental Product Declaration |
EoL | End of Life |
References
- Ribeirinho, M.J.; Mischke, J.; Strube, G.; Sjödin, E.; Blanco, J.L.; Palter, R.; Biörck, J.; Rockhill, D.; Andersson, T. The Next Normal in Construction: How Disruption Is Reshaping the World’s Largest Ecosystem; McKinsey & Company: Chicago, IL, USA, 2020. [Google Scholar]
- Becqué, R.; Mackres, E.; Layke, J.; Aden, N.; Managan, K.; Nesler, C.; Mazur-Stommen, S.; Petrichenko, K.; Graham, P. Accelerating Action Efficient Buildings: A Blueprint for Green Cities; World Resources Institute: Washington, DC, USA, 2016. [Google Scholar]
- Norouzi, M.; Chàfer, M.; Cabeza, L.F.; Jiménez, L.; Boer, D. Circular economy in the building and construction sector: A scientific evolution analysis. J. Build. Eng. 2021, 44, 102704. [Google Scholar] [CrossRef]
- Atta, I.; Bakhoum, E.S.; Marzouk, M.M. Digitizing material passport for sustainable construction projects using BIM. J. Build. Eng. 2021, 43, 103233. [Google Scholar] [CrossRef]
- Honic, M.; Kovacic, I.; Aschenbrenner, P.; Ragossnig, A. Material Passports for the end-of-life stage of buildings: Challenges and potentials. J. Clean. Prod. 2021, 319, 128702. [Google Scholar] [CrossRef]
- Zhong, X.; Hu, M.; Deetman, S.; Steubing, B.; Lin, H.X.; Hernandez, G.A.; Harpprecht, C.; Zhang, C.; Tukker, A.; Behrens, P. Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060. Nat. Commun. 2021, 12, 6126. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. Completing the Picture: How the Circular Economy Tackles Climate Change; Ellen MacArthur Foundation: Cowes, UK, 2021. [Google Scholar]
- Ellen Mac Arthur Foundation. Towards the circular economy. J. Ind. Ecol. 2013, 2, 23–44. [Google Scholar]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Amarasinghe, I.; Hong, Y.; Stewart, R.A. Development of a material circularity evaluation framework for building construction projects. J. Clean. Prod. 2024, 436, 140562. [Google Scholar] [CrossRef]
- UNEP. Global Status Report for Buildings and Construction; United Nations Environment Programme: Nairobi, Kenya, 2020. [Google Scholar]
- Heisel, F.; Rau-Oberhuber, S. Calculation and evaluation of circularity indicators for the built environment using the case studies of UMAR and Madaster. J. Clean. Prod. 2020, 243, 118482. [Google Scholar] [CrossRef]
- Kovacic, I.; Honic, M.; Sreckovic, M. Digital platform for circular economy in aec industry. Eng. Proj. Org. J. 2020, 9, 16. [Google Scholar] [CrossRef]
- Wibranek, B.; Tessmann, O. Augmented reuse: A mobile app to acquire and provide information about reusable building components for the early design phase. In Proceedings of the Design Modelling Symposium Berlin, Berlin, Germany, 26–28 September 2022; Springer: Berlin/Heidelberg, Germany; pp. 411–423. [Google Scholar]
- Akanbi, L.; Oyedele, L.; Davila Delgado, J.M.; Bilal, M.; Akinade, O.; Ajayi, A.; Mohammed-Yakub, N. Reusability analytics tool for end-of-life assessment of building materials in a circular economy. World J. Sci. Technol. Sustain. Dev. 2019, 16, 40–55. [Google Scholar] [CrossRef]
- Honic, M.; Kovacic, I.; Rechberger, H. Concept for a BIM-based Material Passport for buildings. IOP Conf. Ser. Earth Environ. Sci. 2019, 1503, 011001. [Google Scholar] [CrossRef]
- Panza, L.; Bruno, G.; Lombardi, F. A collaborative architecture to support circular economy through digital material passports and internet of materials. IFAC-Pap. 2022, 55, 1491–1496. [Google Scholar] [CrossRef]
- Marsh, A.T.; Velenturf, A.P.; Bernal, S.A. Circular Economy strategies for concrete: Implementation and integration. J. Clean. Prod. 2022, 362, 132486. [Google Scholar] [CrossRef]
- Dalton, T.; Dorignon, L.; Boehme, T.; Kempton, L.; Iyer-Raniga, U.; Oswald, D.; Amirghasemi, M.; Moore, T. Building materials in a circular economy. AHURI Final. Rep. 2023, 402, 1834–7223. [Google Scholar] [CrossRef]
- Çetin, S.; De Wolf, C.; Bocken, N. Circular digital built environment: An emerging framework. Sustainability 2021, 13, 6348. [Google Scholar] [CrossRef]
