The Impact of Green Technological Innovation on Industrial Structural Optimization Under Dual-Carbon Targets: The Role of the Moderating Effect of Carbon Emission Efficiency
Abstract
1. Introduction
2. Literature Review
2.1. Technological Innovation and Industrial Structural Optimization
2.2. Carbon Emission Efficiency and Industrial Structural Optimization
2.3. Constraint Mechanisms of Technological Innovation Driving Industrial Structural Optimization
3. Theoretical Analysis and Hypotheses Development
4. Empirical Design
4.1. Empirical Model
4.2. Data and Variables
4.2.1. Explained Variables
4.2.2. Core Explanatory Variable
4.2.3. Threshold Variable
4.2.4. Control Variables
4.3. Data Description and Descriptive Statistics
5. Empirical Results and Discussion
5.1. Baseline Results
5.2. Moderating Effect Results
5.3. Threshold Regression Results
5.4. Heterogeneity Analysis
5.5. Robustness Test
6. Conclusions and Policy Recommendations
6.1. Main Conclusions
6.2. Policy Recommendations
7. Insufficient Research and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ouyang, X.; Zhuang, W.; Sun, C. Haze, Health, and Income: An Integrated Model for Willingness to Pay for Haze Mitigation in Shanghai, China. Energy Econ. 2019, 84, 104535. [Google Scholar] [CrossRef]
- Samant, S.; Thakur-Wernz, P.; Hatfield, D.E. Does the Focus of Renewable Energy Policy Impact the Nature of Innovation? Evidence from Emerging Economies. Energy Policy 2020, 137, 111119. [Google Scholar] [CrossRef]
- Zhang, W.; Han, J.; Kuang, S.; Işık, C.; Su, Y.; Ju Lai Ti, G.L.N.G.E.; Li, S.; Xia, Z.; Muhammad, A. Exploring the Impact of Sustainable Finance on Carbon Emissions: Policy Implications and Interactions with Low-Carbon Energy Transition from China. Resour. Policy 2024, 97, 105272. [Google Scholar] [CrossRef]
- Arab, A.M.A.; Kareem, P.H.; Işıktaş, S. Driving Sustainable Energy Goals: Testing the Impact of Investment, Technological Innovations, and Oil Rent on Renewable Energy Development6 in Brazil, Russia, India, China, and South Africa Economies. Sustainability 2025, 17, 3143. [Google Scholar] [CrossRef]
- Murshed, M.; Apergis, N.; Alam, M.S.; Khan, U.; Mahmud, S. The Impacts of Renewable Energy, Financial Inclusivity, Globalization, Economic Growth, and Urbanization on Carbon Productivity: Evidence from Net Moderation and Mediation Effects of Energy Efficiency Gains. Renew. Energy 2022, 196, 824–838. [Google Scholar] [CrossRef]
- Zhang, W.; Bakhsh, S.; Ali, K.; Anas, M. Fostering Environmental Sustainability: An Analysis of Green Investment and Digital Financial Inclusion in China Using Quantile-on-Quantile Regression and Wavelet Coherence Approach. Gondwana Res. 2024, 128, 69–85. [Google Scholar] [CrossRef]
- Ali, N.; Phoungthong, K.; Techato, K.; Ali, W.; Abbas, S.; Dhanraj, J.A.; Khan, A. FDI, Green Innovation and Environmental Quality Nexus: New Insights from BRICS Economies. Sustainability 2022, 14, 2181. [Google Scholar] [CrossRef]
- Alamandi, M. Sustainable Innovation Management: Balancing Economic Growth and Environmental Responsibility. Sustainability 2025, 17, 4362. [Google Scholar] [CrossRef]
- Wu, H.; Xu, L.; Ren, S.; Hao, Y.; Yan, G. How Do Energy Consumption and Environmental Regulation Affect Carbon Emissions in China? New Evidence from a Dynamic Threshold Panel Model. Resour. Policy 2020, 67, 101678. [Google Scholar] [CrossRef]
- Han, J.; Zhang, W.; Işık, C.; Muhammad, A.; Yan, J. General Equilibrium Model-Based Green Finance, Decarbonization and High-Quality Economic Development: A New Perspective from Knowledge Networks. Environ. Dev. Sustain. 2025, 27, 4225–4260. [Google Scholar] [CrossRef]
