Relevance of Ground and Wall Albedo for Outdoor Thermal Comfort in Tropical Savanna Climates: Evidence from Parametric Simulations
Abstract
1. Introduction
1.1. Urban Heat and Thermal Comfort in Tropical Areas
1.2. Influence of Surface Materials on Thermal Comfort
1.3. Current Research Limitations and Study Objectives
2. Materials and Methods
2.1. Overview
2.2. Surface Material Selection
- (i)
- Ground materials
- (ii)
- Wall materials
2.3. Surface Material Combinations
2.4. Target Climatic Area
2.5. Software Reliability and Parameterization
2.6. Output Processing
3. Results
3.1. UTCI Variation According to Ground Materials
3.2. UTCI Variation According to Wall Materials
4. Discussion
4.1. Ground Versus Wall Albedo: Differences and Interdependencies
4.2. Beyond Albedo: The Role of Material Properties
4.3. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Standard Error in Collected UTCI at Receptor Points
- -
- is the individual UTCI value for receptor I;
- -
- is the sample mean of UTCI values;
- -
- and n is the sample size (117).
Wi = 0.05 | Wi = 0.3 | Wi = 0.45 | Wi = 0.9 | ||
---|---|---|---|---|---|
G1 scenario | overall | 0.2424 | 0.2165 | 0.2254 | 0.2673 |
shaded | 0.0600 | 0.0724 | 0.0697 | 0.0778 | |
unshaded | 0.0756 | 0.0567 | 0.0628 | 0.1073 | |
G2 scenario | overall | 0.2378 | 0.2096 | 0.2190 | 0.2597 |
shaded | 0.0646 | 0.0783 | 0.0756 | 0.0807 | |
unshaded | 0.0722 | 0.0532 | 0.0587 | 0.1005 | |
G3 scenario | overall | 0.2354 | 0.2061 | 0.2157 | 0.2557 |
shaded | 0.0671 | 0.0816 | 0.0786 | 0.0829 | |
unshaded | 0.0709 | 0.0520 | 0.0571 | 0.0973 | |
G4 scenario | overall | 0.2285 | 0.1962 | 0.2063 | 0.2433 |
shaded | 0.0755 | 0.0892 | 0.0882 | 0.0918 | |
unshaded | 0.0678 | 0.0504 | 0.0544 | 0.0880 |
Appendix B. Regression Statistics
Gi W1 | Gi W2 | Gi W3 | Gi W4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall | Shaded | Unshaded | Overall | Shaded | Unshaded | Overall | Shaded | Unshaded | Overall | Shaded | Unshaded | |
Multiple R | 0.03 | 0.31 | 0.06 | 0.07 | 0.42 | 0.18 | 0.06 | 0.39 | 0.14 | 0.10 | 0.55 | 0.23 |
R Square | 0.00 | 0.10 | 0.00 | 0.00 | 0.17 | 0.03 | 0.00 | 0.15 | 0.02 | 0.01 | 0.31 | 0.05 |
Adjusted R Square | 0.00 | 0.09 | 0.00 | 0.00 | 0.17 | 0.03 | 0.00 | 0.15 | 0.02 | 0.01 | 0.30 | 0.05 |
Standard Error | 2.56 | 0.45 | 0.60 | 2.25 | 0.55 | 0.45 | 2.35 | 0.53 | 0.49 | 2.78 | 0.57 | 0.83 |
Observations | 468 | 184 | 284 | 468 | 184 | 284 | 468 | 184 | 284 | 468 | 184 | 284 |
Slope | 0.35 | 0.64 | 0.16 | 0.64 | 1.08 | 0.35 | 0.57 | 0.99 | 0.31 | 1.16 | 1.64 | 0.85 |
Coef. Standard Error | 0.52 | 0.15 | 0.16 | 0.45 | 0.18 | 0.12 | 0.47 | 0.17 | 0.13 | 0.56 | 0.18 | 0.21 |
t Stat | 0.67 | 4.39 | 1.00 | 1.41 | 6.16 | 3.06 | 1.21 | 5.78 | 2.41 | 2.06 | 8.96 | 3.96 |
p-value | 0.50 | 0.00 | 0.32 | 0.16 | 0.00 | 0.00 | 0.23 | 0.00 | 0.02 | 0.04 | 0.00 | 0.00 |
G1 Wi | G2 Wi | G3 Wi | G4 Wi | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall | Shaded | Unshaded | Overall | Shaded | Unshaded | Overall | Shaded | Unshaded | Overall | Shaded | Unshaded | |
Multiple R | 0.38 | 0.94 | 0.81 | 0.38 | 0.93 | 0.82 | 0.37 | 0.92 | 0.82 | 0.37 | 0.90 | 0.82 |