- Kebede, R.; Moscati, A.; Tan, H.; Johansson, P. Circular Economy in the Built Environment: A Framework for Implementing Digital Product Passports With Knowledge Graphs. In Proceedings of the European Conference on Computing in Construction, 2023; Kassem, M., Tagliabue, L.C., Amor, R., Sreckovic, M., Chassiakos, A., Eds.; European Council on Computing in Construction (EC3): St-Niklaas, Belgium, 2023. [Google Scholar]
- Luscuere, L.; Nederland, E. Materials Passports: Providing Insights in the Circularity of Materials, Products and Systems—Lars Luscuere. Proc. Sustain. Innov. 2016, 176–179. [Google Scholar]
- Hoosain, M.S.; Paul, B.S.; Raza, S.M.; Ramakrishna, S. Material passports and circular economy. Introd. Circ. Econ. 2021, 131–158. [Google Scholar]
- Kovacic, I.; Honic, M.; Rechberger, H. Proof of concept for a BIM-based material passport. In Advances in Informatics and Computing in Civil and Construction Engineering: Proceedings of the 35th CIB W78 2018 Conference: IT in Design, Construction, and Management. Proof of Concept for a BIM-Based Material Passport; Springer: Berlin/Heidelberg, Germany, 2019; pp. 741–747. [Google Scholar]
- Honic, M.; Kovacic, I.; Sibenik, G.; Rechberger, H. Data- and stakeholder management framework for the implementation of BIM-based Material Passports. J. Build. Eng. 2019, 23, 341–350. [Google Scholar] [CrossRef]
- Plociennik, C.; Pourjafarian, M.; Saleh, S.; Hagedorn, T.; Carmo Precci Lopes, A.d.; Vogelgesang, M.; Baehr, J.; Kellerer, B.; Jansen, M.; Berg, H. Requirements for a digital product passport to boost the circular economy. In Proceedings of the INFORMATIK 2022, Hamburg, Germany, 26–30 September 2022. [Google Scholar]
- Jensen, S.F.; Kristensen, J.H.; Adamsen, S.; Christensen, A.; Waehrens, B.V. Digital product passports for a circular economy: Data needs for product life cycle decision-making. Sustain. Prod. Consum. 2023, 37, 242–255. [Google Scholar] [CrossRef]
- Kedir, F.; Hall, D.M.; Brantvall, S.; Lessing, J.; Hollberg, A.; Soman, R.K. Circular information flows in industrialized housing construction: The case of a multi-family housing product platform in Sweden. Constr. Innov. 2024, 24, 1354–1379. [Google Scholar] [CrossRef]
- Cocco, P.L.; Ruggiero, R. From rubbles to digital material bank. A digital methodology for construction and demolition waste management in post-disaster areas. Environ. Res. Technol. 2021, 6, 151–158. [Google Scholar] [CrossRef]
- Honic, M.; Kovacic, I.; Rechberger, H. Improving the recycling potential of buildings through Material Passports (MP): An Austrian case study. J. Clean. Prod. 2019, 217, 787–797. [Google Scholar] [CrossRef]
- Markou, I.; Sinnott, D.; Thomas, K. Dynamic Material Passports for Sustainable Material Management: A Conceptual Framework. In Proceedings of the European Conference on Computing in Construction, 2024; Srećković, M., Kassem, M., Soman, R., Chassiakos, A., Eds.; European Council on Computing in Construction (EC3): St-Niklaas, Belgium, 2024; pp. 776–783. [Google Scholar]
- EPEA; Nederland, B.V.; SundaHus, i.L.A. Framework for Material Passports; Waterman Group: London, UK, 2017. [Google Scholar]
- BAMB. Building as Material Banks. Available online: https://www.bamb2020.eu/ (accessed on 31 December 2024).
- Madaster. Available online: https://madaster.com/platform/ (accessed on 27 December 2024).
- Heinrich, M.; Lang, W. Materials Passports-Best Practice; Technische Universität München, Fakultät für Architektur: München, Germany, 2019. [Google Scholar]
- Wu, L.; Lu, W.; Peng, Z.; Webster, C. A blockchain non-fungible token-enabled ‘passport’ for construction waste material cross-jurisdictional trading. Autom. Constr. 2023, 149, 104783. [Google Scholar] [CrossRef]
- Natural Replacements. Understanding Downcycling: A Path Towards Waste Reduction and Sustainable Resource Use. Available online: https://naturalreplacements.com/learn/environment/downcycling/ (accessed on 26 November 2024).