- Romer, P.M. Endogenous Technological Change. J. Political Econ. 1990, 98, S71–S102. [Google Scholar] [CrossRef]
- Kogan, L.; Papanikolaou, D.; Seru, A.; Stoffman, N. Technological Innovation, Resource Allocation, and Growth. Q. J. Econ. 2017, 132, 665–712. [Google Scholar] [CrossRef]
- Klepper, S. Firm Survival and the Evolution of Oligopoly. RAND J. Econ. 2002, 33, 37–61. [Google Scholar] [CrossRef]
- Chapman, A.; Fujii, H.; Managi, S. Key Drivers for Cooperation toward Sustainable Development and the Management of CO2 Emissions: Comparative Analysis of Six Northeast Asian Countries. Sustainability 2018, 10, 244. [Google Scholar] [CrossRef]
- Atkinson, A.B.; Stiglitz, J.E. A new view of technological change. Econ. Econ. J. 1969, 79, 573–578. [Google Scholar]
- Caselli, F.; Coleman, W.J., II. The World Technology Frontier. Am. Econ. Rev. 2006, 96, 499–522. [Google Scholar] [CrossRef]
- Liao, H.; Yang, L.; Ma, H.; Zheng, J. Technology Import, Secondary Innovation, and Industrial Structure Optimization: A Potential Innovation Strategy for China. Pac. Econ. Rev. 2020, 25, 145–160. [Google Scholar] [CrossRef]
- Dosi, G. Sources, procedures, and microeconomic effects of innovation. J. Econ. Lit. 1988, 26, 1120–1171. [Google Scholar]
- Cavusgil, S.T.; Knight, G. The Born Global Firm: An Entrepreneurial and Capabilities Perspective on Early and Rapid Internationalization. J. Int. Bus. Stud. 2015, 46, 3–16. [Google Scholar] [CrossRef]
- Breschi, S.; Malerba, F.; Orsenigo, L. Technological Regimes and Schumpeterian Patterns of Innovation. Econ. J. 2000, 110, 388–410. [Google Scholar] [CrossRef]
- Peneder, M. Industrial Structure and Aggregate Growth. Struct. Change Econ. Dyn. 2003, 14, 427–448. [Google Scholar] [CrossRef]
- Gustafsson, R.; Jääskeläinen, M.; Maula, M.; Uotila, J. Emergence of Industries: A Review and Future Directions. Int. J. Manag. Rev. 2016, 18, 28–50. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, H.; Tian, K. Impact of FDI on Industrial Structure Upgrading under Green Technology Innovation in Jiangsu, China. J. Environ. Eng. Landsc. Manag. 2023, 31, 206–218. [Google Scholar] [CrossRef]
- Wang, H.; Cui, H.; Zhao, Q. Effect of Green Technology Innovation on Green Total Factor Productivity in China: Evidence from Spatial Durbin Model Analysis. J. Clean. Prod. 2021, 288, 125624. [Google Scholar] [CrossRef]
- Xie, R.; Teo, T.S.H. Green Technology Innovation, Environmental Externality, and the Cleaner Upgrading of Industrial Structure in China—Considering the Moderating Effect of Environmental Regulation. Technol. Forecast. Soc. Change 2022, 184, 122020. [Google Scholar] [CrossRef]
- Boakye, D.J.; Tingbani, I.; Ahinful, G.S.; Nsor-Ambala, R. The Relationship between Environmental Management Performance and Financial Performance of Firms Listed in the Alternative Investment Market (AIM) in the UK. J. Clean. Prod. 2021, 278, 124034. [Google Scholar] [CrossRef]
- Chen, K.; Bian, R. Green Financing and Renewable Resources for China’s Sustainable Growth: Assessing Macroeconomic Industry Impact. Resour. Policy 2023, 85, 103927. [Google Scholar] [CrossRef]
- Criscuolo, C.; Menon, C. Environmental policies and risk finance in the green sector: Cross-country evidence. Energy Policy 2015, 83, 38–56. [Google Scholar] [CrossRef]
- Costa, J.; Matias, J.C.O. Open Innovation 4.0 as an Enhancer of Sustainable Innovation Ecosystems. Sustainability 2020, 12, 8112. [Google Scholar] [CrossRef]