R Square | 0.14 | 0.88 | 0.66 | 0.14 | 0.86 | 0.67 | 0.14 | 0.85 | 0.67 | 0.14 | 0.81 | 0.67 |
Adjusted R Square | 0.14 | 0.88 | 0.66 | 0.14 | 0.86 | 0.66 | 0.13 | 0.85 | 0.67 | 0.13 | 0.80 | 0.67 |
Standard Error | 2.60 | 0.48 | 0.66 | 2.53 | 0.51 | 0.62 | 2.49 | 0.53 | 0.60 | 2.39 | 0.59 | 0.56 |
Observations | 468 | 184 | 284 | 468 | 184 | 284 | 468 | 184 | 284 | 468 | 184 | 284 |
G1 Wi | G2 Wi | G3 Wi | G4 Wi | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall | Shaded | Unshaded | Overall | Shaded | Unshaded | Overall | Shaded | Unshaded | Overall | Shaded | Unshaded | |
Multiple R | 0.24 | 0.58 | 0.51 | 0.22 | 0.53 | 0.49 | 0.21 | 0.51 | 0.47 | 0.18 | 0.43 | 0.42 |
R Square | 0.06 | 0.33 | 0.26 | 0.05 | 0.29 | 0.24 | 0.04 | 0.26 | 0.22 | 0.03 | 0.19 | 0.18 |
Adjusted R Square | 0.05 | 0.33 | 0.26 | 0.05 | 0.28 | 0.23 | 0.04 | 0.26 | 0.22 | 0.03 | 0.18 | 0.17 |
Standard Error | 2.72 | 1.13 | 0.97 | 2.65 | 1.15 | 0.93 | 2.62 | 1.16 | 0.92 | 2.52 | 1.19 | 0.89 |
Observations | 468 | 184 | 284 | 468 | 184 | 284 | 468 | 184 | 284 | 468 | 184 | 284 |
Slope | −2.13 | −2.56 | −1.85 | −1.93 | −2.33 | −1.67 | −1.84 | −2.22 | −1.59 | −1.53 | −1.85 | −1.32 |
Coef. Standard Error | 0.41 | 0.27 | 0.19 | 0.40 | 0.27 | 0.18 | 0.39 | 0.28 | 0.18 | 0.38 | 0.28 | 0.17 |
t Stat | −5.23 | −9.52 | −9.95 | −4.87 | −8.53 | −9.31 | −4.69 | −8.03 | −8.98 | −4.06 | −6.51 | −7.79 |
p-value | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
G1 Wi | G2 Wi | G3 Wi | G4 Wi | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall | Shaded | Unshaded | Overall | Shaded | Unshaded | Overall | Shaded | Unshaded | Overall | Shaded | Unshaded | |
Multiple R | 0.43 | 0.95 | 0.84 | 0.42 | 0.94 | 0.85 | 0.42 | 0.93 | 0.85 | 0.41 | 0.91 | 0.85 |
R Square | 0.18 | 0.90 | 0.71 | 0.18 | 0.88 | 0.72 | 0.18 | 0.87 | 0.72 | 0.17 | 0.82 | 0.72 |
Adjusted R Square | 0.18 | 0.90 | 0.71 | 0.18 | 0.88 | 0.72 | 0.17 | 0.87 | 0.72 | 0.17 | 0.82 | 0.72 |
Standard Error | 2.58 | 0.50 | 0.67 | 2.50 | 0.53 | 0.62 | 2.46 | 0.55 | 0.60 | 2.35 | 0.61 | 0.56 |
Observations | 351 | 138 | 213 | 351 | 138 | 213 | 351 | 138 | 213 | 351 | 138 | 213 |
Slope | −4.75 | −5.79 | −4.08 | −4.55 | −5.58 | −3.88 | −4.45 | −5.47 | −3.79 | −4.13 | −5.12 | −3.49 |
Coef. Standard Error | 0.54 | 0.17 | 0.18 | 0.52 | 0.18 | 0.17 | 0.52 | 0.18 | 0.16 | 0.49 | 0.20 | 0.15 |
t Stat | −8.80 | −34 | −23 | −8.68 | −31 | −23 | −8.63 | −30 | −23 | −8.40 | −25 | −23 |
p-value | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
References
- Ishak, N.M.; Abdullah, J.; Rahman, N.A.A. Outdoor Thermal Comfort of Urban’s Pedestrian in Tropical City of Kuala Lumpur. IOP Conf. Ser. Earth Environ. Sci. 2023, 1217, 012029. [Google Scholar] [CrossRef]
- Mohite, S.; Surawar, M. Assessment and prediction of pedestrian thermal comfort through machine learning modelling in tropical urban climate of Nagpur City. Theor. Appl. Clim. 2024, 155, 5607–5628. [Google Scholar] [CrossRef]
- Waldo, T.; Deichmann, U.; Gottsegen, J.; Maloy, K. The Global Demography Project; Technical Report TR-95-6; University of California: Santa Barbara, CA, USA, 1995; Available online: https://escholarship.org/content/qt0kt69058/qt0kt69058_noSplash_e659c7bf81594799a64917e6e810eb63.pdf (accessed on 4 July 2025).
