Integrating Sustainable Agricultural Practices to Enhance Climate Resilience and Food Security in Sub-Saharan Africa: A Multidisciplinary Perspective
Abstract
1. Introduction
- Evaluation of the role of SAPs in mitigating climate risk, improving soil health, and increasing food productivity.
- Identify and critically examine the key economic, institutional, and knowledge-based barriers that hinder SAP adoption.
- Assess the effectiveness of existing policy frameworks and financing mechanisms that support sustainable agriculture.
- Compare adoption trends and implementation outcomes across SSA subregions with a focus on underrepresented areas.
- Propose actionable, region-specific strategies that leverage governance, extension systems, and innovative finance to scale up SAPs.
2. Methodology
3. Results and Discussion
3.1. Climate Impacts and Regional Responses in SSA
SN | Impact | Description | Citation |
---|---|---|---|
1 | Reduced crop yields | Changes in temperature and rainfall patterns affected crop growth and productivity. | [49] |
2 | Decreased food security | Climate change impacted agriculture, leading to reduced food availability and access. | [2] |
3 | Water scarcity | Changes in rainfall patterns and increased evapotranspiration led to water scarcity. | [50,51] |
4 | Extreme weather events | Increased frequency and intensity of droughts, heatwaves, and floods affected agricultural productivity. | [46] |
5 | Drought impacts | Droughts led to reduced crop yields, increased food insecurity, and decreased livestock productivity. | [34] |
6 | Heatwave impacts | Heatwaves led to reduced crop yields, increased pest and disease pressure, and decreased livestock productivity. | [39,40,52] |
7 | Flood impacts | Floods led to soil erosion, nutrient depletion, and increased pest and disease pressure, reducing agricultural productivity. | [44] |
3.2. Sustainable Agricultural Practices
3.3. Innovations and Technological Interventions
3.3.1. Conservation Agriculture
3.3.2. Agroforestry
3.3.3. Integrated Pest Management
3.3.4. Organic Farming Practices
3.3.5. Case Study: Integrating SAPs and Postharvest Innovations in Kenya and Nigeria
4. Postharvest Preservation Techniques
4.1. The Role of Postharvest Innovations in Food Security
4.2. Techniques for Horticultural Crop Preservation
4.2.1. Cold Storage and Refrigeration
4.2.2. Modified Atmosphere Packaging (MAP)
4.2.3. Use of Natural Preservatives and Edible Coatings
4.2.4. Blockchain and Biodegradable Packaging
5. Water Management Strategies
5.1. Efficient Irrigation Systems
5.2. Rainwater Harvesting
5.3. Soil Moisture Conservation Techniques
6. Development and Adoption of Climate-Resilient Crop Varieties
6.1. Breeding for Drought and Heat Tolerance
6.2. Role of Biotechnology in Crop Improvement
6.3. Selected Case Studies on Successful Crop Varieties in SSA
- Cowpea (Vigna unguiculata)
- Sorghum (Sorghum bicolor)
- Other Emerging Crops
S/N | Study Title | Crop/Practice | Scientific Name | Key Findings | Reference |
---|---|---|---|---|---|
1 | Breeding elite cowpea [Vigna unguiculata (L.) Walp] varieties for improved food security and income in Africa: opportunities and challenges | Cowpea | Vigna unguiculata | Enhanced breeding programs have improved cowpea’s drought tolerance, boosting food security and income generation for smallholder farmers. | [106] |
2 | Production constraints and improvement strategies of cowpea (Vigna unguiculata L. Walp.) genotypes for drought tolerance | Cowpea | Vigna unguiculata | Cowpea genotypes selected for drought tolerance are increasingly adopted by farmers in SSA, leading to improved crop productivity under water stress. | [105] |
3 | Drought tolerance and water use of cereal crops: A focus on sorghum as a food security crop in Sub-Saharan Africa | Sorghum | Sorghum bicolor | Sorghum has proven drought tolerance and water use efficiency, making it a vital crop for food security in arid regions. | [108] |
4 | Aquacrop-simulated response of sorghum biomass and grain yield to biochar amendment in South Sudan | Sorghum | Sorghum bicolor | Biochar amendments significantly boost sorghum yields in rainfed systems, aligning with sustainable soil management practices. | [107] |
7 | Crops diversification and the role of orphan legumes to improve the SSA farming systems | Orphan Legumes | Various | Underutilized legumes require fewer inputs and can thrive in marginal conditions, making them key for sustainable diversification in SSA farming. | [114] |
10 | Impact of training on the intensification of rice farming: Evidence from rainfed areas in Tanzania | Rice | Oryza sativa | Training programs on rice farming have improved farmers’ crop management skills and increased adoption of climate-resilient rice varieties. | [115] |
11 | Adapting maize production to climate change in SSA | Maize | Zea mays | Drought-resistant maize varieties improve yields and food security in regions with increasing rainfall variability. | [116] |
12 | Consequences of dryland maize planting decisions under increased seasonal rainfall variability | Maize | Zea mays | Efficient planting strategies for maize in response to rainfall variability are essential for maintaining yields under climate change pressures. | [117] |
13 | Impact of solar cold storage on postharvest loss reduction in Kenya | Maize + cold Storage | Zea mays | Reduced postharvest loss, increased farmer revenue | [118] |
7. Socio-Economic Aspects and Policy Frameworks
7.1. Role of Government Policies in Promoting Sustainable Practices
7.2. Financial Incentives and Support for Farmers
7.3. Community Engagement and Education
7.4. International Collaborations and Partnerships
8. Challenges and Limitations
8.1. Barriers to Adoption of Sustainable Practices
8.2. Economic and Technological Constraints
8.3. Policy and Institutional Challenges
8.4. Socio-Economic Dimensions Influencing SAP Adoption
9. Future Directions and Recommendations
9.1. Research Gaps and Priorities
9.2. Innovations in Sustainable Agricultural Technologies
9.3. Recommendations for Policy Makers, Researchers, and Practitioners
9.4. Phased Implementation Pathway for SAP Scaling
- Train decentralized SAP facilitators and utilize digital platforms to deliver localized climate-smart advisories.
- Roll-out input voucher schemes, climate-risk insurance, and blended finance models tailored to smallholders.
- Integrate SAP objectives into the revised National Agricultural Investment Plans (NAIPs) under CAADP.
- Implement regional agro-zoning and SAP suitability mapping for data-driven planning.
- Scale gender-sensitive and youth-responsive SAP incentives aligned with regional economic community (REC) adaptation priorities.
- Develop district-level SAP performance metrics embedded within existing agricultural monitoring and evaluation systems.
- Incorporate SAP resilience targets into pillar 1 (inclusive growth) and pillar 3 (environmental sustainability) of the African Union Agenda 2063.
- Establish region-wide carbon markets and climate-smart finance hubs through RECs.
- Operationalize a pan-African SAP observatory to harmonize reporting, track impact, and foster cross-country learning.