- Zhang, W.; He, X.; Liu, X. Does Green Finance Improve the Industrial Eco-Efficiency in China? Environ. Sci. Pollut. Res. 2023, 30, 14484–14496. [Google Scholar] [CrossRef]
- Ben Belgacem, S.; Khatoon, G.; Alzuman, A. Role of Renewable Energy and Financial Innovation in Environmental Protection: Empirical Evidence from UAE and Saudi Arabia. Sustainability 2023, 15, 8684. [Google Scholar] [CrossRef]
- Zhang, W.; Ke, J.; Ding, Y.; Chen, S. Greening through Finance: Green Finance Policies and Firms’ Green Investment. Energy Econ. 2024, 131, 107401. [Google Scholar] [CrossRef]
- Liu, X.; Zuo, Z.; Han, J.; Zhang, W. Is Digital-Green Synergy the Future of Carbon Emission Performance? J. Environ. Manag. 2025, 375, 124156. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, X. Green Financial Risk Management Based on Intelligence Service. J. Clean. Prod. 2022, 364, 132617. [Google Scholar] [CrossRef]
- Sarkar, A.N. Promoting Eco-Innovations to Leverage Sustainable Development of Eco-Industry and Green Growth. Eur. J. Sustain. Dev. 2013, 2, 171. [Google Scholar] [CrossRef]
- Ghisetti, C.; Quatraro, F. Green Technologies and Environmental Productivity: A Cross-Sectoral Analysis of Direct and Indirect Effects in Italian Regions. Ecol. Econ. 2017, 132, 1–13. [Google Scholar] [CrossRef]
- Ben Kheder, S.; Zugravu, N. Environmental Regulation and French Firms Location Abroad: An Economic Geography Model in an International Comparative Study. Ecol. Econ. 2012, 77, 48–61. [Google Scholar] [CrossRef]
- Ghisetti, C.; Mancinelli, S.; Mazzanti, M.; Zoli, M. Financial Barriers and Environmental Innovations: Evidence from EU Manufacturing Firms. Clim. Policy 2017, 17, S131–S147. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Liu, Z.; Zhang, H.; Tan, T.-D. The Impact of Economic Growth, Industrial Structure and Urbanization on Carbon Emission Intensity in China. Nat. Hazards 2014, 73, 579–595. [Google Scholar] [CrossRef]
- Tang, W.; Wu, L.; Qian, H. From pollution-heaven to green-growth—Impact of carbon-market relocation of energy-intensive-sectors. Econ. Res. J. 2016, 51, 58–70. (In Chinese) [Google Scholar]
- Zhang, L.; Liu, B.; Du, J.; Liu, C.; Li, H.; Wang, S. Internationalization Trends of Carbon Emission Linkages: A Case Study on the Construction Sector. J. Clean. Prod. 2020, 270, 122433. [Google Scholar] [CrossRef]
- Carpena, F.; Cole, S.; Shapiro, J.; Zia, B. Liability Structure in Small-Scale Finance: Evidence from a Natural Experiment. World Bank Econ. Rev. 2013, 27, 437–469. [Google Scholar] [CrossRef]
- Han, J.; Sun, Q.; Jiang, Y. Studying the Risk Spillover Effects of the Carbon Market and High-Carbon-Emission Industries under Economic Uncertainty. Front. Environ. Sci. 2024, 12, 1407135. [Google Scholar] [CrossRef]
- Tian, J.; Liu, Y.; Lan, M. Is Carbon Trading Working for Construction Companies Green Development? Evidence from Listed Chinese Companies. Front. Environ. Sci. 2024, 12, 1414086. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, X.; Wang, X. Research on Coupling Degree and Coupling Path between China’s Carbon Emission Efficiency and Industrial Structure Upgrading. Environ. Sci. Pollut. Res. 2020, 27, 25149–25162. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, T. The Impact of Cross-Region Industrial Structure Optimization on Economy, Carbon Emissions and Energy Consumption: A Case of the Yangtze River Delta. Sci. Total Environ. 2021, 778, 146089. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Liu, T. Empirical Analysis on the Factors Influencing National and Regional Carbon Intensity in China. Renew. Sustain. Energy Rev. 2016, 55, 34–42. [Google Scholar] [CrossRef]