- United Nations. 2018 Revision of World Urbanization Prospects. 2018. Available online: https://www.un.org/en/desa/2018-revision-world-urbanization-prospects (accessed on 4 July 2025).
- Aboulnaga, M.; Trombadore, A.; Mostafa, M.; Abouaiana, A. Livable Cities; Springer International Publishing: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Vujovic, S.; Haddad, B.; Karaky, H.; Sebaibi, N.; Boutouil, M. Urban Heat Island: Causes, Consequences, and Mitigation Measures with Emphasis on Reflective and Permeable Pavements. CivilEng 2021, 2, 459–484. [Google Scholar] [CrossRef]
- Karimi, A.; Mohammad, P.; García-Martínez, A.; Moreno-Rangel, D.; Gachkar, D.; Gachkar, S. New developments and future challenges in reducing and controlling heat island effect in urban areas. Environ. Dev. Sustain. 2023, 25, 10485–10531. [Google Scholar] [CrossRef]
- Tao, Z.; Zhu, X.; Xu, G.; Zou, D.; Li, G. A Comparative Analysis of Outdoor Thermal Comfort Indicators Applied in China and Other Countries. Sustainability 2023, 15, 16029. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Xi, T. A Review of Thermal Comfort Evaluation and Improvement in Urban Outdoor Spaces. Buildings 2023, 13, 3050. [Google Scholar] [CrossRef]
- Sen, S.; Roesler, J. Aging albedo model for asphalt pavement surfaces. J. Clean. Prod. 2016, 117, 169–175. [Google Scholar] [CrossRef]
- Mungule, M.; Iyer, K.K.R. A Review on Role of Pavement Materials on Urban Heat Island Effects; Springer: Singapore, 2022; pp. 229–237. [Google Scholar] [CrossRef]
- Erell, E.; Pearlmutter, D.; Williamson, T. Urban Microclimate; Routledge: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Taleghani, M.; Berardi, U. The effect of pavement characteristics on pedestrians’ thermal comfort in Toronto. Urban Clim. 2018, 24, 449–459. [Google Scholar] [CrossRef]
- Huang, X.; Bou-Zeid, E.; Pigliautile, I.; Pisello, A.L.; Mandal, J. Optimizing retro-reflective surfaces to untrap radiation and cool cities. Nat. Cities 2024, 1, 275–285. [Google Scholar] [CrossRef]
- Erell, E.; Pearlmutter, D.; Boneh, D.; Kutiel, P.B. Effect of high-albedo materials on pedestrian heat stress in urban street canyons. Urban Clim. 2014, 10, 367–386. [Google Scholar] [CrossRef]
- Bulbaai, R.; Halman, J.I.M. Energy-Efficient Building Design for a Tropical Climate: A Field Study on the Caribbean Island Curaçao. Sustainability 2021, 13, 13274. [Google Scholar] [CrossRef]
- Pasetto, M.; Baliello, A.; Pasquini, E.; Giacomello, G. High albedo pavement materials. In Eco-Efficient Materials for Reducing Cooling Needs in Buildings and Construction; Elsevier: Amsterdam, The Netherlands, 2021; pp. 15–32. [Google Scholar] [CrossRef]
- Falasca, S.; Ciancio, V.; Salata, F.; Golasi, I.; Rosso, F.; Curci, G. High albedo materials to counteract heat waves in cities: An assessment of meteorology, buildings energy needs and pedestrian thermal comfort. Build. Environ. 2019, 163, 106242. [Google Scholar] [CrossRef]