9.5. Limitations
10. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kamanda, J.K. Agricultural Transformation for Climate Resilience: A Review of Strategies, Challenges, and Future Directions in Sub-Saharan Africa. Int. J. Big Data Min. Glob. Warm. 2025, 4, 27. [Google Scholar] [CrossRef]
- IPCC Climate Change and Land. An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Tefera, M.L. Sustainable Solutions to Land Degradation and Rainfall Variability in Sub-Saharan Africa: Integrating Traditional Water Management, Agricultural Intensification, and Machine Learning Approaches; Università degli Studi di Sassari: Sassari, Italy, 2025. [Google Scholar]
- Sinore, T.; Wang, F. Climate Change Impact and Adaptation Options in Sub-Saharan Africa: A Systematic Review. Environ. Dev. Sustain. 2025, 1–29. [Google Scholar] [CrossRef]
- Kuyah, S.; Whitney, C.W.; Jonsson, M.; Sileshi, G.W.; Öborn, I.; Muthuri, C.W.; Luedeling, E. Agroforestry Delivers a Win-Win Solution for Ecosystem Services in Sub-Saharan Africa. A Meta-Analysis. Agron. Sustain. Dev. 2019, 39, 47. [Google Scholar] [CrossRef]
- Guto, S.N.; de Ridder, N.; Giller, K.E.; Pypers, P.; Vanlauwe, B. Minimum Tillage and Vegetative Barrier Effects on Crop Yields in Relation to Soil Water Content in the Central Kenya Highlands. Field Crops Res. 2012, 132, 129–138. [Google Scholar] [CrossRef]
- Ahmed, S.M.; Dinnar, H.A.; Ahmed, A.E.; Elbushra, A.A.; Turk, K.G.B. A Deeper Understanding of Climate Variability Improves Mitigation Efforts, Climate Services, Food Security, and Development Initiatives in Sub-Saharan Africa. Climate 2024, 12, 206. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2021. Making Agrifood Systems More Resilient to Shocks and Stresses; FAO: Rome, Italy, 2021; ISBN 978-92-5-134329-6. [Google Scholar]
- Mbow, C.; Smith, P.; Skole, D.; Duguma, L.; Bustamante, M. Achieving Mitigation and Adaptation to Climate Change through Sustainable Agroforestry Practices in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 8–14. [Google Scholar] [CrossRef]
- Adimassu, Z.; Alemu, G.; Tamene, L. Effects of Tillage and Crop Residue Management on Runoff, Soil Loss and Crop Yield in the Humid Highlands of Ethiopia. Agric. Syst. 2019, 168, 11–18. [Google Scholar] [CrossRef]
- Yibeltal, M.; Tsunekawa, A.; Haregeweyn, N.; Meshesha, D.T.; Billi, P.; Bedaso, Z.; Wubet, A.; Kang, M.W.; Lee, S.S. Effect of Exclosure on Subsurface Water Level and Sediment Yield in the Tropical Highlands of Ethiopia. J. Environ. Manag. 2022, 317, 115414. [Google Scholar] [CrossRef]
- Manda, L.; Idohou, R.; Agoyi, E.E.; Agbahoungba, S.; Salako, K.V.; Agbangla, C.; Adomou, A.C.; Assogbadjo, A.E. Progress of in Situ Conservation and Use of Crop Wild Relatives for Food Security in a Changing Climate: A Case of the Underutilised Vigna Savi. Front. Sustain. 2025, 6, 1453170. [Google Scholar] [CrossRef]
- Sila, W.; Kayusi, F.; Atuheire, S.; Chavula, P.; Mijwil, M.M.; Abotaleb, M.; Ouko, K.O.; Turyasingura, B. Adoption of AI and Livestock Management Strategies for Sustainable Food Security in the Face of Climate Change in Sub-Saharan Africa; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 455–472. [Google Scholar]
- Okolo-Obasi, N.E.V.; Nwanmuoh, E.E.; Ikpo, K.P.; Ojieze-Nwachineke, J.I.; Nwankwo, C.O.; Obeke, C.B.; Okeke, N.O.; Edeh, R.C.; Chukwu, V.D.A. Climate Change, Crop Protection Products, and Cocoyam Value Chain among Rural Women Farmers in Nigeria. Afr. J. Agric. Sci. Food Res. 2025, 18, 58–84. [Google Scholar] [CrossRef]
- Gebrehiwot, K.A.; Gebrewahid, M.G. The Need for Agricultural Water Management in Sub-Saharan Africa. J. Water Resour. Prot. 2016, 8, 835–843. [Google Scholar] [CrossRef]
- Desalegn, G.; Tangl, A.; Fekete-Farkas, M.; Gudisa, G.; Boros, A. Linking Policies and Regulations to Sustainable Finance for the Promotion of Urban Agriculture: Evidence from Micro and Small Businesses. Heliyon 2024, 10, e31938. [Google Scholar] [CrossRef] [PubMed]
- Onyango, C.M.; Nyaga, J.M.; Wetterlind, J.; Söderström, M.; Piikki, K. Precision Agriculture for Resource Use Efficiency in Smallholder Farming Systems in Sub-Saharan Africa: A Systematic Review. Sustainability 2021, 13, 1158. [Google Scholar] [CrossRef]
- World Bank Equitable Growth, Finance and Institutions Insight. A Agriculture Finance Diagnostic in Sudan. 2020. Available online: https://documents1.worldbank.org/curated/en/099240106082237676/pdf/P151261001fa040a308cd70b3f0071d2097.pdf (accessed on 20 June 2025).