- He, J.; Wang, H. Economic Structure, Development Policy and Environmental Quality: An Empirical Analysis of Environmental Kuznets Curves with Chinese Municipal Data. Ecol. Econ. 2012, 76, 49–59. [Google Scholar] [CrossRef]
- Xu, L.; Shu, H.; Lu, X.; Li, T. Regional Technological Innovation and Industrial Upgrading in China: An Analysis Using Interprovincial Panel Data from 2008 to 2020. Financ. Res. Lett. 2024, 66, 105621. [Google Scholar] [CrossRef]
- Gao, X.; Li, C.; Elahi, E.; Abro, M.I.; Cui, Z. Technological Innovation, Product Quality and Upgrading of Manufacturing Value Chain: Empirical Evidence from China. Sustainability 2023, 15, 7289. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, W.; Gu, R. How Does Digital Infrastructure Affect Industrial Eco-Efficiency? Considering the Threshold Effect of Regional Collaborative Innovation. J. Clean. Prod. 2023, 427, 139248. [Google Scholar] [CrossRef]
- Wang, H.; Sun, X.; Lu, X. Regional Integration, Technological Innovation, and Digital Economy: Evolution and Evidence of the Decarbonization Driving Forces in the Yangtze River Delta. Sustainability 2025, 17, 5463. [Google Scholar] [CrossRef]
- Jaffe, A.B.; Palmer, K. Environmental Regulation and Innovation: A Panel Data Study. Rev. Econ. Stat. 1997, 79, 610–619. [Google Scholar]
- Murmann, J.P. Knowledge and Competitive Advantage: The Coevolution of Firms, Technology, and National Institutions; Cambridge University Press: Cambridge, UK, 2007; ISBN 978-0-521-81329-7. [Google Scholar]
- Khattak, S.I.; Khan, A.M.; Khan, M.K.; Li, C.; Liu, J.; Pi, Z. Do Regional Government Green Innovation Preferences Promote Industrial Structure Upgradation in China? Econometric Assessment Based on the Environmental Regulation Threshold Effect Model. Front. Environ. Sci. 2022, 10, 995990. [Google Scholar] [CrossRef]
- Chenic, A.Ș.; Cretu, A.I.; Burlacu, A.; Moroianu, N.; Vîrjan, D.; Huru, D.; Stanef-Puica, M.R.; Enachescu, V. Logical Analysis on the Strategy for a Sustainable Transition of the World to Green Energy—2050. Smart Cities and Villages Coupled to Renewable Energy Sources with Low Carbon Footprint. Sustainability 2022, 14, 8622. [Google Scholar] [CrossRef]
- Ge, T.; Cai, X.; Song, X. How Does Renewable Energy Technology Innovation Affect the Upgrading of Industrial Structure? The Moderating Effect of Green Finance. Renew. Energy 2022, 197, 1106–1114. [Google Scholar] [CrossRef]
- Al-tabatabaie, K.F.; Hossain, B.; Islam, K.; Awual, R.; TowfiqulIslam, A.R.; Hossain, A.; Esraz-Ul-Zannat; Islam, A. Taking Strides towards Decarbonization: The Viewpoint of Bangladesh. Energy Strategy Rev. 2022, 44, 100948. [Google Scholar] [CrossRef]
- Ampah, J.D.; Jin, C.; Agyekum, E.B.; Afrane, S.; Geng, Z.; Adun, H.; Yusuf, A.A.; Liu, H.; Bamisile, O. Performance Analysis and Socio-Enviro-Economic Feasibility Study of a New Hybrid Energy System-Based Decarbonization Approach for Coal Mine Sites. Sci. Total Environ. 2023, 854, 158820. [Google Scholar] [CrossRef]
- Hossain, M.R.; Singh, S.; Sharma, G.D.; Apostu, S.-A.; Bansal, P. Overcoming the Shock of Energy Depletion for Energy Policy? Tracing the Missing Link between Energy Depletion, Renewable Energy Development and Decarbonization in the USA. Energy Policy 2023, 174, 113469. [Google Scholar] [CrossRef]