- Hobbs, G.; Adams, K. Reuse of building products and materials–barriers and opportunities. In Proceedings of the International HISER Conference on Advances in Recycling and Management of Construction and Demolition Waste, Delft, The Netherlands, 21–23 June 2017; pp. 109–113. [Google Scholar]
- Ghaffar, S.H.; Burman, M.; Braimah, N. Pathways to circular construction: An integrated management of construction and demolition waste for resource recovery. J. Clean. Prod. 2020, 244, 118710. [Google Scholar] [CrossRef]
- Knutsson, J. Reuse and recycling of concrete: Economic barriers and possible opportunities for future profitability. J. Clean. Prod. 2023, 383, 135235. [Google Scholar]
- Ghaleb, H.; Alhajlah, H.H.; Bin Abdullah, A.A.; Kassem, M.A.; Al-Sharafi, M.A. A scientometric analysis and systematic literature review for construction project complexity. Buildings 2022, 12, 482. [Google Scholar] [CrossRef]
- Hansen, K.; Braungart, M.; Mulhall, D. Materials banking and resource repletion, role of buildings, and materials passports. In Sustainable Built Environments; Springer: Berlin/Heidelberg, Germany, 2020; pp. 677–702. [Google Scholar]
- Wilson, S.; Adu-Duodu, K.; Li, Y.; Sham, R.; Wang, Y.; Solaiman, E.; Perera, C.; Ranjan, R.; Rana, O. Tracking Material Reuse across Construction Supply Chains. In Proceedings of the 2023 IEEE 19th International Conference on e-Science (e-Science 2023), Limassol, Cyprus, 9–13 October 2023. [Google Scholar]
- van Capelleveen, G.; Vegter, D.; Olthaar, M.; van Hillegersberg, J. The anatomy of a passport for the circular economy: A conceptual definition, vision and structured literature review. Resour. Conserv. Recycl. Adv. 2023, 17, 200131. [Google Scholar] [CrossRef]
- Buchholz, M.; Lützkendorf, T. European building passports: Developments, challenges and future roles. Build. Cities 2023, 4, 902–919. [Google Scholar] [CrossRef]
- Maia, I.; Kranzl, L. Analysis of step-by-step individual buildings roadmaps—What can we learn about the practice? In Building Simulation Conference Proceedings, 2022; Saelens, D., Laverge, J., Boydens, W., Helsen, L., Eds.; International Building Performance Simulation Association: Brisbane, Australia, 2022; pp. 135–142. [Google Scholar]
- Mellwig, P.; Pehnt, M.; Lempik, J.; Volt, J.; Deliyannis, A.; Papaglastra, M.; Corovessi, A.; Touloupaki, E. iBRoad2EPC—Upgrading EPCs to Support Europe’s Climate Ambitions. In Proceedings of the Eceee Summer Study Proceedings, Hyères, France, 6–11 June 2022; European Council for an Energy Efficient Economy: Stockholm, Sweden, 2022; pp. 875–883. [Google Scholar]
- Byers, B.S.; Hunhevicz, J.; Honic, M.; De Wolf, C. Exploring Tokenized Product Passport for Circular Construction Supply Chains. In Proceedings of the European Conference on Computing in Construction, 2024; Srećković, M., Kassem, M., Soman, R., Chassiakos, A., Eds.; European Council on Computing in Construction (EC3): St-Niklaas, Belgium, 2024; pp. 34–41. [Google Scholar]
- Jansen, M.; Meisen, T.; Plociennik, C.; Berg, H.; Pomp, A.; Windholz, W. Stop Guessing in the Dark: Identified Requirements for Digital Product Passport Systems. Systems 2023, 11, 123. [Google Scholar] [CrossRef]
- Bernardo, G.; Guida, A. Building Heritage Materials Passports (BHMPs) for Resilient Communities. In Lecture Notes in Civil Engineering; Corrao, R., Campisi, T., Colajanni, S., Saeli, M., Vinci, C., Eds.; Springer Science and Business Media Deutschland GmbH: Berlin, Germany, 2025; pp. 115–127. [Google Scholar]
- Charef, R.; Emmitt, S. Uses of building information modelling for overcoming barriers to a circular economy. J. Clean. Prod. 2021, 285, 124854. [Google Scholar] [CrossRef]
- Pomponi, F.; Moncaster, A. Circular economy for the built environment: A research framework. J. Clean. Prod. 2017, 143, 710–718. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Das, B.B. Life Cycle Assessment of construction materials: Methodologies, applications and future directions for sustainable decision-making. Case Stud. Constr. Mater. 2023, 19, e02326. [Google Scholar] [CrossRef]
- Koppelaar, R.H.; Pamidi, S.; Hajósi, E.; Herreras, L.; Leroy, P.; Jung, H.-Y.; Concheso, A.; Daniel, R.; Francisco, F.B.; Parrado, C. A digital product passport for critical raw materials reuse and recycling. Sustainability 2023, 15, 1405. [Google Scholar] [CrossRef]
- Vahidi, A.; Gebremariam, A.T.; Di Maio, F.; Meister, K.; Koulaeian, T.; Rem, P. RFID-based material passport system in a recycled concrete circular chain. J. Clean. Prod. 2024, 442, 140973. [Google Scholar] [CrossRef]
- Rybak-Niedziółka, K.; Starzyk, A.; Łacek, P.; Mazur, Ł.; Myszka, I.; Stefańska, A.; Kurcjusz, M.; Nowysz, A.; Langie, K. Use of waste building materials in architecture and urban planning—A review of selected examples. Sustainability 2023, 15, 5047. [Google Scholar] [CrossRef]
- BS EN 15978:2011; Sustainability of Construction Works. Assessment of Environmental Performance of Buildings. Calculation Method. British Standards Institution: London, UK, 2011.