- Demirguc-Kunt, A.; Klapper, L.; Singer, D.; Ansar, S.; Hess, J. The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution; World Bank: Washington, DC, USA, 2018; ISBN 978-1-4648-1259-0. [Google Scholar]
- Herrero, M.; Thornton, P.K.; Notenbaert, A.; Msangi, S.; Wood, S.; Kruska, R.; Dixon, J.; Bossio, D.; Steeg, J.; van de Freeman, H.A.; et al. Drivers of Change in Crop–Livestock Systems and Their Potential Im20pacts on Agro-Ecosystems Services and Human Wellbeing to 2030; A Study Commissioned by the CGIAR Systemwide Livestock Programme: Nairobi, Kenya, 2012; Volume 3. [Google Scholar]
- Xing, C.C.; Sergienko, A.; Frolova, A.; Rykov, A. Climate-Resilient Agriculture: Strategies for Mitigating Environmental Impacts in Rural Economies. E3S Web Conf. 2025, 614, 04015. [Google Scholar] [CrossRef]
- Sibanda, M. Feminist Agroecology: Towards Gender-Equal and Sustainable Food Systems in Sub-Saharan Africa. Agric. Rural. Stud. 2025, 3, 0001. [Google Scholar] [CrossRef]
- Mutuku, E.A.; Roobroeck, D.; Vanlauwe, B.; Boeckx, P.; Cornelis, W.M. Maize Production under Combined Conservation Agriculture and Integrated Soil Fertility Management in the Sub-Humid and Semi-Arid Regions of Kenya. Field Crops Res. 2020, 254, 107833. [Google Scholar] [CrossRef]
- Benaly, M.A.; Brouziyne, Y.; Kharrou, M.H.; Chehbouni, A.; Bouchaou, L. Crop Modeling to Address Climate Change Challenges in Africa: Status, Gaps, and Opportunities. Mitig. Adapt. Strat. Glob. Chang. 2025, 30, 12. [Google Scholar] [CrossRef]
- Adesina, O.O.; Campbell, O. Multidimensional Aspects of Zero Hunger in Sub-Saharan Africa. In Smart Technologies for Sustainable Development Goals; CRC Press: Boca Raton, FL, USA, 2025; pp. 234–251. [Google Scholar]
- Shani, F.K.; Joshua, M.; Ngongondo, C. Determinants of Smallholder Farmers’ Adoption of Climate-Smart Agricultural Practices in Zomba, Eastern Malawi. Sustainability 2024, 16, 3782. [Google Scholar] [CrossRef]
- Pangapanga-Phiri, I.; Mungatana, E.D. Adoption of Climate-Smart Agricultural Practices and Their Influence on the Technical Efficiency of Maize Production under Extreme Weather Events. Int. J. Disaster Risk Reduct. 2021, 61, 102322. [Google Scholar] [CrossRef]
- Leal Filho, W.; Barbir, J.; Gwenzi, J.; Ayal, D.; Simpson, N.P.; Adeleke, L.; Tilahun, B.; Chirisa, I.; Gbedemah, S.F.; Nzengya, D.M.; et al. The Role of Indigenous Knowledge in Climate Change Adaptation in Africa. Environ. Sci. Policy 2022, 136, 250–260. [Google Scholar] [CrossRef]
- Arslan, A.; Cavatassi, R.; Alfani, F.; Mccarthy, N.; Lipper, L.; Kokwe, M. Diversification Under Climate Variability as Part of a CSA Strategy in Rural Zambia. J. Dev. Stud. 2018, 54, 457–480. [Google Scholar] [CrossRef]
- Kassie, M.; Jaleta, M.; Shiferaw, B.; Mmbando, F.; Mekuria, M. Adoption of Interrelated Sustainable Agricultural Practices in Smallholder Systems: Evidence from Rural Tanzania. Technol. Forecast. Soc. Change 2013, 80, 525–540. [Google Scholar] [CrossRef]
- UN DESA. World Population Prospects; UN DESA: New York, NY, USA, 2024. [Google Scholar]
- Mnukwa, M.L.; Mdoda, L.; Mudhara, M. Assessing the Adoption and Impact of Climate-Smart Agricultural Practices on Smallholder Maize Farmers’ Livelihoods in Sub-Saharan Africa: A Systematic Review. Front. Sustain. Food Syst. 2025, 9, 1543805. [Google Scholar] [CrossRef]
- Bahta, Y.T.; Myeki, V.A. The Impact of Agricultural Drought on Smallholder Livestock Farmers: Empirical Evidence Insights from Northern Cape, South Africa. Agriculture 2022, 12, 442. [Google Scholar] [CrossRef]
- Huho, J.M.; Mugalavai, E.M. The Effects of Droughts on Food Security in Kenya. Int. J. Clim. Change Impacts Responses 2010, 2, 61–72. [Google Scholar] [CrossRef]
- Saleem, A.; Anwar, S.; Nawaz, T.; Fahad, S.; Saud, S.; Ur Rahman, T.; Khan, M.N.R.; Nawaz, T. Securing a Sustainable Future: The Climate Change Threat to Agriculture, Food Security, and Sustainable Development Goals. J. Umm Al-Qura Univ. Appl. Sci. 2024, 1–17. [Google Scholar] [CrossRef]
- Reynolds, T.W.; Waddington, S.R.; Anderson, C.L.; Chew, A.; True, Z.; Cullen, A. Environmental Impacts and Constraints Associated with the Production of Major Food Crops in Sub-Saharan Africa and South Asia. Food Secur. 2015, 7, 795–822. [Google Scholar] [CrossRef]
- Wolka, K.; Biazin, B.; Martinsen, V.; Mulder, J. Soil and Water Conservation Management on Hill Slopes in Southwest Ethiopia. II. Modeling Effects of Soil Bunds on Surface Runoff and Maize Yield Using AquaCrop. J. Environ. Manag. 2021, 296, 113187. [Google Scholar] [CrossRef]
- Tshikovhi, M.; van Wyk, R.B. South Africa’s Increasing Climate Variability and Its Effect on Food Production. Outlook Agric. 2021, 50, 286–293. [Google Scholar] [CrossRef]
- Ajetomobi, J. Effects of Weather Extremes on Crop Yields in Nigeria. Afr. J. Food Agric. Nutr. Dev. 2016, 16, 11168–11184. [Google Scholar] [CrossRef]
- Asante, F.; Amuakwa-Mensah, F. Climate Change and Variability in Ghana: Stocktaking. Climate 2014, 3, 78–99. [Google Scholar] [CrossRef]
- Ateba Boyomo, H.A.; Ongo Nkoa, B.E.; Awah Manga, L.A. Climate Change and Livestock Production in Sub-Saharan Africa: Effects and Transmission Channels. Food Energy Secur. 2024, 13, e521. [Google Scholar] [CrossRef]
- Humphries, M.; Green, A.; Higgs, C.; Strachan, K.; Hahn, A.; Pillay, L.; Zabel, M. High-Resolution Geochemical Records of Extreme Drought in Southeastern Africa during the Past 7000 Years. Quat. Sci. Rev. 2020, 236, 106294. [Google Scholar] [CrossRef]
- Fuller, T.L.; Sesink Clee, P.R.; Njabo, K.Y.; Tróchez, A.; Morgan, K.; Meñe, D.B.; Anthony, N.M.; Gonder, M.K.; Allen, W.R.; Hanna, R.; et al. Climate Warming Causes Declines in Crop Yields and Lowers School Attendance Rates in Central Africa. Sci. Total Environ. 2018, 610, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Bang, H.; Miles, L.; Gordon, R. The Irony of Flood Risks in African Dryland Environments: Human Security in North Cameroon. World J. Eng. Technol. 2017, 5, 109–121. [Google Scholar] [CrossRef]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-Smart Agriculture for Food Security. Nat. Clim. Change 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Hassan, B.A.; Knight, J. Adaptation to Climate Change and Variability by Farming Households in North-Central Nigeria. Sustainability 2023, 15, 16309. [Google Scholar] [CrossRef]
- International Food Policy Research Institute (IFPRI). Food Security in a World of Natural Resource Scarcity the Role of Agricultural Technologies; CGIAR: Montpellier, France, 2014. [Google Scholar]
- Schlenker, W.; Lobell, D.B. Robust Negative Impacts of Climate Change on African Agriculture. Environ. Res. Lett. 2010, 5, 014010. [Google Scholar] [CrossRef]
- Tesfay, S. What Are the Impacts of Climate Change on Sustainable Food Production, Food Demand, and Population Numbers in Sub-Saharan Africa? A Systematic Review. Food J. 2024, 2. [Google Scholar] [CrossRef]
- Karpouzoglou, T.; Barron, J. A Global and Regional Perspective of Rainwater Harvesting in Sub-Saharan Africa’s Rainfed Farming Systems. Phys. Chem. Earth Parts A/B/C 2014, 72, 43–53. [Google Scholar] [CrossRef]