- Tsekeri, E.; Xilas, D.; Mavrigiannaki, A.; Kolokotsa, D.; Gobakis, K.; Gobakis, K. Francisco José Sánchez de la Flor, On the Impact of Highly Reflective Materials on Thermal Comfort and Energy Efficiency. In Proceedings of the 41st AIVC/ASHRAE IAQ-9th TightVent-7th Venticool Conference, Athens, Greece, 4–6 May 2022. [Google Scholar]
- Lee, H.; Mayer, H. Thermal comfort of pedestrians in an urban street canyon is affected by increasing albedo of building walls. Int. J. Biometeorol. 2018, 62, 1199–1209. [Google Scholar] [CrossRef]
- Salvati, A.; Kolokotroni, M.; Kotopouleas, A.; Watkins, R.; Giridharan, R.; Nikolopoulou, M. Impact of reflective materials on urban canyon albedo, outdoor and indoor microclimates. Build. Environ. 2022, 207, 108459. [Google Scholar] [CrossRef]
- Mansouri, O.; Belarbi, R.; Bourbia, F. Albedo effect of external surfaces on the energy loads and thermal comfort in buildings. Energy Procedia 2017, 139, 571–577. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Z.-H.; Kaloush, K.E. Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’ for mitigating urban heat island? Renew. Sustain. Energy Rev. 2015, 47, 830–843. [Google Scholar] [CrossRef]
- Pathirana, S.; Rodrigo, A.; Halwatura, R. Effect of building shape, orientation, window to wall ratios and zones on energy efficiency and thermal comfort of naturally ventilated houses in tropical climate. Int. J. Energy Environ. Eng. 2019, 10, 107–120. [Google Scholar] [CrossRef]
- Xu, X.; Gregory, J.; Kirchain, R. The impact of surface albedo on climate and building energy consumption: Review and comparative analysis. In Proceedings of the Transportation Research Board 95th Annual Meeting, Washington, DC, USA, 10–14 January 2016. [Google Scholar]
- Yang, L.; Liu, J.; Zhu, S. Evaluating the Effects of Different Improvement Strategies for the Outdoor Thermal Environment at a University Campus in the Summer: A Case Study in Northern China. Buildings 2022, 12, 2254. [Google Scholar] [CrossRef]
- Sinsel, T.; Simon, H.; Broadbent, A.M.; Bruse, M.; Heusinger, J. Modeling the outdoor cooling impact of highly radiative “super cool” materials applied on roofs. Urban Clim. 2021, 38, 100898. [Google Scholar] [CrossRef]
- Fabiani, C.; Pisello, A.L.; Bou-Zeid, E.; Yang, J.; Cotana, F. Adaptive measures for mitigating urban heat islands: The potential of thermochromic materials to control roofing energy balance. Appl. Energy 2019, 247, 155–170. [Google Scholar] [CrossRef]
- Taleghani, M. The impact of increasing urban surface albedo on outdoor summer thermal comfort within a university campus. Urban Clim. 2018, 24, 175–184. [Google Scholar] [CrossRef]
- Myhre, G.; Myhre, A. Uncertainties in Radiative Forcing due to Surface Albedo Changes Caused by Land-Use Changes. J. Clim. 2003, 16, 1511–1524. [Google Scholar] [CrossRef]
- Richards, D.; Masoudi, M.; Oh, R.R.Y.; Yando, E.S.; Zhang, J.; Friess, D.A.; Grêt-Regamey, A.; Tan, P.Y.; Edwards, P.J. Global Variation in Climate, Human Development, and Population Density Has Implications for Urban Ecosystem Services. Sustainability 2019, 11, 6200. [Google Scholar] [CrossRef]
- Bruse, M. ENVI-met 3.0: Updated Model Overview. 2004. Available online: www.envi-met.com (accessed on 29 September 2022).