- Foster, G. Circular economy strategies for adaptive reuse of cultural heritage buildings to reduce environmental impacts. Resour. Conserv. Recycl. 2020, 152, 104507. [Google Scholar] [CrossRef]
- UK Research and Innovation. National Interdisciplinary Circular Economy Research (NICER). Available online: https://www.ukri.org/what-we-do/browse-our-areas-of-investment-and-support/national-interdisciplinary-circular-economy-research-nicer/ (accessed on 20 January 2025).
- Çetin, S. Towards a circular building industry through digitalisation: Exploring how digital technologies can help narrow, slow, close, and regenerate the loops in social housing practice. Archit. Built Environ. 2023, 22, 1–236. [Google Scholar] [CrossRef]
- Luscuere, L.M. Materials Passports: Optimising value recovery from materials. Proc. Inst. Civ. Eng. Waste Resour. Manag. 2017, 170, 25–28. [Google Scholar] [CrossRef]
- Maia, I.; Imamovic, I.; Kranzl, L.; Dorizas, V.; Toth, Z.; Lempik, J.; Mellwig, P. Integrating Building Renovation Passports into Energy Performance Certification Schemes for a Decarbonised Building Stock; Technische Universität Wien: Vienna, Austria, 2023. [Google Scholar]
- iBRoad Project. Available online: https://ibroad-project.eu/news/ibroad-webinar-2020-06-04/ (accessed on 27 December 2024).
- Sanchez, B.; Honic, M.; Leite, F.; Herthogs, P.; Stouffs, R. Augmenting materials passports to support disassembly planning based on building information modelling standards. J. Build. Eng. 2024, 90, 109083. [Google Scholar] [CrossRef]
- Maraqa, M.J.; Spatari, S. BIM Material Passport to Support Building Deconstruction and a Circular Economy. In Proceedings of the International Conference on Construction in the 21st Century, Amman, Jordan, 16–19 May 2022. [Google Scholar]
- Kovacic, I.; Honic, M. Scanning and data capturing for bim-supported resources assessment: A case study. J. Inf. Technol. Constr. 2021, 26, 624–638. [Google Scholar] [CrossRef]
- EPEA. The Circularity Passport: EPEA Presents Unique Analysis. Available online: https://www.epea.com/en/news/the-circularity-passportr-epea-presents-unique-analysis (accessed on 27 December 2024).
- Concular. Available online: https://concular.de/ (accessed on 27 December 2024).
- Upcyclea. Available online: https://upcyclea.com/en/ (accessed on 27 December 2024).
- Kennett Builders. Building a Greener Future. Available online: https://kennettbuilders.com.au/news/building-a-greener-future/ (accessed on 27 December 2024).