- Dile, Y.T.; Karlberg, L.; Temesgen, M.; Rockström, J. The Role of Water Harvesting to Achieve Sustainable Agricultural Intensification and Resilience against Water Related Shocks in Sub-Saharan Africa. Agric. Ecosyst. Environ. 2013, 181, 69–79. [Google Scholar] [CrossRef]
- Acquah, H.D.; Kyei, C.K. The Effects of Climatic Variables and Crop Area on Maize Yield and Variability in Ghana. Russ. J. Agric. Socioecon. Sci. 2012, 10, 10–13. [Google Scholar] [CrossRef]
- Awazi, N.P.; Tchamba, M.N. Enhancing Agricultural Sustainability and Productivity under Changing Climate Conditions through Improved Agroforestry Practices in Smallholder Farming Systems in Sub-Saharan Africa. Afr. J. Agric. Res. 2019, 14, 379–388. [Google Scholar] [CrossRef]
- Hailu, L.; Teka, W. Potential of Conservation Agriculture Practice in Climate Change Adaptation and Mitigation in Ethiopia: A Review. Front. Clim. 2024, 6, 1478923. [Google Scholar] [CrossRef]
- Hana Tamrat, G.; Edom, K. Nature Based Climate Change Adaptation Measures for Sustainable Crops Production in Ethiopia: Review. Arch. Crop Sci. 2022, 5, 141–150. [Google Scholar] [CrossRef]
- Zalalem, A. Mitigation of Climate Change through Conservation Agriculture. J. Nat. Sci. Res. 2021, 6, 1478923. [Google Scholar] [CrossRef]
- Thierfelder, C.; Wall, P.C. Effects of Conservation Agriculture Techniques on Infiltration and Soil Water Content in Zambia and Zimbabwe. Soil. Tillage Res. 2009, 105, 217–227. [Google Scholar] [CrossRef]
- Adenle, A.A.; Azadi, H.; Manning, L. The Era of Sustainable Agricultural Development in Africa: Understanding the Benefits and Constraints. Food Rev. Int. 2018, 34, 411–433. [Google Scholar] [CrossRef]
- Akpo, E.; Feleke, G.; Fikre, A.; Chichaybelu, M.; Ojiewo, C.O.; Varshney, R.K. Analyzing Pathways of Nurturing Informal Seed Production into Formal Private Ventures for Sustainable Seed Delivery and Crop Productivity: Experiences from Ethiopia. Sustainability 2020, 12, 6828. [Google Scholar] [CrossRef]
- Mihretie, F.A.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Tsubo, M.; Ebabu, K.; Masunaga, T.; Kebede, B.; Meshesha, D.T.; Tsuji, W.; et al. Tillage and Crop Management Impacts on Soil Loss and Crop Yields in Northwestern Ethiopia. Int. Soil Water Conserv. Res. 2022, 10, 75–85. [Google Scholar] [CrossRef]
- Corbeels, M.; Thierfelder, C.; Rusinamhodzi, L. Conservation Agriculture in Sub-Saharan Africa. In Conservation Agriculture; Springer International Publishing: Cham, Switzerland, 2015; pp. 443–476. [Google Scholar]
- Dougill, A.J.; Hermans, T.D.G.; Eze, S.; Antwi-Agyei, P.; Sallu, S.M. Evaluating Climate-Smart Agriculture as Route to Building Climate Resilience in African Food Systems. Sustainability 2021, 13, 9909. [Google Scholar] [CrossRef]
- Bashir, O.; Bangroo, S.A.; Naikoo, N.B.; Ganie, N.A.; Kukal, S.S.; Jehaan, M.W.; Mohiuddin, R.; Rashid, Z.; Ahmed, T.; Rehman, S.U.; et al. Current Trends and Future Perspectives for Modeling Agronomic Crops and Improving Intercropping in Climate Change Scenarios: A. Review. In Soil, Agriculture, and Ecosystem Modeling; Apple Academic Press: New York, NY, USA, 2024; pp. 225–260. [Google Scholar]
- Sahu, B.; Dash, B.; Pradhan, S.N.; Nalia, A.; Singh, P. Fertilizer Management in Dryland Cultivation for Stable Crop Yields. In Enhancing Resilience of Dryland Agriculture Under Changing Climate; Springer Nature: Singapore, 2023; pp. 305–322. [Google Scholar]
- Hombegowda, H.C.; Adhikary, P.P.; Jakhar, P.; Madhu, M. Alley Cropping Agroforestry System for Improvement of Soil Health; Springer International Publishing: New York, NY, USA, 2022; pp. 529–549. [Google Scholar]
- Cahyo, A.N.; Dong, Y.; Taryono; Nugraha, Y.; Junaidi; Sahuri; Penot, E.; Hairmansis, A.; Purwestri, Y.A.; Akbar, A.; et al. Rubber-Based Agroforestry Systems Associated with Food Crops: A Solution for Sustainable Rubber and Food Production? Agriculture 2024, 14, 1038. [Google Scholar] [CrossRef]
- Ratto, F.; Bruce, T.; Chipabika, G.; Mwamakamba, S.; Mkandawire, R.; Khan, Z.; Mkindi, A.; Pittchar, J.; Sallu, S.M.; Whitfield, S.; et al. Biological Control Interventions Reduce Pest Abundance and Crop Damage While Maintaining Natural Enemies in Sub-Saharan Africa: A Meta-Analysis. Proc. Soc. Biol. Sci. 2022, 289, 20221695. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Wamalwa, M.; Obala, F.; Tonnang, H.E.Z.; Tefera, T.; Calatayud, P.-A.; Subramanian, S.; Ekesi, S. A Deadly Encounter: Alien Invasive Spodoptera Frugiperda in Africa and Indigenous Natural Enemy, Cotesia Icipe (Hymenoptera, Braconidae). PLoS ONE 2021, 16, e0253122. [Google Scholar] [CrossRef]
- Mwadzingeni, L.; Mugandani, R.; Mafongoya, P.L. Gendered Perception of Change in Prevalence of Pests and Management in Zimbabwe Smallholder Irrigation Schemes. Agron. Sustain. Dev. 2022, 42, 90. [Google Scholar] [CrossRef]
- Mfitumukiza, D.; Barasa, B.; Egeru, A.; Mbogga, S.M.; Wokadala, J.; Ahabwe, A.; Kasajja, S.; Namususwa, Z.; Nabatta, C. The Role of Indigenous Knowledge (IK) in Adaptation to Drought by Agropastoral Smallholder Farmers in Uganda. Indian. J. Tradit. Knowl. 2020, 19, 44–52. [Google Scholar]
- Ayuke, F.O.; Brussaard, L.; Vanlauwe, B.; Six, J.; Lelei, D.K.; Kibunja, C.N.; Pulleman, M.M. Soil Fertility Management: Impacts on Soil Macrofauna, Soil Aggregation and Soil Organic Matter Allocation. Appl. Soil. Ecol. 2011, 48, 53–62. [Google Scholar] [CrossRef]
- Moeskops, B.; Sukristiyonubowo; Buchan, D.; Sleutel, S.; Herawaty, L.; Husen, E.; Saraswati, R.; Setyorini, D.; De Neve, S. Soil Microbial Communities and Activities under Intensive Organic and Conventional Vegetable Farming in West Java, Indonesia. Appl. Soil. Ecol. 2010, 45, 112–120. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Wendt, J.; Giller, K.E.; Corbeels, M.; Gerard, B.; Nolte, C. A Fourth Principle Is Required to Define Conservation Agriculture in Sub-Saharan Africa: The Appropriate Use of Fertilizer to Enhance Crop Productivity. Field Crops Res. 2014, 155, 10–13. [Google Scholar] [CrossRef]
- Ajayi, O.C.; Place, F. Policy Support for Large-Scale Adoption of Agroforestry Practices: Experience from Africa and Asia. In Agroforestry—The Future of Global Land Use; Advances in Agroforestry Volume, 9, Nair, P., Garrity, D., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 175–201. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I. Agroecology and the Emergence of a Post COVID-19 Agriculture. Agric. Hum. Values 2020, 37, 525–526. [Google Scholar] [CrossRef]
- Chandel, N.; Dutta, K.; Bhujel, P.R. Eco-Tourism as a Driver for Sustainable Regional Development Amidst Climate Change Realities in the Eastern Himalayas: A Study of Sikkim in India. In Climate Change and Regional Socio-Economic Systems in the Global South; Springer Nature: Singapore, 2024; pp. 373–394. [Google Scholar]
- Haggai, N.; Mutuma, E.; Muraya, M.M.; Gathungu, G.; Nderitu, P.; Opetu, G.; Kahindi, R.; Kosgei, G.; Waswa, B.; Templer, N.; et al. Applying Climate-Smart Agriculture Technologies to Smallholder Farms in Kenya. Farmers’ Manual. Accelerating Impacts of CGIAR Climate Research in Africa (AICCRA). 104p. 2023. Available online: https://cgspace.cgiar.org/items/cf2350b0-93ca-4efd-a024-29d9497ff3fd (accessed on 20 June 2025).