- Luo, P.; Tang, X.; Dou, X.; Liu, S.; Ren, K.; Jiang, Y.; Yang, Z.; Ding, Y.; Li, M. Uncovering the Socioeconomic Impacts of China’s Power System Decarbonization. Environ. Impact Assess. Rev. 2023, 99, 107015. [Google Scholar] [CrossRef]
- Li, X.; Wang, R.; Shen, Z.Y.; Song, M. Green Credit and Corporate Energy Efficiency: Enterprise Pollution Transfer or Green Transformation. Energy 2023, 285, 129345. [Google Scholar] [CrossRef]
- Papadis, E.; Tsatsaronis, G. Challenges in the Decarbonization of the Energy Sector. Energy 2020, 205, 118025. [Google Scholar] [CrossRef]
- Greenstone, M.; He, G.; Jia, R.; Liu, T. Can Technology Solve the Principal-Agent Problem? Evidence from China’s War on Air Pollution. Am. Econ. Rev. Insights 2022, 4, 54–70. [Google Scholar] [CrossRef]
- Zhang, D.; Lucey, B.M. Sustainable Behaviors and Firm Performance: The Role of Financial Constraints’ Alleviation. Econ. Anal. Policy 2022, 74, 220–233. [Google Scholar] [CrossRef]
- Brown, J.R.; Martinsson, G.; Petersen, B.C. Do Financing Constraints Matter for R&D? Eur. Econ. Rev. 2012, 56, 1512–1529. [Google Scholar] [CrossRef]
- Amore, M.D.; Schneider, C.; Žaldokas, A. Credit Supply and Corporate Innovation. J. Financ. Econ. 2013, 109, 835–855. [Google Scholar] [CrossRef]
- Li, S.; Zhang, W.; Zhao, J. Does Green Credit Policy Promote the Green Innovation Efficiency of Heavy Polluting Industries?—Empirical Evidence from China’s Industries. Environ. Sci. Pollut. Res. 2022, 29, 46721–46736. [Google Scholar] [CrossRef]
- Yuan, S.; Sun, X.; Chen, W.; Li, Y. Study on the Measurement of Industrial Structure “Sophistication, Rationalization and Ecologicalization” Based on the Dynamic Analysis of Grey Relations—A Case Study of Beijing-Tianjin-Hebei. J. Syst. Sci. Inf. 2020, 8, 130–147. [Google Scholar] [CrossRef]
- Wang, K.; Wu, M.; Sun, Y.; Shi, X.; Sun, A.; Zhang, P. Resource Abundance, Industrial Structure, and Regional Carbon Emissions Efficiency in China. Resour. Policy 2019, 60, 203–214. [Google Scholar] [CrossRef]
- Hao, X.; Li, Y.; Ren, S.; Wu, H.; Hao, Y. The Role of Digitalization on Green Economic Growth: Does Industrial Structure Optimization and Green Innovation Matter? J. Environ. Manag. 2023, 325, 116504. [Google Scholar] [CrossRef]
- Ernst, D. Catching-up Crisis and Industrial Upgrading: Evolutionary Aspects of Technological Learning in Korea’s Electronics Industry. Asia Pac. J. Manag. 1998, 15, 247–283. [Google Scholar] [CrossRef]
- Kaplinsky, R.; Readman, J. Globalization and Upgrading: What Can (and Cannot) Be Learnt from International Trade Statistics in the Wood Furniture Sector? Ind. Corp. Change 2005, 14, 679–703. [Google Scholar] [CrossRef]
- Ang, B.W. Monitoring Changes in Economy-Wide Energy Efficiency: From Energy–GDP Ratio to Composite Efficiency Index. Energy Policy 2006, 34, 574–582. [Google Scholar] [CrossRef]
- Abdullah, M.; Zailani, S.; Iranmanesh, M.; Jayaraman, K. Barriers to Green Innovation Initiatives among Manufacturers: The Malaysian Case. Rev. Manag. Sci. 2016, 10, 683–709. [Google Scholar] [CrossRef]
- Zhang, J.; Zeng, W.; Wang, J.; Yang, F.; Jiang, H. Regional Low-Carbon Economy Efficiency in China: Analysis Based on the Super-SBM Model with CO2 Emissions. J. Clean. Prod. 2017, 163, 202–211. [Google Scholar] [CrossRef]
- Wang, R.; Zameer, H.; Feng, Y.; Jiao, Z.; Xu, L.; Gedikli, A. Revisiting Chinese Resource Curse Hypothesis Based on Spatial Spillover Effect: A Fresh Evidence. Resour. Policy 2019, 64, 101521. [Google Scholar] [CrossRef]