- van Straeten, D.; Kirkels, A.F.; Duindam, S.; Lommen, M. Revolutionizing material platforms: A deep dive into Cirdax’s Integration of Blockchain based material passports and assessing the optimal blockchain type for Cirdax and similar platforms. EIRES Res. Technol. Innov. Soc. 2023. [Google Scholar]
- Incorvaja, D.; Celik, Y.; Petri, I.; Rana, O. Circular Economy and Construction Supply Chains. In Proceedings of the 2022 IEEE/ACM 9th International Conference on Big Data Computing, Applications and Technologies, BDCAT 2022, Vancouver, WA, USA, 6–9 December 2022; pp. 92–99. [Google Scholar]
- Talla, A.; McIlwaine, S. Industry 4.0 and the circular economy: Using design-stage digital technology to reduce construction waste. Smart Sustain. Built Environ. 2024, 13, 179–198. [Google Scholar] [CrossRef]
- Hunhevicz, J.J.; Bucher, D.F.; Soman, R.K.; Honic, M.; Hall, D.M.; De Wolf, C. Web3-Based Role and Token Data Access: The Case of Building Material Passports. In Proceedings of the European Conference on Computing in Construction, 2023; Kassem, M., Tagliabue, L.C., Amor, R., Sreckovic, M., Chassiakos, A., Eds.; European Council on Computing in Construction (EC3): St-Niklaas, Belgium, 2023. [Google Scholar]
- Hradil, P.; Jaakkola, K.; Tuominen, K. RFID-Based Traceability System for Constructional Steel Reuse. In Life-Cycle of Structures and Infrastructure Systems—Proceedings of the 8th International Symposium on Life-Cycle Civil Engineering, IALCCE 2023; Biondini, F., Frangopol, D.M., Eds.; CRC Press/Balkema: Leiden, The Netherlands, 2023; pp. 1295–1302. [Google Scholar]
- Dräger, P.; Letmathe, P.; Reinhart, L.; Robineck, F. Measuring circularity: Evaluation of the circularity of construction products using the ÖKOBAUDAT database. Environ. Sci. Eur. 2022, 34, 13. [Google Scholar] [CrossRef]
- Thilakarathna, L.; Weerasinghe, N.; Edirisinghe, R.; Setunge, S. Incorporating Environmental Impacts and End-of-Life Potential for Sustainable Asset Management Decision-Making. In Lecture Notes in Mechanical Engineering; Abdul-Nour, G., Ngoc Dinh, M., Seecharan, T., Crespo Márquez, A., Komljenovic, D., Amadi-Echendu, J., Mathew, J., Eds.; Springer Science and Business Media Deutschland GmbH: Berlin, Germany, 2024; pp. 119–130. [Google Scholar]
- Morganti, L.; Esnarrizaga, P.E.; Pracucci, A.; Zaffagnini, T.; Cortes, V.G.; Rudenå, A.; Brunklaus, B.; Larraz, J.A. Data-driven and LCA-based Framework for environmental and circular assessment of Modular Curtain Walls. J. Facade Design Eng. 2024, 12, 9–42. [Google Scholar] [CrossRef]
- Mollaei, A.; Bachmann, C.; Haas, C. A Framework for Estimating the Reuse Value of In Situ Building Materials. In Proceedings of the Construction Research Congress 2022: Project Management and Delivery, Controls, and Design and Materials—Selected Papers from Construction Research Congress 2022, Arlington, VA, USA, 9–12 March 2022; pp. 666–676. [Google Scholar]
- Bellini, A.; Andersen, B.; Klungseth, N.J.; Tadayon, A. Achieving a circular economy through the effective reuse of construction products: A case study of a residential building. J. Clean. Prod. 2024, 450, 141753. [Google Scholar] [CrossRef]
- Iacovidou, E.; Purnell, P.; Lim, M.K. The use of smart technologies in enabling construction components reuse: A viable method or a problem creating solution? J. Environ. Manag. 2018, 216, 214–223. [Google Scholar] [CrossRef]
- Koutamanis, A.; van Reijn, B.; van Bueren, E. Urban mining and buildings: A review of possibilities and limitations. Resour. Conserv. Recycl. 2018, 138, 32–39. [Google Scholar] [CrossRef]
- Di Maria, A.; Eyckmans, J.; Van Acker, K. Downcycling versus recycling of construction and demolition waste: Combining LCA and LCC to support sustainable policy making. Waste Manag. 2018, 75, 3–21. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, M.; Yang, X.; Miranda-Xicotencatl, B.; Sprecher, B.; Di Maio, F.; Zhong, X.; Tukker, A. Upgrading construction and demolition waste management from downcycling to recycling in the Netherlands. J. Clean. Prod. 2020, 266, 121718. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.A. Framework for designing sustainable structures through steel beam reuse. Sustainability 2020, 12, 9494. [Google Scholar] [CrossRef]
- Nwonu, D.C.; Josa, I.; Bernal, S.A.; Velenturf, A.P.M.; Hafez, H. CirCrete: A multi-criteria performance-based decision support framework for end-of-life management of concrete. Renew. Sustain. Energy Rev. 2025, 211, 115232. [Google Scholar] [CrossRef]
- Sainsbury, R.M. Concepts without boundaries. In Vagueness: A Reader; MIT Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Rebelo Moreira, J.L. The Role of Interoperability for Digital Twins. In Lecture Notes in Business Information Processing; Sales, T.P., de Kinderen, S., Proper, H.A., Pufahl, L., Karastoyanova, D., van Sinderen, M., Eds.; Springer Science and Business Media Deutschland GmbH: Berlin, Germany, 2024; pp. 139–157. [Google Scholar]
- Mulhall, D.; Hansen, K.; Luscuere, L.; Zanatta, R.; Willems, R.; Boström, J.; Elfström, L.; Heinrich, M.; Lang, W. Buildings as Materials Banks (BAMB)-Framework for Materials Passports. 2017. Available online: https://www.bamb2020.eu/wp-content/uploads/2018/01/Framework-for-Materials-Passports-for-the-webb.pdf (accessed on 10 January 2025).