- Habib, N.; Ariyawardana, A.; Aziz, A.A. The Influence and Impact of Livelihood Capitals on Livelihood Diversification Strategies in Developing Countries: A Systematic Literature Review. Environ. Sci. Pollut. Res. 2023, 30, 69882–69898. [Google Scholar] [CrossRef] [PubMed]
- Affognon, H.; Mutungi, C.; Sanginga, P.; Borgemeister, C. Unpacking Postharvest Losses in Sub-Saharan Africa: A Meta-Analysis. World Dev. 2015, 66, 49–68. [Google Scholar] [CrossRef]
- Abdoulaye, T.; Alexander, C.; Ainembabazi, J.; Baributsu, D.; Kadjo, D.; Moussa, B.; Omotilewa, G.; Ricker, J.; Shiferaw, F. Cross-Country Evidence of Postharvest Loss in Sub-Saharan Africa: Insights from Purdue Improved Crop Storage (PICS). In Proceedings of the First International Congress on Postharvest Loss Prevention, Rome, Italy, 4–7 October 2015; pp. 4–7. [Google Scholar]
- Sheahan, M.; Barrett, C.B. Review: Food Loss and Waste in Sub-Saharan Africa. Food Policy 2017, 70, 1–12. [Google Scholar] [CrossRef]
- Kiaya, V. Post-Harvest Losses and Strategies to Reduce Them. Action Contre la Faim (ACF). 25p. 2014. Available online: https://www.actioncontrelafaim.org/en/publication/post-harvest-losses-and-strategies-to-reduce-them/ (accessed on 20 June 2025).
- Kaur, R.; Watson, J.A. A Scoping Review of Postharvest Losses, Supply Chain Management, and Technology: Implications for Produce Quality in Developing Countries. J. ASABE 2024, 67, 1103–1131. [Google Scholar] [CrossRef]
- Binge, B.; Jalango, D.; Tesfaye, L. Post-Harvest Losses Management through Climate Smart Innovations: A Collaborative Approach Among Value Chain Actors. AICCRA Technical Report. Accelerating Impacts of CGIAR Climate Research for Africa (AICCRA). 2023. Available online: https://alliancebioversityciat.org/publications-data/post-harvest-losses-management-through-climate-smart-innovations-collaborative (accessed on 20 June 2025).
- Kansanga, M.M.; Shanmugasundaram, L.; Ledermann, S.; Rain, D. Nature-Inspired Solutions for Food Loss Prevention: Exploring Smallholder Farmers’ Willingness to Adopt Solar-Powered Cold Storage. Front. Sustain. Food Syst. 2025, 9, 1525148. [Google Scholar] [CrossRef]
- Ozor, N.; Nwakaire, J.; Nyambane, A.; Muhatiah, W.; Nwobodo, C. Enhancing Africa’s Agriculture and Food Systems through Responsible and Gender Inclusive AI Innovation: Insights from AI4AFS Network. Front. Artif. Intell. 2025, 7, 1472236. [Google Scholar] [CrossRef]
- Urugo, M.M.; Yohannis, E.; Teka, T.A.; Gemede, H.F.; Tola, Y.B.; Forsido, S.F.; Tessema, A.; Suraj, M.; Abdu, J. Addressing Post-Harvest Losses through Agro-Processing for Sustainable Development in Ethiopia. J. Agric. Food Res. 2024, 18, 101316. [Google Scholar] [CrossRef]
- Yitayih, M.; Kassie, G.T.; Dessie, T. Evolution and Scope of Rural and Agricultural Finance in Developing Countries: A Review; ILRI Research Report; ILRI: Nairobi, Kenya, 2023. [Google Scholar]
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food Waste within Food Supply Chains: Quantification and Potential for Change to 2050. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3065–3081. [Google Scholar] [CrossRef]
- Choruma, D.J.; Dirwai, T.L.; Mutenje, M.J.; Mustafa, M.; Chimonyo, V.G.P.; Jacobs-Mata, I.; Mabhaudhi, T. Digitalisation in Agriculture: A Scoping Review of Technologies in Practice, Challenges, and Opportunities for Smallholder Farmers in Sub-Saharan Africa. J. Agric. Food Res. 2024, 18, 101286. [Google Scholar] [CrossRef]
- Makule, E.; Dimoso, N.; Tassou, S.A. Precooling and Cold Storage Methods for Fruits and Vegetables in Sub-Saharan Africa—A Review. Horticulturae 2022, 8, 776. [Google Scholar] [CrossRef]
- Sandhya. Modified Atmosphere Packaging of Fresh Produce: Current Status and Future Needs. LWT—Food Sci. Technol. 2010, 43, 381–392. [Google Scholar] [CrossRef]
- Caleb, O.J.; Mahajan, P.V.; Al-Said, F.A.-J.; Opara, U.L. Modified Atmosphere Packaging Technology of Fresh and Fresh-Cut Produce and the Microbial Consequences—A Review. Food Bioproc. Tech. 2013, 6, 303–329. [Google Scholar] [CrossRef] [PubMed]
- Addo-Tenkorang, R.; Helo, P.T. Big Data Applications in Operations/Supply-Chain Management: A Literature Review. Comput. Ind. Eng. 2016, 101, 528–543. [Google Scholar] [CrossRef]
- Kamilaris, A.; Fonts, A.; Prenafeta-Boldύ, F.X. The Rise of Blockchain Technology in Agriculture and Food Supply Chains. Trends Food Sci. Technol. 2019, 91, 640–652. [Google Scholar] [CrossRef]
- Falguera, V.; Quintero, J.P.; Jiménez, A.; Muñoz, J.A.; Ibarz, A. Edible Films and Coatings: Structures, Active Functions and Trends in Their Use. Trends Food Sci. Technol. 2011, 22, 292–303. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, M. Effect of Drip Irrigated Mulch on Soil Properties and Water Use Efficiency-A Review. J. Soil. Water Conserv. 2020, 19, 300. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, S.; Duhan, D.; Kumar, N.; Dhaloiya, A.; Kumar, M. Assessment of Soil Water Dynamics and Yield Response of Broccoli Under Subsurface Drip Irrigation in the Semi-Arid Region of India. Commun. Soil Sci. Plant Anal. 2024, 55, 636–652. [Google Scholar] [CrossRef]
- Meiri, A.; Naftaliev, B.; Shmuel, D.; Yechezkel, H.; Communar, G.; Friedman, S.P. Short-Term Watering-Distance and Symmetry Effects on Root and Shoot Growth of Bell Pepper Plantlets. Agric. Water Manag. 2011, 98, 1557–1568. [Google Scholar] [CrossRef]
- Bänziger, M.; Setimela, P.S.; Hodson, D.; Vivek, B. Breeding for Improved Abiotic Stress Tolerance in Maize Adapted to Southern Africa. Agric. Water Manag. 2006, 80, 212–224. [Google Scholar] [CrossRef]