- Inekwe, J.N. The Contribution of R&D Expenditure to Economic Growth in Developing Economies. Soc. Indic. Res. 2015, 124, 727–745. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, S.; Wang, X.; Wu, J. Does Institutional Quality Matter for Export Product Quality? Evidence from China. J. Int. Trade Econ. Dev. 2021, 30, 1077–1100. [Google Scholar] [CrossRef]
Variable Type | Variable Name | Variable Description | Data Source |
---|---|---|---|
Input Variables | Labor | Number of Employees | China Statistical Yearbook and Provincial Yearbooks |
Capital | Fixed Asset Investment | ||
Energy | Total Energy Consumption | ||
Expected Output | GDP | Gross Domestic Product | |
Non-expected Output | Carbon Emissions | Carbon Dioxide Emissions | China Emission Accounts and Datasets (CEADs) |
Variable Type | Variable Name | Variable Description |
---|---|---|
Explained Variable | Industrial Structure Optimization (ISO) | Composite Index of Industrial Structural optimization |
Core Explanatory Variable | Green Technology Innovation (GTI) | Number of Green Patent Applications per 10,000 Persons |
Threshold Variable | Carbon Emission Efficiency (CEE) | The Logarithm of Carbon Emissions Efficiency |
Control Variables | Government Size (GOV) | Government Fiscal Expenditure/GDP |
Economic Development Level (GDP) | The Logarithm of GDP per Capita | |
Human Capital Level (HC) | Number of College Students per 10,000 Persons | |
R&D Intensity (RD) | R&D Expenditure/GDP | |
Openness Level (OPEN) | Foreign Direct Investment (FDI)/GDP | |
Intellectual Property Protection (IPR) | Technology Market Transactions/GDP |
Variable | Observation | Mean | Standard | Min. | Max. |
---|---|---|---|---|---|
ISO | 690 | 0.243 | 0.123 | 0.080 | 0.997 |
GTI | 690 | 6.666 | 1.974 | 1.099 | 10.93 |
CEE | 690 | 0.214 | 0.0750 | 0.101 | 0.738 |
GOV | 690 | 0.218 | 0.105 | 0.069 | 0.758 |
GDP | 690 | 10.23 | 0.878 | 7.923 | 12.15 |
HC | 690 | 0.017 | 0.008 | 0.002 | 0.044 |
RD | 690 | 1.480 | 1.105 | 0.146 | 6.845 |
OPEN | 690 | 0.025 | 0.024 | 0 | 0.163 |
IPR | 690 | 0.013 | 0.025 | 0 | 0.191 |
Variable | Average Variance Inflation Factor | 1/VIF |
---|---|---|
GTI | 6.520 | 0.153 |
CEE | 2.430 | 0.411 |
GOV | 2.040 | 0.490 |
GDP | 8.990 | 0.111 |
HC | 3.920 | 0.255 |
RD | 4.750 | 0.211 |
OPEN | 1.410 | 0.711 |
IPR | 3.060 | 0.327 |
Mean | VIF | 4.140 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
ISO (OLS) | ISO (OLS) | ISO (RE) | ISO (RE) | ISO (FE) | ISO (FE) | |
GTI | 0.024 *** | −0.012 *** | 0.028 *** | 0.016 *** | 0.028 *** | 0.031 *** |
(0.002) | (0.003) | (0.001) | (0.004) | (0.001) | (0.005) | |
Controls | No | Yes | No | Yes | No | Yes |
Cons | 0.080 *** | −0.352 *** | 0.053 *** | 0.074 | 0.053 *** | 0.226 *** |
(0.015) | (0.062) | (0.021) | (0.081) | (0.008) | (0.087) | |
N | 690.000 | 690.000 | 690.000 | 690.000 | 690.000 | 690.000 |
Adj. R2 | 0.150 | 0.691 | 0.442 | 0.615 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
ISO | ISO | ISO | ISO | |
GTI | 0.023 *** | 0.029 *** | ||
(0.001) | (0.005) | |||
CEE | 0.642 *** | 0.209 *** | 0.368 *** | 0.190 *** |
(0.039) | (0.038) | (0.035) | (0.037) | |
Controls | No | Yes | No | Yes |
Cons | 0.105 *** | −0.116 * | 0.009 | 0.273 *** |
(0.009) | (0.059) | (0.009) | (0.085) | |
N | 690.000 | 690.000 | 690.000 | 690.000 |
Adj. R2 | 0.255 | 0.608 | 0.523 | 0.629 |
(1) | (2) | (3) | |
---|---|---|---|
ISO (FE) | ISO (Moderating Effect) | ISO (Moderation Effect After Centralization) | |
GTI | 0.029 *** | 0.015 *** | |
(0.005) | (0.005) | ||
CEE | 0.190 *** | −0.289 *** | |
(0.037) | (0.079) | ||
TJ (GTI* CEE) | 0.084 *** | ||
(0.012) | |||