- Kedir, F.; Bucher, D.F.; Hall, D.M. A Proposed Material Passport Ontology to Enable Circularity for Industrialized Construction. In Proceedings of the European Conference on Computing in Construction, 2021; Hall, D.M., Chassiakos, A., O’Donnell, J., Nikolic, D., Xenides, Y., Eds.; European Council on Computing in Construction (EC3): St-Niklaas, Belgium, 2021; pp. 91–98. [Google Scholar]
- ISO 10303-1:2024; Industrial Automation Systems and Integration-Product Data Representation and Exchange; Part 1: Overview and Fundamental Principles. International Organization for Standardization: Geneva, Switzerland, 2024.
- GS1 Global Traceability Standard; GS1’s Framework for the Design of Interoperable Traceability Systems for Supply Chains. GS1 AISBL: Brussels, Belgium, 2017.
- Munaro, M.R.; Tavares, S.F. Materials passport’s review: Challenges and opportunities toward a circular economy building sector. Built Environ. Proj. Asset Manag. 2021, 11, 767–782. [Google Scholar] [CrossRef]
- Park, J.Y.; Chertow, M.R. Establishing and testing the “reuse potential” indicator for managing wastes as resources. J. Environ. Manag. 2014, 137, 45–53. [Google Scholar] [CrossRef]
- Mayer, M. Recycling Potential of Construction Materials: A Comparative Approach. Constr. Mater. 2024, 4, 238–250. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. Methodology: An Approach to Measuring Circularity; Ellen MacArthur Foundation: Cowes, UK, 2015. [Google Scholar]
- O’Grady, T.; Minunno, R.; Chong, H.-Y.; Morrison, G.M. Design for disassembly, deconstruction and resilience: A circular economy index for the built environment. Resour. Conserv. Recycl. 2021, 175, 105847. [Google Scholar] [CrossRef]
- Ruggiero, R.; Cognoli, R.; Cocco, P.L. From Debris to the Data Set (DEDA) a Digital Application for the Upcycling of Waste Wood Material in Post Disaster Areas. In Lecture Notes in Mechanical Engineering; Springer Science and Business Media Deutschland GmbH: Berlin, Germany, 2024; Volume Part F1562, pp. 807–835. [Google Scholar]
- AS ISO 59020:2024; Circular Economy—Measuring Circularity Performance. Standards Australia: Sydney, Australia, 2024.
- Gómez-Gil, M.; Espinosa-Fernández, A.; López-Mesa, B. Contribution of New Digital Technologies to the Digital Building Logbook. Buildings 2022, 12, 2129. [Google Scholar] [CrossRef]
- AS ISO 14044:2019; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. Standards Australia: Sydney, Australia, 2019.
- ISO 14067:2018; Greenhouse Gases—Carbon Footprint of Products-Requirements and Guidelines for Quantification. International Organization for Standardization: Geneva, Switzerland, 2018.
- ISO 15686-5:2017; Buildings and Constructed Assets—Service Life Planning. International Organization for Standardization: Geneva, Switzerland, 2017.
- Verma, S.K.; Bhadauria, S.S.; Akhtar, S. Estimating residual service life of deteriorated reinforced concrete structures. Am. J. Civ. Eng. Archit. 2013, 1, 92–96. [Google Scholar]
- Wei, H.; Wu, T.; Sun, L.; Liu, X. Evaluation of cracking and serviceability performance of lightweight aggregate concrete deep beams. KSCE J. Civ. Eng. 2020, 24, 3342–3355. [Google Scholar] [CrossRef]
- AS 3972-2010; General Purpose and Blended Cements. Standards Australia: Sydney, Australia, 2010.