- Lobell, D.B.; Bänziger, M.; Magorokosho, C.; Vivek, B. Nonlinear Heat Effects on African Maize as Evidenced by Historical Yield Trials. Nat. Clim. Change 2011, 1, 42–45. [Google Scholar] [CrossRef]
- Varshney, R.K.; Terauchi, R.; McCouch, S.R. Harvesting the Promising Fruits of Genomics: Applying Genome Sequencing Technologies to Crop Breeding. PLoS Biol. 2014, 12, e1001883. [Google Scholar] [CrossRef] [PubMed]
- Nelson, G.C.; Rosegrant, M.W.; Koo, J.; Robertson, R.D.; Sulser, T.; Zhu, T.; Ringler, C.; Msangi, S.; Palazzo, A.; Batka, M.; et al. Climate Change: Impact on Agriculture and Costs of Adaptation; The International Food Policy Research Institute: Washington, WA, USA, 2009. [Google Scholar]
- Bouis, H.E.; Saltzman, A. Improving Nutrition through Biofortification: A Review of Evidence from HarvestPlus, 2003 through 2016. Glob. Food Sec. 2017, 12, 49–58. [Google Scholar] [CrossRef]
- Nkomo, G.V.; Sedibe, M.M.; Mofokeng, M.A. Production Constraints and Improvement Strategies of Cowpea (Vigna unguiculata, L. Walp.) Genotypes for Drought Tolerance. Int. J. Agron. 2021, 2021, 5536417. [Google Scholar] [CrossRef]
- Gomes, A.M.F.; Nhantumbo, N.; Ferreira-Pinto, M.; Massinga, R.; Ramalho, J.C.; Ribeiro-Barros, A. Breeding Elite Cowpea [Vigna unguiculata (L.) Walp] Varieties for Improved Food Security and Income in Africa: Opportunities and Challenges. In Legume Crops—Characterization and Breeding for Improved Food Security; IntechOpen: London, UK, 2019. [Google Scholar]
- Starr, M.; Deng, B.; Helenius, J. AquaCrop-Simulated Response of Sorghum Biomass and Grain Yield to Biochar Amendment in South Sudan. Agronomy 2020, 10, 67. [Google Scholar] [CrossRef]
- Hadebe, S.T.; Modi, A.T.; Mabhaudhi, T. Drought Tolerance and Water Use of Cereal Crops: A Focus on Sorghum as a Food Security Crop in Sub-Saharan Africa. J. Agron. Crop Sci. 2017, 203, 177–191. [Google Scholar] [CrossRef]
- Rhoné, B.; Defrance, D.; Berthouly-Salazar, C.; Mariac, C.; Cubry, P.; Couderc, M.; Dequincey, A.; Assoumanne, A.; Kane, N.A.; Sultan, B.; et al. Pearl Millet Genomic Vulnerability to Climate Change in West Africa Highlights the Need for Regional Collaboration. Nat. Commun. 2020, 11, 5274. [Google Scholar] [CrossRef]
- Arriagada, O.; Cacciuttolo, F.; Cabeza, R.A.; Carrasco, B.; Schwember, A.R. A Comprehensive Review on Chickpea (Cicer arietinum L.) Breeding for Abiotic Stress Tolerance and Climate Change Resilience. Int. J. Mol. Sci. 2022, 23, 6794. [Google Scholar] [CrossRef]
- Okwuonu, I.C.; Narayanan, N.N.; Egesi, C.N.; Taylor, N.J. Opportunities and Challenges for Biofortification of Cassava to Address Iron and Zinc Deficiency in Nigeria. Glob. Food Sec 2021, 28, 100478. [Google Scholar] [CrossRef]
- Mayes, S.; Ho, W.K.; Chai, H.H.; Gao, X.; Kundy, A.C.; Mateva, K.I.; Zahrulakmal, M.; Hahiree, M.K.I.M.; Kendabie, P.; Licea, L.C.S.; et al. Bambara Groundnut: An Exemplar Underutilised Legume for Resilience under Climate Change. Planta 2019, 250, 803–820. [Google Scholar] [CrossRef]
- Saxena, K.B.; Kumar, R.V.; Tikle, A.N.; Saxena, M.K.; Gautam, V.S.; Rao, S.K.; Khare, D.K.; Chauhan, Y.S.; Saxena, R.K.; Reddy, B.V.S.; et al. ICPH—The World’s First Commercial Food Legume Hybrid. Plant Breed. 2013, 132, 479–485. [Google Scholar] [CrossRef]
- Vidigal, P.; Manuel Romeiras, M.; Monteiro, F. Crops Diversification and the Role of Orphan Legumes to Improve the Sub-Saharan Africa Farming Systems. In Sustainable Crop Production; IntechOpen: London, UK, 2020. [Google Scholar]
- Nakano, Y.; Tanaka, Y.; Otsuka, K. Impact of Training on the Intensification of Rice Farming: Evidence from Rainfed Areas in Tanzania. Agric. Econ. 2018, 49, 193–202. [Google Scholar] [CrossRef]
- Cairns, J.E.; Hellin, J.; Sonder, K.; Araus, J.L.; MacRobert, J.F.; Thierfelder, C.; Prasanna, B.M. Adapting Maize Production to Climate Change in Sub-Saharan Africa. Food Secur. 2013, 5, 345–360. [Google Scholar] [CrossRef]
- Krell, N.T.; Morgan, B.E.; Gower, D.; Caylor, K.K. Consequences of Dryland Maize Planting Decisions Under Increased Seasonal Rainfall Variability. Water Resour. Res. 2021, 57, e2020WR029362. [Google Scholar] [CrossRef]
- IRENA; FAO. Renewable Energy and Agri-Food Systems: Towards the Sustainable Development Goals and the Paris Agreement; IRENA: Abu Dhabi, United Arab Emirates; FAO: Abu Dhabi, United Arab Emirates, 2021; ISBN 978-92-5-135235-9. [Google Scholar]
- Ozor, N.; Nyambane, A. Policy and Institutional Landscape of Ecological Organic Agriculture in Rwanda (Policy Brief No. 55); The African Technology Policy Studies Network (ATPS): Nairobi, Kenya, 2021. [Google Scholar]
- Miklyaev, M.; Jenkins, G.; Shobowale, D. Sustainability of Agricultural Crop Policies in Rwanda: An Integrated Cost–Benefit Analysis. Sustainability 2020, 13, 48. [Google Scholar] [CrossRef]
- Mutegi, J.; Ameru, J.; Harawa, R.; Kiwia, A.; Njue, A. Oil Health and Climate Change: Implications for Food Security in Sub-Saharan Africa. Int. J. Dev. Sustain. 2018, 1, 21–33. [Google Scholar]
- Shisanya, C.A. Editorial: Scaling-up Sustainable Land Management in the Drylands of Sub-Saharan Africa. Front. Environ. Sci. 2024, 12, 1426378. [Google Scholar] [CrossRef]
- Mungai, E.M.; Ndiritu, S.W.; da Silva, I. Unlocking Climate Finance Potential for Climate Adaptation: Case of Climate Smart Agricultural Financing in Sub Saharan Africa. In African Handbook of Climate Change Adaptation; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 2063–2083. [Google Scholar]