- Cuce, E.; Young, C.-H.; Riffat, S.B. Performance investigation of heat insulation solar glass for low-carbon buildings. Energy Convers. Manag. 2014, 88, 834–841. [Google Scholar] [CrossRef]
- Bedra, K.B.; Zheng, B.; Li, J.; Luo, X. A Parametric-Simulation Method to Study the Interconnections between Urban-Street-Morphology Indicators and Their Effects on Pedestrian Thermal Comfort in Tropical Summer. Sustainability 2023, 15, 8902. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future köppen-geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Tsoka, S.; Tsikaloudaki, A.; Theodosiou, T. Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications—A review. Sustain. Cities Soc. 2018, 43, 55–76. [Google Scholar] [CrossRef]
- Jareemit, D.; Srivanit, M. Modelling the Urban Microclimate Effects of Street Configurations on Thermal Environment in the Residential Townhouse of Bangkok. 2019. Available online: https://www.researchgate.net/publication/331296242 (accessed on 3 December 2020).
- Rosseti, K.D.A.C.; Nogueira, M.C.D.; Callejas, I.; Durante, L.; Kuhnen, I.; Nogueira, J. Efeitos de Telhados Vegetados no Conforto Térmico de Pedestres, Simulação Pelo Software Envi-Met (portuguese) Green roofs effects on pedestrians thermal comfort: Simulation using Envi-Met software (English). In XV Encontro Nacional de Tecnologia Do Ambiente Construido (ENTAC); ENCAC: Florianopolis, Brazil, 2014. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Dahanayake, K.W.D.K.C.; Adegun, O.B.; Balogun, A.A. Modelling the effect of tree-shading on summer indoor and outdoor thermal condition of two similar buildings in a Nigerian university. Energy Build. 2016, 130, 721–732. [Google Scholar] [CrossRef]
- Thomas, G.; Thomas, J.; Mathews, G.M.; Alexander, S.P.; Jose, J. Assessment of the potential of green wall on modification of local urban microclimate in humid tropical climate using ENVI-met model. Ecol. Eng. 2023, 187, 106868. [Google Scholar] [CrossRef]
- ISO 7730:2005; Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. International Organization for Standardization: Geneva, Switzerland, 2005.