- AS 1141.1:2015; Methods for Sampling and Testing Aggregates, Part 1: Definitions. Standards Australia: Sydney, Australia, 2015.
- AS 1379-2007; Specification and Supply of Concrete. Standards Australia: Sydney, Australia, 2007.
- AS 3600:2018; Concrete Structures Designation. Standards Australia: Sydney, Australia, 2018.
- SA HB 84:2018; Guide to Concrete Repair and Protection. Standards Australia: Sydney, Australia, 2018.
- ISO 20887; Sustainability in Buildings and Civil Engineering Works—Design for Disassembly and Adaptability—Principles, Requirements and Guidance. International Organization for Standardization: Geneva, Switzerland, 2020.
- AS 2758.1:2014; Aggregates and Rock for Engineering Purposes Concrete Aggregates. Standards Australia: Sydney, Australia, 2014.
- ISO 14008:2019; Monetary Valuation of Environmental Impacts and Related Environmental Aspects. International Organization for Standardization: Geneva, Switzerland, 2024.
- Hossain, M.U.; Ng, S.T.; Antwi-Afari, P.; Amor, B. Circular economy and the construction industry: Existing trends, challenges and prospective framework for sustainable construction. Renew. Sustain. Energy Rev. 2020, 130, 109948. [Google Scholar] [CrossRef]
- Widmer, N.; Bastien-Masse, M.; Fivet, C. Building structures made of reused cut reinforced concrete slabs and walls: A case study. In Life-Cycle of Structures and Infrastructure Systems; CRC Press: Boca Raton, FL, USA, 2023; pp. 172–179. [Google Scholar]
Reference | Developed MP | Case Study Details |
---|---|---|
[4] | BIM-integrated MP for automated sustainability assessment | Traditional residential building to evaluate its sustainability performance |
[64] | MP framework integrating disassembly planning with BIM standards | Disassembly planning and assessing the reusability of various building components |
[65] | MP using BIM and material flow analysis to assess the recycling potential of construction materials | Tested on a LEED-certified commercial building (recycling and reuse potential of concrete and glass curtain walls) |
[66] | BIM-supported MP using laser scanning and ground-penetrating radar to capture building geometry and material composition | Office and laboratory facility at Vienna University, integrating |
[30] | BIM-based MP to analyze the recycling potential and environmental impact | Evaluated two variants (timber and concrete) of a residential building in Austria |
[25] | Semi-automated BIM-supported MP framework to improve recycling potential assessment | Real-world construction project, addressing challenges related to data inconsistency and the importance of stakeholder collaboration |
Key Function | Sub Functions | Reference | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[28] | [72] | [43] | [13] | [66] | [48] | [31] | [73] | [74] | [14] | [75] | [12] | [50] | [30] | [25] | [64] | [76] | [36] | [4] | [77] | [78] | [79] | [35] | ||
Material tracking and management | Material tracing (tracking of material details from origin to EoL using unique identifiers) | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |||||
Inventory management (cataloguing material composition, location, and condition to support urban mining and material cadastre) | x | x | x | x | x | |||||||||||||||||||
Circularity assessment | Reusability assessment (determining the potential of materials or components to reuse in their original form without extensive reprocessing) | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |||||||||
Recyclability assessment (evaluating the potential of materials to be processed into new products or components) | x | x | x | x | x | x | x | x | x | x | x | x | x | |||||||||||
Reversibility assessment (evaluating the ease with which construction materials or components can be disassembled, separated, and reclaimed from buildings) | x | x | x | x | x | x | x | |||||||||||||||||
Resource optimization (evaluating the efficient use of materials throughout the material’s lifecycle to minimize the need for virgin resources) | x | x | x | |||||||||||||||||||||
Waste optimization (determining the waste reduction options to avoid landfill disposal) | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||
Sustainability assessment | Environmental performance assessment (evaluating environmental impacts associated with the whole lifecycle of the material) | x | x | x | x | x | x | x | x | x | x | x | x | |||||||||||
Economic/financial assessment (evaluating the total cost of a material over its entire lifecycle) | x | x | x | x | x | |||||||||||||||||||
Quality assessment | Condition assessment (evaluating the performance and condition of materials to ensure EoL potential) | |||||||||||||||||||||||
Contamination and toxicity | x | x |