- Mapanje, O.; Karuaihe, S.; Machethe, C.; Amis, M. Financing Sustainable Agriculture in Sub-Saharan Africa: A Review of the Role of Financial Technologies. Sustainability 2023, 15, 4587. [Google Scholar] [CrossRef]
- Ogunyiola, A.; Gardezi, M.; Vij, S. Smallholder Farmers’ Engagement with Climate Smart Agriculture in Africa: Role of Local Knowledge and Upscaling. Clim. Policy 2022, 22, 411–426. [Google Scholar] [CrossRef]
- Nchanji, E.B.; Kamunye, K.; Ageyo, C. Thematic Evidencing of Youth-Empowering Interventions in Livestock Production Systems in Sub-Sahara Africa: A Systematic Review. Front. Sustain. Food Syst. 2023, 7, 1176652. [Google Scholar] [CrossRef]
- Kerr, R.B.; Young, S.L.; Young, C.; Santoso, M.V.; Magalasi, M.; Entz, M.; Lupafya, E.; Dakishoni, L.; Morrone, V.; Wolfe, D.; et al. Farming for Change: Developing a Participatory Curriculum on Agroecology, Nutrition, Climate Change and Social Equity in Malawi and Tanzania. In Critical Adult Education in Food Movements; Springer Nature: Berlin/Heidelberg, Germany, 2022; pp. 29–46. [Google Scholar]
- Duveskog, D. Farmer Field Schools as a Transformative Learning Space in the Rural African Setting; Swedish University of Agricultural Sciences: Uppsala, Swedish, 2013. [Google Scholar]
- Ajayi, M.T.; Fatunbi, A.O.; Akinbamijo, O.O. Strategies for Scaling Agricultural Technologies in Africa; Forum for Agricultural Research in Africa (FARA): Accra, Ghana, 2018. [Google Scholar]
- Kansiime, M.K.; Njunge, R.; Okuku, I.; Baars, E.; Alokit, C.; Duah, S.; Gakuo, S.; Karanja, L.; Mchana, A.; Mibei, H.; et al. Bringing Sustainable Agricultural Intensification Practices and Technologies to Scale through Campaign-Based Extension Approaches: Lessons from Africa Soil Health Consortium. Int. J. Agric. Sustain. 2022, 20, 743–757. [Google Scholar] [CrossRef]
- Vicedom, S.; Wynberg, R. Power and Networks in the Shaping of the Alliance for a Green Revolution in Africa (AGRA). Third World Q. 2024, 45, 567–588. [Google Scholar] [CrossRef]
- Kassie, M.; Teklewold, H.; Jaleta, M.; Marenya, P.; Erenstein, O. Understanding the Adoption of a Portfolio of Sustainable Intensification Practices in Eastern and Southern Africa. Land Use Policy 2015, 42, 400–411. [Google Scholar] [CrossRef]
- Jayne, T.S.; Mason, N.M.; Burke, W.J.; Ariga, J. Review: Taking Stock of Africa’s Second-Generation Agricultural Input Subsidy Programs. Food Policy 2018, 75, 1–14. [Google Scholar] [CrossRef]
- Lucki, P. Challenges of Agricultural Digitalization in the Guatemalan Western Highlands. Front. Commun. 2024, 9, 1505445. [Google Scholar] [CrossRef]
- Wudil, A.H.; Usman, M.; Rosak-Szyrocka, J.; Pilař, L.; Boye, M. Reversing Years for Global Food Security: A Review of the Food Security Situation in Sub-Saharan Africa (SSA). Int. J. Environ. Res. Public Health 2022, 19, 14836. [Google Scholar] [CrossRef]
- Chinseu, E.L.; Dougill, A.J.; Stringer, L.C. Strengthening Conservation Agriculture Innovation Systems in Sub-Saharan Africa: Lessons from a Stakeholder Analysis. Int. J. Agric. Sustain. 2022, 20, 17–30. [Google Scholar] [CrossRef]
- Lamboll, R.; Nelson, V.; Gebreyes, M.; Kambewa, D.; Chinsinga, B.; Karbo, N.; Rukonge, A.; Sekeleti, M.; Litaba Wakun’uma, W.; Gutema, T.H.; et al. Strengthening Decision-Making on Sustainable Agricultural Intensification through Multi-Stakeholder Social Learning in Sub-Saharan Africa. Int. J. Agric. Sustain. 2021, 19, 609–635. [Google Scholar] [CrossRef]
- Newell, P.; Taylor, O.; Naess, L.O.; Thompson, J.; Mahmoud, H.; Ndaki, P.; Rurangwa, R.; Teshome, A. Climate Smart Agriculture? Governing the Sustainable Development Goals in Sub-Saharan Africa. Front. Sustain. Food Syst. 2019, 3, 55. [Google Scholar] [CrossRef]
- Sithole, A.; Olorunfemi, O.D. Sustainable Agricultural Practices in Sub-Saharan Africa: A Review of Adoption Trends, Impacts, and Challenges Among Smallholder Farmers. Sustainability 2024, 16, 9766. [Google Scholar] [CrossRef]
- Mekuriaw, A.; Heinimann, A.; Zeleke, G.; Hurni, H. Factors Influencing the Adoption of Physical Soil and Water Conservation Practices in the Ethiopian Highlands. Int. Soil. Water Conserv. Res. 2018, 6, 23–30. [Google Scholar] [CrossRef]
- Zougmoré, R.B.; Partey, S.T.; Ouédraogo, M.; Torquebiau, E.; Campbell, B.M. Facing Climate Variability in Sub-Saharan Africa: Analysis of Climate-Smart Agriculture Opportunities to Manage Climate-Related Risks. Cah. Agric. 2018, 27, 34001. [Google Scholar] [CrossRef]
- Garg, K.K.; Anantha, K.H.; Jat, M.L.; Kumar, S.; Sawargaonkar, G.; Singh, A.; Akuraju, V.; Singh, R.; Ahmed, M.I.; Rao, C.S.; et al. Drought Management in Soils of the Semi-Arid Tropics. In Managing Soil Drought; CRC Press: Boca Raton, FL, USA, 2024; pp. 161–211. [Google Scholar]
- Msweli, N.S.; Agholor, I.A.; Morepje, M.T.; Sithole, M.Z.; Nkambule, T.B.; Thabane, V.N.; Mgwenya, L.I.; Nkosi, N.P. Optimizing Water Conservation in South Africa’s Arid and Semi-Arid Regions Through the Cultivation of Indigenous Climate-Resilient Food Crops. Sustainability 2025, 17, 1149. [Google Scholar] [CrossRef]
- Ajayi, O.C.; Akinnifesi, F.K.; Sileshi, G.; Chakeredza, S.; Mn’gomba, S.; Ajayi, O.; Nyoka, I.; Chineke, T. Local Solutions to Global Problems: The Potential of Agroforestry for Climate Change Adaptation and Mitigation in Southern Africa. In Proceedings of the Tropical Forests and Climate Change Adaptation (TroFCCA) Regional Meeting “Knowledge and Action on Forests for Climate Change Adaptation in Africa”, Accra, Ghana, 18–20 November 2008. [Google Scholar]