GTI_c | 0.033 *** | ||
(0.005) | |||
CEE_c | 0.271 *** | ||
(0.038) | |||
TJz (GTI_c* CEE_c) | 0.084 *** | ||
(0.012) | |||
Controls | Yes | Yes | Yes |
Cons | 0.273 *** | 0.557 *** | 0.714 *** |
(0.085) | (0.093) | (0.112) | |
N | 690.000 | 690.000 | 690.000 |
Adj. R2 | 0.629 | 0.653 | 0.653 |
Threshold Variable | Threshold Type | F-Value | 10% Critical Value | 5% Critical Value | 1% Critical Value |
---|---|---|---|---|---|
Carbon Emission Efficiency | Single Threshold | 87.2 | 17.443 | 21.202 | 29.670 |
Double Threshold | 41.88 | 16.110 | 62.184 | 96.051 | |
Triple Threshold | 23.62 | 22.551 | 26.806 | 64.412 |
Threshold Variable | Threshold Type | Threshold Value | p-Value | 95% Confidence Interval | BS Times |
---|---|---|---|---|---|
Carbon Emission Efficiency | Single Threshold | 0.1033 | 0.000 | (0.1033, 0.1086) | 300 |
Double Threshold | 0.3592 | 0.067 | (0.3531, 0.3811) | 300 | |
Triple Threshold | 0.4052 | 0.090 | (0.3919, 0.4207) | 300 |
(1) | |
---|---|
ISO | |
Core Explanatory Variable | GTI |
Threshold Variable | CEE |
GTI1 (CEE ≤ 0.1033) | 0.096 *** |
(0.013) | |
GTI2 (0.1033 < CEE ≤ 0.3592) | 0.032 *** |
(0.004) | |
GTI3 (0.3592 < CEE ≤ 0.4052) | 0.038 *** |
(0.005) | |
GTI4 (0.4052 < CEE) | 0.047 *** |
(0.005) | |
Controls | Yes |
Cons | 0.373 *** |
(0.080) | |
N | 690.000 |
Adj. R2 | 0.682 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
ISO (National) | ISO (Eastern) | ISO (Central) | ISO (Western) | |
GTI | 0.029 *** | 0.024 *** | 0.033 *** | 0.025 *** |
(0.005) | (0.008) | (0.008) | (0.007) | |
CEE | 0.190 *** | 0.385 *** | 0.032 | −0.021 |
(0.037) | (0.055) | (0.048) | (0.138) | |
Controls | Yes | Yes | Yes | Yes |
Cons | 0.273 *** | 0.050 | 0.817 *** | 0.166 |
(0.085) | (0.150) | (0.140) | (0.133) | |
N | 690.000 | 276.000 | 207.000 | 207.000 |
Adj. R2 | 0.629 | 0.826 | 0.590 | 0.589 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
ISO (National) | ISO (Eastern) | ISO (Central) | ISO (Western) | |
GTI | 0.015 *** | 0.015 * | 0.010 | 0.012 |
(0.005) | (0.008) | (0.011) | (0.010) | |
CEE | −0.289 *** | 0.019 | −0.379 ** | −0.597 * |
(0.079) | (0.160) | (0.155) | (0.353) | |
TJ (GTI* CEE) | 0.084 *** | 0.049 ** | 0.104 *** | 0.072 * |
(0.012) | (0.020) | (0.037) | (0.040) | |
Controls | Yes | Yes | Yes | Yes |
Cons | 0.557 *** | 0.262 | 1.038 *** | 0.196 |
(0.093) | (0.173) | (0.159) | (0.134) | |
N | 690.000 | 276.000 | 207.000 | 207.000 |
Adj. R2 | 0.653 | 0.829 | 0.604 | 0.593 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
ISO (National) | ISO (Eastern) | ISO (Central) | ISO (Western) | |
Core Explanatory Variable | GTI | GTI | GTI | GTI |
Threshold Variable | CEE | CEE | CEE | CEE |
GTI1 (CEE ≤ 0.1033) | 0.096 *** | 0.026 *** | 0.043 *** | 0.064 *** |
(0.013) | (0.007) | (0.008) | (0.013) | |
GTI2 (0.1033 < CEE ≤ 0.3592) | 0.032 *** | 0.031 *** | 0.053 *** | 0.026 *** |
(0.004) | (0.007) | (0.010) | (0.006) | |
GTI3 (0.3592 < CEE ≤ 0.4052) | 0.038 *** | 0.034 *** | 0.039 *** | 0.030 *** |
(0.005) | (0.007) | (0.008) | (0.006) | |
GTI4 (0.4052 < CEE) | 0.047 *** | 0.042 *** | 0.045 *** | 0.027 *** |
(0.005) | (0.008) | (0.007) | (0.006) | |
Controls | Yes | Yes | Yes | Yes |
Cons | 0.373 *** | 0.082 | 0.991 *** | 0.181 |
(0.080) | (0.143) | (0.129) | (0.124) | |
N | 690.000 | 276.000 | 207.000 | 207.000 |
Adj. R2 | 0.682 | 0.847 | 0.652 | 0.638 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
ISO (National) | ISO (High GTI) | ISO (Low GTI) | ISO (National) | ISO (High GTI) | ISO (Low GTI) | |
GTI | 0.031 *** | 0.020 *** | 0.019 *** | 0.015 *** | 0.026 ** | 0.002 |