Lifecycle Stage | MP Function | Attributes | ||
---|---|---|---|---|
Raw material extraction and manufacturing | Material tracking and management | Material ID Material name/Type Batch number Brand name GTIN number Geographic origin | Manufacturer article number Manufacturer details Supplier details Weights/Quantity/Shape/Area/Length/Thickness/Volume | Manufacturing date Handling requirements Recommended usage Guidelines for storage Storage location |
Circularity assessment | Physical properties Chemical Properties Mineral composition Reused/recycled/Renewable content of an inflow Renewable/non-renewable energy consumption Energy efficiency | GWP/ODP/AP/Eutrophication Potential (EP)/Photochemical Ozone Creation Potential (POCP)/Abiotic Depletion Potential (Elements) (ADPE)/Abiotic Depletion Potential (Fossil fuels) (ADPF)/Carbon footprint Health and safety | Energy/Water/Emissions Transport distances and modes Resource inflow/outflow Material productivity Transportation/handling cost Pathogens/Toxicity Unit price/Decommissioning/ | |
Sustainability assessment | Manufacturing cost Transport distances | Renewable/Non-renewable energy consumption | ||
Quality assessment | Content and quality (cement, aggregate, admixtures, SCMs, and fiber) Water quality/pH Total dissolved solids | Workability (Slump) Air Content Density Bleeding Cohesion Temperature | Segregation resistance Setting time Ionic content/Solid content/Organic/Biological impurities | |
Construction/Installation | Material tracking and management | Material ID Date of installation | Location Service life | |
Circularity assessment | Applied coatings Joining technique | |||
Sustainability assessment | Water/Land use Emission Levels Other environmental impact details | Renewable/Non-renewable energy consumption Designed Lifespan and durability | Warranties/Payment terms | |
Quality assessment | Compressive/Flexural/Tensile strength Elastic Modulus | Drying Shrinkage/Creep Deflection Freeze-thaw resistance | Permeability Abrasion resistance Load-bearing capacity | |
Use/maintenance | Material tracking and management | Material ID | Maintenance date Repairs done | Image/QR code/digital tag |
Circularity assessment | Usage history | Replaced or repaired parts | ||
Sustainability assessment | Maintenance/operation cost | |||
Quality assessment | Repaired or replaced sections | Inspection frequency Condition survey data | ||
End of life | Material tracking and management | Material ID | ||
Circularity assessment | Substances for recycling/energy recovery Disposed waste Disassembly process | Contamination level Replaceability/Removability/Weldability/ | Components for reuse Actual recirculation of outflow in the biological cycle | |
Sustainability assessment | Deconstruction/Demolition cost/Reuse/Recycling/Recovery cost/ landfill Regulatory costs/Tax benefits | Emission levels Transport distances Potential income from reuse scenarios/ | Waste Generation (hazardous, non-hazardous, and radioactive waste) | |
Quality assessment | Void percentage Thickness of the delaminated layer Carbonation depth | Thickness of efflorescence deposits Crack width and depth | Depth of scaling Spalled depth Corrosion Chloride ion penetration | |
Sources | [4]; [12]; [28]; [31]; [35]; [36]; [43]; [48]; [64]; [66]; [77]; [78]; AS 3972:2010 [106]; AS 1141: 2015 [107]; AS 2758.1: 2014 [112]; AS 1379: 2007 [108]; AS 3600: 2018 [109]; SA HB 84:2018 [110]; ISO 10303:2024 [91]; GS1 Global Traceability Standard [92]; AS ISO 59020:2024 [99]; ISO 14067:2018 [102]; AS ISO 14044:2019 [101]; ISO 15686-5:2017 [103]; ISO 14008:2019 [113]; ISO 20887:2020 [111] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senarathne, H.N.Y.; Weerasinghe, N.P.; Zhang, G. Developing a Standardized Materials Passport Framework to Unlock the Full Circular Potential in the Construction Industry. Sustainability 2025, 17, 6337. https://doi.org/10.3390/su17146337
Senarathne HNY, Weerasinghe NP, Zhang G. Developing a Standardized Materials Passport Framework to Unlock the Full Circular Potential in the Construction Industry. Sustainability. 2025; 17(14):6337. https://doi.org/10.3390/su17146337
Chicago/Turabian StyleSenarathne, Helapura Nuwanshi Yasodara, Nilmini Pradeepika Weerasinghe, and Guomin Zhang. 2025. "Developing a Standardized Materials Passport Framework to Unlock the Full Circular Potential in the Construction Industry" Sustainability 17, no. 14: 6337. https://doi.org/10.3390/su17146337
APA StyleSenarathne, H. N. Y., Weerasinghe, N. P., & Zhang, G. (2025). Developing a Standardized Materials Passport Framework to Unlock the Full Circular Potential in the Construction Industry. Sustainability, 17(14), 6337. https://doi.org/10.3390/su17146337