- Ali-Toudert, F.; Mayer, H. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build. Environ. 2006, 41, 94–108. [Google Scholar] [CrossRef]
- Zhang, K.; Randel, W.J.; Fu, R. Relationships between outgoing longwave radiation and diabatic heating in reanalyses. Clim. Dyn. 2017, 49, 2911–2929. [Google Scholar] [CrossRef]
- Fazio, P.; Ge, H.; Rao, J.; Desmarais, G. Research in Building Physics and Building Engineering; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Gerring, D. Renewable Energy Systems for Building Designers; Routledge: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
Urban Geometry | Ground Albedo (Gi) G1 = 0.2, G2 = 0.3, G3 = 0.5, G4 = 0.8 | Gi/Wall Albedo (Wi) W1 = 0.2, W2 = 0.3, W3 = 0.5, W4 = 0.8 | Scenario No |
---|---|---|---|
UGref | UGref/G1 | UGref/G1/W1 | UGref/Mat1 |
UGref/G1/W2 | UGref/Mat 2 | ||
UGref/G1/W3 | UGref/Mat 3 | ||
UGref/G1/W4 | UGref/Mat 4 | ||
UGref/G2 | UGref/G2/W1 | UGref/Mat 5 | |
UGref/G2/W2 | UGref/Mat 6 | ||
UGref/G2/W3 | UGref/Mat 7 | ||
UGref/G2/W4 | UGref/Mat 8 | ||
UGref/G3 | UGref/G3/W1 | UGref/Mat 9 | |
UGref/G3/W2 | UGref/Mat 10 | ||
UGref/G3/W3 | UGref/Mat 11 | ||
UGref/G3/W4 | UGref/Mat 12 | ||
UGref/G4 | UGref/G4/W1 | UGref/Mat 13 | |
UGref/G4/W2 | UGref/Mat 14 | ||
UGref/G4/W3 | UGref/Mat 15 | ||
UGref/G4/W4 | UGref/Mat 16 |
Location | Parameters | Model Validation Criteria | |||
---|---|---|---|---|---|
Correlation (R2) | Error | Bias | |||
Bangkok, Thailand [38] | MRT | 0.91 | |||
Cuiaba, Brazil [39] | Air temperature | 0.95–0.98 | 2.39 (RMSE) | 2.00 (MAE) | 1.29 |
Relative humidity | 0.91 | 14.32 (RMSE) | 14.31 (MAE) | −14.31 (MBE) | |
0.90 | 2.72 (RMSE) | 4.21 (MAE) | −2.25(MBE) | ||
Akure, Nigeria [40] | Air temperature | 0.96–0.99 | 0.00–0.01 (NMSE) | 0.01–0.06 (FB) | |
Relative humidity | 0.82–0.90 | 0.00–0.01 (NMSE) | 0.01–0.07 (FB) | ||
Pathanamthitta, Kerala (India) [41] | Air temperature | 0.80–0.92 | 0.58–0.72 (RMSE) | 0.48–0.77 (MAE) |
Parameters | Values/Configuration |
---|---|
Climate type | Warm-humid (Aw) |
Simulated summer period | 1 September–3 September (represent peak summer conditions in tropical savanna climates [36]) |
Simulation duration | 72 h (ensure model stabilization [37]) |
Start time | 6:00 A.M. |
Spatial resolution (grid size) | 2 m × 2 m × 2 m |
Domain Size | 360 m × 360 m × 100 m |
Wind speed (m/s) | 3 m/s |
Wind direction (°) | 265° (Southwest) |
Air temperature (°C) | 25.1–29 |
Relative Humidity (%) | 85–90 |
Sky condition | Clear |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedra, K.B.; Li, J. Relevance of Ground and Wall Albedo for Outdoor Thermal Comfort in Tropical Savanna Climates: Evidence from Parametric Simulations. Sustainability 2025, 17, 6303. https://doi.org/10.3390/su17146303
Bedra KB, Li J. Relevance of Ground and Wall Albedo for Outdoor Thermal Comfort in Tropical Savanna Climates: Evidence from Parametric Simulations. Sustainability. 2025; 17(14):6303. https://doi.org/10.3390/su17146303
Chicago/Turabian StyleBedra, Komi Bernard, and Jiayu Li. 2025. "Relevance of Ground and Wall Albedo for Outdoor Thermal Comfort in Tropical Savanna Climates: Evidence from Parametric Simulations" Sustainability 17, no. 14: 6303. https://doi.org/10.3390/su17146303
APA StyleBedra, K. B., & Li, J. (2025). Relevance of Ground and Wall Albedo for Outdoor Thermal Comfort in Tropical Savanna Climates: Evidence from Parametric Simulations. Sustainability, 17(14), 6303. https://doi.org/10.3390/su17146303