(0.005) | (0.007) | (0.006) | (0.005) | (0.011) | (0.007) | |
CEE | −0.289 *** | 0.472 | −0.404 *** | |||
(0.079) | (0.366) | (0.120) | ||||
TJ (GTI* CEE) | 0.084 *** | 0.012 | 0.107 *** | |||
(0.012) | (0.036) | (0.028) | ||||
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Cons | 0.226 *** | −0.418 ** | 0.148 | 0.557 *** | 0.112 | 0.252 ** |
(0.087) | (0.164) | (0.097) | (0.093) | (0.166) | (0.102) | |
N | 690.000 | 345.000 | 345.000 | 690.000 | 345.000 | 345.000 |
Adj. R2 | 0.615 | 0.748 | 0.153 | 0.653 | 0.788 | 0.187 |
(1) | (2) | (3) | |
---|---|---|---|
ISO (Replacing Core Explanatory Variable) | ISO (with CEE) | ISO (Moderating Effect) | |
GTI1 | 0.029 *** | 0.025 *** | 0.014 *** |
(0.005) | (0.005) | (0.005) | |
CEE | 0.173 *** | −0.192 *** | |
(0.038) | (0.073) | ||
TJ1 (GTI1* CEE) | 0.069 *** | ||
(0.012) | |||
Controls | Yes | Yes | Yes |
Cons | 0.205 ** | 0.219 ** | 0.440 *** |
(0.087) | (0.085) | (0.092) | |
N | 690.000 | 690.000 | 690.000 |
Adj. R2 | 0.613 | 0.624 | 0.642 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
ISO | ISO (L. GTI) | ISO (L2. GTI) | ISO (L. GTI) | ISO (L2. GTI) | |
GTI | 0.031 *** | 0.006 | 0.008 | −0.008 | −0.005 |
(0.005) | (0.007) | (0.006) | (0.007) | (0.007) | |
CEE | −0.375 *** | −0.423 *** | |||
(0.110) | (0.154) | ||||
TJ (GTI* CEE) | 0.087 *** | 0.093 *** | |||
(0.015) | (0.018) | ||||
Controls | Yes | Yes | Yes | Yes | Yes |
L. GTI | 0.034 *** | 0.031 *** | |||
(0.007) | (0.007) | ||||
L2. GTI | 0.035 *** | 0.031 *** | |||
(0.006) | (0.006) | ||||
Controls | Yes | Yes | Yes | Yes | Yes |
Cons | 0.226 *** | 0.366 *** | 0.401 *** | 0.664 *** | 0.707 *** |
(0.087) | (0.091) | (0.094) | (0.097) | (0.099) | |
N | 690.000 | 660.000 | 630.000 | 660.000 | 630.000 |
Adj. R2 | 0.615 | 0.645 | 0.653 | 0.672 | 0.682 |
(1) | (2) | (3) | |
---|---|---|---|
First-stage F-value | 253.12 | 270.92 | 81.61 |
Kleibergen–Paap rk LM statistic | 146.331 | 148.211 | 45.294 |
Kleibergen–Paap Wald rk F statistic | 253.116 | 270.922 | 81.612 |
(1) | (2) | (3) | |
---|---|---|---|
ISO | ISO | ISO | |
GTI | 0.052 *** | 0.050 *** | 0.043 *** |
(0.007) | (0.007) | (0.010) | |
CEE | 0.399 *** | 0.084 | |
(0.092) | (0.251) | ||
TJ (GTI* CEE) | 0.040 | ||
(0.028) | |||
Controls | Yes | Yes | Yes |
N | 630.000 | 630.000 | 630.000 |
Adj. R2 | 0.622 | 0.648 | 0.656 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Su, H.; Liu, X. The Impact of Green Technological Innovation on Industrial Structural Optimization Under Dual-Carbon Targets: The Role of the Moderating Effect of Carbon Emission Efficiency. Sustainability 2025, 17, 6313. https://doi.org/10.3390/su17146313
Wang X, Su H, Liu X. The Impact of Green Technological Innovation on Industrial Structural Optimization Under Dual-Carbon Targets: The Role of the Moderating Effect of Carbon Emission Efficiency. Sustainability. 2025; 17(14):6313. https://doi.org/10.3390/su17146313
Chicago/Turabian StyleWang, Xinyu, Hongyu Su, and Xiao Liu. 2025. "The Impact of Green Technological Innovation on Industrial Structural Optimization Under Dual-Carbon Targets: The Role of the Moderating Effect of Carbon Emission Efficiency" Sustainability 17, no. 14: 6313. https://doi.org/10.3390/su17146313
APA StyleWang, X., Su, H., & Liu, X. (2025). The Impact of Green Technological Innovation on Industrial Structural Optimization Under Dual-Carbon Targets: The Role of the Moderating Effect of Carbon Emission Efficiency. Sustainability, 17(14), 6313. https://doi.org/10.3390/su17146313