- Oiganji, E.; Igbadun, H.; Amaza, P.S.; Lenka, R.Z. Innovative Technologies for Improved Water Productivity and Climate Change Mitigation, Adaptation, and Resilience: A Review. J. Appl. Sci. Environ. Manag. 2025, 29, 123–136. [Google Scholar] [CrossRef]
- Mwongera, C.; Shikuku, K.M.; Twyman, J.; Läderach, P.; Ampaire, E.; Van Asten, P.; Twomlow, S.; Winowiecki, L.A. Climate Smart Agriculture Rapid Appraisal (CSA-RA): A Tool for Prioritizing Context-Specific Climate Smart Agriculture Technologies. Agric. Syst. 2017, 151, 192–203. [Google Scholar] [CrossRef]
- Firoozi, A.A.; Firoozi, A.A. Water Erosion Processes: Mechanisms, Impact, and Management Strategies. Results Eng. 2024, 24, 103237. [Google Scholar] [CrossRef]
- Clay, N.; Zimmerer, K.S. Who Is Resilient in Africa’s Green Revolution? Sustainable Intensification and Climate Smart Agriculture in Rwanda. Land Use Policy 2020, 97, 104558. [Google Scholar] [CrossRef]
- Shilomboleni, H.; Recha, J.; Radeny, M.; Osumba, J. Scaling Climate Resilient Seed Systems through SMEs in Eastern and Southern Africa: Challenges and Opportunities. Clim. Dev. 2023, 15, 177–187. [Google Scholar] [CrossRef]
- Cacho, O.J.; Moss, J.; Thornton, P.K.; Herrero, M.; Henderson, B.; Bodirsky, B.L.; Humpenöder, F.; Popp, A.; Lipper, L. The Value of Climate-Resilient Seeds for Smallholder Adaptation in Sub-Saharan Africa. Clim. Change 2020, 162, 1213–1229. [Google Scholar] [CrossRef]
- Huyer, S.; Simelton, E.; Chanana, N.; Mulema, A.A.; Marty, E. Expanding Opportunities: A Framework for Gender and Socially-Inclusive Climate Resilient Agriculture. Front. Clim. 2021, 3, 718240. [Google Scholar] [CrossRef]
- Osumba, J.J.L.; Recha, J.W.; Oroma, G.W. Transforming Agricultural Extension Service Delivery through Innovative Bottom–Up Climate-Resilient Agribusiness Farmer Field Schools. Sustainability 2021, 13, 3938. [Google Scholar] [CrossRef]
- African Union Commission. The CAADP Results Framework 2015–2025: Going for Results and Impact; African Union Commission: Addis Ababa, Ethiopia, 2015. [Google Scholar]
- Ndayisaba, P.C.; Kuyah, S.; Midega, C.A.O.; Mwangi, P.N.; Khan, Z.R. Push-Pull Technology Improves Maize Grain Yield and Total Aboveground Biomass in Maize-Based Systems in Western Kenya. Field Crops Res. 2020, 256, 107911. [Google Scholar] [CrossRef]
S/N | Sustainable Agricultural Practice | Benefits | Limitations | Citation |
---|---|---|---|---|
1 | Agroforestry | Enhances soil fertility, improves biodiversity, provides additional income from tree products. | Requires long-term investment, trees may compete with crops for water and nutrients. | [21,53] |
2 | Conservation Agriculture (CA) | Reduces soil erosion, improves soil moisture retention, enhances carbon sequestration. | Initial transition period may lead to lower yields, require specialized equipment. | [1,15] |
3 | Climate-Smart Agriculture (CSA) | Enhance climate resilience, improve yields, support sustainable intensification. | High cost of implementation, need for training and extension services. | [45] |
4 | Organic Farming | Improves soil health, reduces reliance on synthetic inputs, promotes biodiversity. | Lower initial yields compared to conventional farming require more labor. | [22] |
5 | Integrated Pest Management | Reduces chemical pesticide use, minimizes environmental impact, enhances ecosystem balance. | Requires knowledge of pest ecology, potential yield losses in early adoption phase. | [12] |
6 | Drought-Resistant Crop Varieties | Ensures food security in arid regions, improves resilience to climate change, stabilizes yields. | May require additional breeding programs, initial adoption challenges. | [32] |
7 | Precision Agriculture | Increases resource efficiency (water, fertilizers), reduces input costs, enhances productivity. | High initial cost, requires digital literacy, data management challenges. | [13] |
8 | Push-Pull Technology | Effective for controlling pests, improves soil fertility, increases yields in smallholder farms. | Requires knowledge and proper implementation, needs specific crop varieties. | [34] |
9 | Water Harvesting Techniques | Reduces reliance on groundwater, improves water availability in dry regions, enhances irrigation efficiency. | Requires storage infrastructure, dependent on rainfall availability. | [1] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olarewaju, O.O.; Fawole, O.A.; Baiyegunhi, L.J.S.; Mabhaudhi, T. Integrating Sustainable Agricultural Practices to Enhance Climate Resilience and Food Security in Sub-Saharan Africa: A Multidisciplinary Perspective. Sustainability 2025, 17, 6259. https://doi.org/10.3390/su17146259
Olarewaju OO, Fawole OA, Baiyegunhi LJS, Mabhaudhi T. Integrating Sustainable Agricultural Practices to Enhance Climate Resilience and Food Security in Sub-Saharan Africa: A Multidisciplinary Perspective. Sustainability. 2025; 17(14):6259. https://doi.org/10.3390/su17146259
Chicago/Turabian StyleOlarewaju, Olaoluwa Omoniyi, Olaniyi Amos Fawole, Lloyd J. S. Baiyegunhi, and Tafadzwanashe Mabhaudhi. 2025. "Integrating Sustainable Agricultural Practices to Enhance Climate Resilience and Food Security in Sub-Saharan Africa: A Multidisciplinary Perspective" Sustainability 17, no. 14: 6259. https://doi.org/10.3390/su17146259
APA StyleOlarewaju, O. O., Fawole, O. A., Baiyegunhi, L. J. S., & Mabhaudhi, T. (2025). Integrating Sustainable Agricultural Practices to Enhance Climate Resilience and Food Security in Sub-Saharan Africa: A Multidisciplinary Perspective. Sustainability, 17(14), 6259. https://doi.org/10.3390/su17146259